徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

M37

指数 M37

M 37(也稱為NGC 2099)是位於御夫座內富含恆星的一個疏散星團。它是御夫座內最亮的三個疏散星團之一,在1654年之前就已經被義大利天文學家Giovanni Battista Hodierna發現了。法國天文學家Guillaume Le Gentil在1749年重新發現M36和M38時錯過了M37。法國天文學家梅西爾在1764年9月獨立的重新發現了M37,但這三個星團已由霍迪娜收錄在星表內。它在特朗普勒的分類法中屬於I、1、r或I、2、r。它的總亮度約相當於6等星,使用雙筒望遠鏡就可以看見,但看似星雲狀,外觀接近圓形。 從地球看M37,它相對於銀核中心,位於反銀心的方向上,估計它的年齡在3億4700萬年至5億5000萬年之間。它的質量是太陽的1,500倍,擁有的恆星數量超過500顆,而大約有150顆的視星等比12.5等明亮。M37至少有一打的紅巨星,並且還活著在主序帶上的最高溫恆星在恆星分類上是B9V。在氫和氦以外元素的豐度,也就是天文學家所謂的金屬量,不是略高於太陽,就是與太陽相似。 估計它與地球的距離大約是4,500光年(1,380秒差距),星團的角直徑為24弧分,相對應於實際上的數值大約是20-25光年(6-7.5秒差距)。星團的潮汐半徑,外部的引力攝動對成員的軌道有明顯影響的距哩,大約是46-59光年(14-18秒差距)。這個星團繞行銀河系的軌道周期大約是2億1930萬年,離心率0.22。這將使它與銀河中心最接近的距離大約是19,600光年(6,012秒差距),最遠的距離大約是30,700光年(9,417秒差距)。它離銀河平面最遠的距離大約是290光年(89秒差距),並以3,170萬年的週期穿越銀河平面。.

29 关系: 反銀心双筒望远镜主序星御夫座地球儒略年光年秒差距紅巨星疏散星团銀心銀河平面角分角直徑视星等軌道離心率银河系金屬量M36M37M38NGC天體表查尔斯·梅西耶恆星演化梅西耶天體洛希極限深空天體攝動意大利

反銀心

反銀心是理論上在天空中相對於銀河系銀河中心的點。由於這個點是相對應的,它將會隨著觀測者的位置而改變;而不是在空間中固定不變的點。絕大部份的場合,這個術語是指從地球上觀測者的角度來看的反銀心點Majaess D. J., Turner D. G., Lane D. J. (2009).

新!!: M37和反銀心 · 查看更多 »

双筒望远镜

双筒望远镜(或直接簡稱雙筒鏡,也稱之為野外鏡)是将两个相同的或者镜像对称的望远镜并排連在一个架子上使得它们始终对准同一方向而制成的望远镜。使用者可透过它同时以双眼观察远处景象。双筒望远镜比单筒望远镜提供更高的深度和距离感。雙筒鏡也可以成由兩個短的折射望遠鏡組合,用於觀看遙遠目標的設備。 最常见的双筒望远镜的大小正好适合双手托拿,它包括内部的反射系统,这个系统可以缩短望远镜的长度,使它短于透镜的焦距。此外它还可以增大物镜之间的距离来改善深度感。所有常见的双筒望远镜是伽利略式的,或者使用稜镜来呈现一个正像。 大的双筒望远镜比较重,不易稳定地拿住,因此一般被固定在三腳架上或其它支柱上。在第二次世界大战中美国制造过非常大的(10吨),其物镜的距离相当远的(15米)大型双筒望远镜来确定25公里以外的海上目标的距离。目前世界上最大的双筒望远镜是位于美国亞利桑那州的大雙筒望遠鏡(Large Binocular Telescope,LBT)。.

新!!: M37和双筒望远镜 · 查看更多 »

主序星

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.

新!!: M37和主序星 · 查看更多 »

御夫座

御夫座在猎户座和金牛座的北面天区,由一个特别醒目的五边形组成。有一半沉浸在美丽的银河之中。.

新!!: M37和御夫座 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: M37和地球 · 查看更多 »

儒略年

儒略年(符號:a)是天文學中測量時間的測量單位,定義的數值為365.25天,每天為國際單位的86400秒,總數為31,557,600秒。這個數值是西方社會早期使用儒略曆中年的平均長度,並且是這個單位的名稱。然而,因為儒略年只是測量時間的單位,並沒有針對特定的日期,因此儒略年與儒略曆或任何其他的曆都沒有關聯,也與許多其他型式年的定義沒有關聯。.

新!!: M37和儒略年 · 查看更多 »

光年

光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.

新!!: M37和光年 · 查看更多 »

秒差距

差距(parsec,符號為pc)是一個宇宙距離尺度,用以測量太陽系以外天體的長度單位。1秒差距定義為某一天體與1天文單位的為1時的距離,但於2015年時被重新定義為一個精確值,為天文單位。1秒差距的距離等同於3.26光年(31兆公里或19兆英里)。離太陽最近的恆星比鄰星,距離大約為。絕大多數位於距太陽500秒差距內的恆星,可以在夜空中以肉眼看見。 秒差距最早於1913年,由英國天文學家提出。其英語名稱為一個混成詞,由「1角秒(arcsecond)的視差(parallax)」組合而來,使天文學家可以只從原始觀測數據,就能夠進行天文距離的快速計算。由於上述部分原因,即使光年在科普文字與日常上維持優勢地位,秒差距仍受到天文學與天體物理學的喜愛。秒差距適用於銀河系內的短距離表述,但在描述宇宙大尺度的用途上,會將其加上詞頭來應用,如千秒差距(kpc)表示銀河系內與周圍物體的距離,百萬秒差距(Mpc)描述銀河系附近所有星系的距離,吉秒差距(Gpc)則是描述極為遙遠的星系與眾多類星體。 2015年8月,國際天文學聯合會通過B2決議文,將絕對星等與進行標準定義,也包含將秒差距定義為一個精確值,即天文單位,或大約公尺(基於2012年國際天文學聯合會對於天文單位的精確國際單位制定義)。此定義對應於眾多當代天文學文獻中對於秒差距的小角度定義。.

新!!: M37和秒差距 · 查看更多 »

紅巨星

红巨星是巨星的一种,是恆星的一種衰變狀態,根据恒星质量的不同,存在期只有数百万年不等。质量通常约为0.5至8个太阳质量,质量更大的称为红超巨星,質量再大的為紅特超巨星。.

新!!: M37和紅巨星 · 查看更多 »

疏散星团

疏散星團,也稱為銀河星團,是由同一個巨分子雲中的數百顆至數千顆恆星形成的集團。在銀河系中發現的疏散星團已經超過1,100個,並且被認為還存在更多。它們環繞著銀河中心運轉時,只靠著微弱的引力吸引維繫在一起,並且很容易因為與其它集團或氣體雲的近距離接觸而瓦解。疏散星團的壽命通常只有幾億年,但少數質量特別大的可以存活數十億年。相較之下,質量更大的球狀星團,擁有更多的恆星,成員彼此間的引力極為強大,可以存活的時間也更長。只有在星系的螺旋臂和不規則星系能發現疏散星團,它們只存在於恆星形成活躍區。 年輕的疏散星團可能仍然在它們形成的分子雲中,照亮它們在分子雲內創造出來的H II區。隨著時間推移,來自星團的輻射壓會將分子雲吹散。通常情況下,在輻射壓將氣體驅散之前,大約有10%質量的氣體能凝聚形成恆星。 疏散星團是研究恆星演化的關鍵天體。因為集團中的恆星成員年齡和化學成分都相仿,它們的特性(像是距離、年齡、金屬量和消光)也比單獨的恆星容易測量。有些疏散星團,像是昴宿星團、畢宿星團或英仙α星團,都可以用裸眼直接看見。還有一些,例如雙星團,則幾乎不用儀器也可以察覺它們的存在,而使用雙筒望遠鏡或光學望遠鏡還可以看見更多,野鴨星團,M11,就是個例子。.

新!!: M37和疏散星团 · 查看更多 »

銀心

銀心,即銀河系中心(Galactic Center),是銀河系環繞的中心區域,同時也是整個銀河系中最明亮的區域。銀心位於人馬座、蛇夫座與天蠍座三個星座中,距離地球約 8,000 秒差距(24,000 至 28,400 光年)。.

新!!: M37和銀心 · 查看更多 »

銀河平面

銀河平面是銀河系主要的質量形成的盤狀平面,垂直於銀河平面的方向指向銀極。通常的使用,在實際的情況下,"星系平面"和"星系極"這兩個項目就是特指地球所在銀河系的平面和極點。 有些星系是不規則的,無法明確的定義盤面,即使是像銀河系一樣的螺旋星系,也會因為星星沒有完全共平面,也難以明確的定義出星系平面。在1959年,IAU使用1950年分點的曆元定義銀河系的北銀極的精確位置是RA.

新!!: M37和銀河平面 · 查看更多 »

角分

角分(minute of angle,简称MOA),又稱弧分(minute of arc、arc minute或minute arc),是量度平面角的單位,符號為′,在不會引起混淆時,可簡稱作分。「角分」二字只限用於描述角度,不能於其他以「分」作單位的情況使用(如時間的分,或者考試分數)。 完整的周角为360度,1度等於60分,1分等於60 秒。以數學等式來表示即:.

新!!: M37和角分 · 查看更多 »

角直徑

角直徑是以角度做測量單位時,從一個特定的位置上觀察一個物體所得到的「視直徑」。視直徑只是被觀測的物體在垂直觀測者視線方向中心的平面上產生的透視投影的直徑。由於它是在觀測者的角度下按比例的縮影,因此與物體真實的直徑會有所不同。但對一個在遙遠距離上的盤狀天體,視直徑和實直徑是相同的。.

新!!: M37和角直徑 · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

新!!: M37和视星等 · 查看更多 »

軌道離心率

在天文動力學,架構在標準假說下的任何軌道都必須是圓錐切面的形狀。圓錐切面的離心率,軌道離心率是定義軌道形狀的重要參數,而且定義了絕對的形狀。離心率可以解釋為形狀從圓形偏離了多少的程度。 架構在標準假說下,離心率(偏心率,e\,\!)是嚴格的定義了圆、椭圆、抛物线和双曲线,並且有如下的數值:.

新!!: M37和軌道離心率 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: M37和银河系 · 查看更多 »

金屬量

金屬量是天文學和物理宇宙學中的一個術語,它是指恒星之內除了氫和氦元素之外,其他的化學元素所占的比例(這個術語不同於一般所認知的“金屬”,因為在宇宙中氫和氦的組成量占了壓倒性的大數量,天文學家將所有更重的元素都視為金屬。) 。例如,碳化合物含量較多的星雲被稱為“富金屬”,但在其他的場合都不會將碳當成金屬。 一個天體的金屬量也許可以提供年齡的訊息。當宇宙剛形成時,依據大霹靂的理論,它幾乎完全都是氫原子,經由太初核合成,創造出相當大比例的氦和微量跡證的鋰。最初的恒星,被認為是第三星族星,完全不含任何金屬。這些恒星的質量是難以置信的巨大,因此在短促的恒星演化中經由核融合創造出週期表內比鐵輕的元素,然後經由壯觀的超新星將元素散佈在宇宙中。雖然,它們存在於主流的宇宙起源模型,但直至2007年,仍未發現第三星族星。下一代的恒星於第一代恒星死亡釋出的物質中创造出来,被觀測到最老的恒星,被認為是第二星族星,有非常少量的金屬;後續世代出生的恒星,因由先前世代的富含金屬的塵埃中创生出来,金屬含量越來越豐富。而當這些恒星死亡時,它們會將更豐富的金屬,經由行星狀星雲或超新星散佈到外面的雲氣中,讓新誕生的恒星有更豐富的金屬。最年輕的恒星,包括我們的太陽,含有的金屬最豐富的恒星,被認為是第一星族星。 橫跨銀河系,金屬量在銀心是最高的,並向外逐漸遞減。在群星之間的金屬量梯度隨恒星的密度變化:在星系的中心有最多的恒星,隨著時間的過去,有越來越多的金屬回到星際物質內,並且成為新恒星的原料。由相似的機制,較大的星系相較於較小的星系,也會有較高的金屬量。在兩個環繞著銀河系的小不規則星系,麥哲倫雲的例子中,大麥哲倫星系的金屬量是銀河系的40%,小麥哲倫星系的金屬量是銀河系的10%。.

新!!: M37和金屬量 · 查看更多 »

M36

#重定向 M36驅逐戰車.

新!!: M37和M36 · 查看更多 »

M37

M 37(也稱為NGC 2099)是位於御夫座內富含恆星的一個疏散星團。它是御夫座內最亮的三個疏散星團之一,在1654年之前就已經被義大利天文學家Giovanni Battista Hodierna發現了。法國天文學家Guillaume Le Gentil在1749年重新發現M36和M38時錯過了M37。法國天文學家梅西爾在1764年9月獨立的重新發現了M37,但這三個星團已由霍迪娜收錄在星表內。它在特朗普勒的分類法中屬於I、1、r或I、2、r。它的總亮度約相當於6等星,使用雙筒望遠鏡就可以看見,但看似星雲狀,外觀接近圓形。 從地球看M37,它相對於銀核中心,位於反銀心的方向上,估計它的年齡在3億4700萬年至5億5000萬年之間。它的質量是太陽的1,500倍,擁有的恆星數量超過500顆,而大約有150顆的視星等比12.5等明亮。M37至少有一打的紅巨星,並且還活著在主序帶上的最高溫恆星在恆星分類上是B9V。在氫和氦以外元素的豐度,也就是天文學家所謂的金屬量,不是略高於太陽,就是與太陽相似。 估計它與地球的距離大約是4,500光年(1,380秒差距),星團的角直徑為24弧分,相對應於實際上的數值大約是20-25光年(6-7.5秒差距)。星團的潮汐半徑,外部的引力攝動對成員的軌道有明顯影響的距哩,大約是46-59光年(14-18秒差距)。這個星團繞行銀河系的軌道周期大約是2億1930萬年,離心率0.22。這將使它與銀河中心最接近的距離大約是19,600光年(6,012秒差距),最遠的距離大約是30,700光年(9,417秒差距)。它離銀河平面最遠的距離大約是290光年(89秒差距),並以3,170萬年的週期穿越銀河平面。.

新!!: M37和M37 · 查看更多 »

M38

M38(NGC 1912)是一個疏散星团,亮度接近+6,使用双筒望远镜很容易观测。它看上去都相当圆,呈星云状。M38与M36类似,但更大一些(20弧分),包含的恒星也更多(使用6英寸/15厘米望远镜观测,可以看见至少100颗恒星).

新!!: M37和M38 · 查看更多 »

NGC天體表

星雲和星團新總表(New General Catalogue of Nebulae and Clusters of Stars,縮寫:NGC) 是在天文學上非常著名的深空天體目錄,它收錄了7,840個天體。它由約翰·德雷耳编纂,它是作为威廉·赫歇爾星雲和星團總表的新版本。星雲和星團新總表是最大的一個綜合目錄,它包含所有類型的深空天體,並無被侷限在某一類,例如星系。德雷耳後來在1895年和1908年擴編了兩份NGC索引星表,增加了描述5,386個天體。 目錄中對南半球天空中的天體並沒有完整的調查,多數都只是約翰·赫歇耳或詹姆士·丹露帕的觀測。NGC有許多的錯誤,但是比較嚴重和明顯的錯誤在後續的NGC/IC計划中已經消除。後續未完成的修訂新總表(RNGC) 有1973年Sulentic和Tifft的版本,還有Sinnott在1988年的NGC2000.0。修訂的新總表和索引目錄由Wolfgang Steinicke編譯於2009年。.

新!!: M37和NGC天體表 · 查看更多 »

查尔斯·梅西耶

#重定向 夏尔·梅西耶.

新!!: M37和查尔斯·梅西耶 · 查看更多 »

恆星演化

恆星演化是恆星在生命過程中所經歷急遽變化的序列。恆星依據質量,一生的範圍從質量最大的恆星只有幾百萬年,到質量最小的恆星比宇宙年齡還要長的數兆年。右方的表顯示質量和恆星壽命的關聯性。所有的恆星都從通常被稱為星雲或分子雲的氣體和塵埃坍縮中誕生。在幾百萬年的過程中,原恆星達到平衡的狀態,安頓下來成為所謂的主序星。 恆星大部分的生命期都在以核融合產生能量的狀態。最初,主序星在核心將氫融合成氦來產生能量,然後,氦原子核在核心中佔了優勢。像太陽這樣的恆星會從核心開始以一層一層的球殼將氫融合成氦。這個過程會使恆星的大小逐漸增加,通過次巨星的階段,直到達到紅巨星的狀態。質量不少於太陽一半的恆星也可以經由將核心的氢融合成氦來產生能量,質量更重的恆星可以依序以同心圓產生質量更重的元素。像太陽這樣的恆星用盡了核心的燃料之後,其核心會塌縮成為緻密的白矮星,並且外層會被驅離成為行星狀星雲。質量大約是太陽的10倍或更重的恆星,在它缺乏活力的鐵核塌縮成為密度非常高的中子星或黑洞時會爆炸成為超新星。雖然宇宙的年齡還不足以讓質量最低的紅矮星演化到它們生命的尾端,恆星模型認為它們在耗盡核心的氫燃料前會逐漸變亮和變熱,然後成為低質量的白矮星The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer, and Fred C. Adams, The Astrophysical Journal, 482 (June 10, 1997), pp.

新!!: M37和恆星演化 · 查看更多 »

梅西耶天體

梅西爾天體 是一套110個深空天體表,其中的103個是法國天文學家夏爾·梅西耶在1771年和1781年發表的名單。梅西爾是一位彗星獵人,常被那些類似但不是彗星的天體所困惑,所以他編輯了梅西爾天體表,其中也羅列了其競爭者皮埃爾·梅尚發現的,以避免在這些天體上浪費時間。除了梅西爾發表的這103個之外,還有7個也被認為是梅西爾發現與觀測過的,也已經被後來的天文學家加入這份表單中。 最近才注意到在1654年發表了一份較簡短的,但梅西爾可能不知道。.

新!!: M37和梅西耶天體 · 查看更多 »

洛希極限

洛希極限(Roche limit)是一個天體自身的重力与第二個天體造成的潮汐力相等时的距離。當两个天體的距離少於洛希極限,天體就會傾向碎散,繼而成為第二個天體的環。它以首位計算這個極限的人愛德華·洛希命名。 洛希極限常用于行星和环绕它的衛星。有些天然和人工的衛星,儘管它們在它們所環繞的星體的洛希極限內,卻不至成碎片,因為它們除了引力外,還受到其他的力。木衛十六和土衛十八是其中的例子,它們和所環繞的星體的距離少於流體洛希極限。它們仍未成為碎片是因為有彈性,加上它們並非完全流體。在這個情況,在衛星表面的物件有可能被潮汐力扯離衛星,要視乎物件在衛星表面哪部分——潮汐力在兩個天體中心之間的直線最強。 一些內部引力較弱的物體,例如彗星,可能在經過洛希極限內時化成碎片。蘇梅克-列維9號彗星就是好例子。它在1992年經過木星時分成碎片,1994年落在木星上。 現時所知的行星環都在洛希極限之內。.

新!!: M37和洛希極限 · 查看更多 »

深空天體

深空天體(Deep sky object, DSO)是一個常見於業餘天文學圈子的名詞。一般來說,深空天體指的是天上除太陽系天體(如行星、彗星、小行星)和恆星外的天體。這些天體大都不為肉眼所見。只有當中較明亮者(如著名的M31仙女座大星系和M42獵戶座大星雲)能為肉眼所見,但為數不多。超過一百個以上的深空天體能通過雙筒望遠鏡所看到,例如18世紀法國天文學家梅西耶所編的《星雲星團表》中的大部分天體。若有一支天文望遠鏡,能看到的深空天體數量會大幅上升。通過天文攝影能拍攝到為數可觀的該些天體。 深空天體的主要分類有:.

新!!: M37和深空天體 · 查看更多 »

攝動

攝動(Perturbation)是天文學上的一個術語(專有名詞),是用來描述一個大質量天體受到一個以上質量體的引力影響而可察覺的複雜運動。 這種天體的複雜運動可以分成不同的成分而加以描述。首先,假設它的運動只受到一個天體的引力影響,因此它的運動是必然的結果。以其它的方法表示,這種運動可視為二體問題的解,或是為受到攝動的克卜勒軌道。然後,假設上未受到攝動的運動和實際的運動之間的差別,這是由於來自額外的一個或多個物體的引力效應,就是所謂的攝動。如果只有另一個影響較顯著的天體,則這種攝動的解稱為三體問題;如果有多個物體都有顯著的影響,這種運動可以作為更高階的代表,稱為多體問題(N體問題)。 當年,牛頓在導出他的引力運動時,就已經承認攝動的存在,並知道這種計算的複雜和困難。從牛頓的時代開始,已經發展出一些數學上的技術來分析攝動,它們可以分為兩大類:一般攝動和特殊攝動。分析一般攝動的方法,運動的常微分方程可以得到解答,通常是一系列的逼近,還有使用三角函數或代數的結果,再使用許多不同的設定,通常就可以得到不同設定條件下的解。從歷史上看,一般攝動是先被研究的,因為特殊攝動的方法:數值資料、表示位置的值、速度和加速度的影響,是建立在微分方程數值積分的基礎上。 許多系統都涉及多體引力,存在於其中的一個物體是佔有引力優勢的主導者(例如,恆星系,在這樣的案例中是恆星和它的行星;或是行星系,在這樣的案例中是行星和它的衛星)。然後,其它的引力影響,相較於未受攝動的行星,可被視為導致行星受到攝動;或是,衛星,各自環繞著主要的天體。 在太陽系,許多的攝動是由周期性的元件造成的,所以攝動的天體依照軌道的周期性或準周期的,長時間的周期-像是月球在它的強擾動軌道,這是月球運動說的主題。 行星會在其它行星的軌道導致周期性的攝動,天王星的軌道受道攝動的結果,導致1846年的發現海王星。 行星相互間的攝動會導致其軌道要素長期的準周期變化。金星目前有著最小的離心率,也就是說它的軌道是行星軌道中最接近圓形的。再過約25,000年,地球的軌道將會比金星的更圓(低離心率)。 太陽系內許多小天體的軌道,像是彗星,經常會受到巨大的攝動,尤其是通過氣體巨星的引力場時。雖然這些攝動有很多是周期性的,但也有些不是,並且這些特別可能代表著混沌運動。例如在1996年4月,木星的引力場影響到海爾-博普彗星軌道的周期從4,206年縮減為2,380年,並且這些變化將不會在任何的周期基礎上被還原。 在太空動力學和人造衛星的事件中,軌道的攝動通常來自大氣拖曳和太陽輻射壓力。.

新!!: M37和攝動 · 查看更多 »

意大利

意大利共和国(Repubblica Italiana),通稱意大利(Italia),是一個歐洲主权國家,主要由位於南歐的靴型亞平寧半岛及两个地中海岛嶼西西里岛和撒丁岛所组成,國際代碼為IT。意大利北方的阿尔卑斯山地区与法国、瑞士、奥地利以及斯洛文尼亚接壤,其领土包围着两个微型国家——圣马力诺和梵蒂冈,而在瑞士擁有座落於盧加諾湖湖畔的意大利坎波內這個境外領土。全国行政上划分为20个大区(其中5个為自治区)、110个省與8,100个城市。首都為罗马,意大利王国在1870年將首都設置在此,而都灵(1861年-1865年)及-zh-hans:佛罗伦萨;zh-tw:佛羅倫斯;-(1865年-1870年)也曾是意大利王國的首都。根据2014年统计,意大利人口大约为6,079.5萬,領土面積約為301,338平方公里,人口密度约每平方公里201.7人,屬於溫帶氣候。意大利是歐洲人口第5多的國家,人口在世界上排名第23位。意大利因其拥有美丽的自然风光和为数众多的人类文化遗产(世界遺產數目排名全球第一)而被称为美丽的国度(Belpaese)。 現今的意大利地區是以前歐洲民族及文化的搖籃,曾孕育出羅馬文化及伊特拉斯坎文明,而意大利的首都羅馬,幾個世紀以來都是西方世界的政治中心,也曾經是羅馬帝國的首都。當羅馬帝國殞落後,意大利遭受了多次外族入侵,包括倫巴底人、東哥德人等日耳曼民族,之後還有諾曼人等。东罗马帝国曾一度重新占领意大利地区。在14世紀後,意大利轉而成為文藝復興的發源地 ,而文藝復興對歐洲影響深遠,讓歐洲思想前進了一大步。義大利過去分裂為許多王國與城邦,但是最終在1861年完成統一。其巅峰是在第二次世界大戰刚开始之前,義大利變成一個殖民帝國,把勢力範圍延伸到利比亞、厄利垂亞、-zh-hans:意属索马里兰;zh-hk:意屬索馬利蘭;zh-tw:義屬索馬利蘭;-、衣索比亞、阿爾巴尼亞、羅德島與十二群島,而且擁有中國天津的租界。 意大利也在政治、文化、科學、醫療衛生、教育、體育、藝術、時尚、宗教、料理、電影、建築、經濟及音樂等方面具有重要的影響力。米蘭是意大利的經濟及工業中心,根據2009年全球語言監察組織(Global Language Monitor)的資料,它也是世界時尚之都。在2007年造訪意大利的遊客人數位居世界第5位,總共超過4,370萬人次的國際遊客造訪,而羅馬則是歐盟國家中第3多遊客造訪的城市,也被認為世界上最美麗的十大古城之一。威尼斯則被認為是世界上最美麗的城市,《紐約時報》形容它「無疑是世界上最美麗的人造城市」。 意大利共和国是一個議會制民主共和國,是一個已開發國家,世界七大工業國之一,生活質量指數則在世界排名第8名, Economist, 2005。意大利在2014年人類發展指數列表中則名列第26位,並擁有高度人均國內生產總額。根據國內生產總額與購買力平價國內生產總值的數據,意大利分別是世界第8大與第10大經濟體。意大利的政府預算金額則是位居世界第5位。意大利是北大西洋公約和歐盟的創始會員國,也是八大工業國集團、20國集團和歐洲四大經濟體成員之一。意大利也参与經濟合作與發展組織、世界貿易組織、歐洲議會、西歐聯盟及歐洲創新中心(Central European Initiative)。意大利也參加申根協議,也是世界世界國防預算金額第9高的國家且分享北約的核武器。 意大利在歐洲及全球的軍事、文化和外交事務扮演重要的角色,首都羅馬則是世界上對於政治及文化具有重要影響力的城市,世界上許多著名的機構,例如國際農業發展基金會(International Fund for Agricultural Development)、全球在地論壇(Glocal Forum)、世界糧食計劃署及聯合國糧食及農業組織的總部都設在羅馬。意大利也擁有较高的教育指數、勞動力人口及慈善捐助金額。人均預期壽命排名世界第11位。醫療保健系統在2000年被世界衛生組織評比為世界第2。意大利也是一個全球化的國家。意大利的國家品牌價值在2009年名列世界第6位。意大利在藝術、科學和技術上擁有悠久的傳統,且至2017年共有53处世界遺產,是擁有最多世界遺產的西方國家。.

新!!: M37和意大利 · 查看更多 »

重定向到这里:

NGC 2099

传出传入
嘿!我们在Facebook上吧! »