徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

莫比乌斯变换

指数 莫比乌斯变换

在几何学--, 莫比乌斯变换是一类从黎曼球面映射到自身的函数。用扩展复平面上的复数表示的话,其形式为: 其中 z, a, b, c, d 为满足 ad − bc ≠ 0的(扩展)复数。 莫比乌斯变换也可以被分解为以下几个变换:把平面射影到球面上,把球体进行旋转、位移等任何变换,然后把它射影回平面上。 莫比乌斯变换是以数学家奥古斯特·费迪南德·莫比乌斯的名字命名的,它也被叫做单应变换(homographic transformation)或分式线性变换(linear fractional transformation)。.

28 关系: 单位圆反演双射双曲几何复合函数复数奥古斯特·费迪南德·莫比乌斯射影几何射影线性群一般线性群平移广义圆庞加莱半平面模型交比單位矩陣几何学全纯函数共形映射等距同构缩放非奇异方阵黎曼球面黎曼曲面镜面反射核 (代数)旋转数学家

单位圆

在数学中,单位圆是指半径为单位长度的圆,通常为欧几里得平面直角坐标系中圆心为(0,0)、半径为1的圆。单位圆对于三角函数和复数的坐标化表示有着重要意义。单位圆通常表示为S1。多维空间中,单位圆可推广为单位球。 如果单位圆上的点 (x, y)位于第一象限,那么x与y是斜边长度为1的直角三角形的两条边,根据勾股定理,x与y满足方程: 由于对于所有的x来说x2.

新!!: 莫比乌斯变换和单位圆 · 查看更多 »

反演

反演是種幾何變換。給定點O、常數k,點P的變換對應點就是在以O開始的射線\overrightarrow上的一點P'使得\overline \cdot \overline.

新!!: 莫比乌斯变换和反演 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 莫比乌斯变换和双射 · 查看更多 »

双曲几何

双曲几何又名罗氏几何(罗巴切夫斯基几何),是非欧几里德几何的一种特例。與欧几里德几何的差別在於第五條公理(公設)-平行公設。在欧几里德几何中,若平面上有一條直線R和線外的一點P,則存在唯一的一條線滿足通過P點且不與R相交(即R的平行線)。但在雙曲幾何中,至少可以找到兩條相異的直線,且都通過P點,並不與R相交,因此它違反了平行公設。然而,取代欧几里德几何中的平行公設的雙曲幾何本身並無矛盾之處,仍可以推得一系列屬於它的定理,這也說明了平行公設獨立於前四條公設,換句話說,無法由前四條公設推得平行公設。 到目前為止,數學家對雙曲幾何中平行線的定義尚未有共識,不同的作者會給予不同的定義。这里定義兩條逐漸靠近的線為漸進線,它們互相漸進;兩條有共同垂直線的線為超平行線,它們互相超平行,並且兩條線為平行線代表它們互相漸進或互相超平行。雙曲幾何還有一項性質,就是三角形的內角和小於一個平角(180°)。在極端的情況,三角形的三邊長趨近於無限,而三內角趨近於0°,此時該三角形稱作理想三角形。 双曲几何专门研究当平面变成鞍马型之后,平面几何到底还有几多可以适用,以及会有甚麼特別的现象產生。在双曲几何的环境裡,平面的曲率是負数。 通過兩個點可形成一個直線.

新!!: 莫比乌斯变换和双曲几何 · 查看更多 »

复合函数

在数学领域,两个函数的复合函数指一个将第一个函数作用于参数,然后再将第二个函数作用于所得结果的函数。 具体来说,给定两个函数f: X → Y和g: Y → Z,其中f的陪域等于g的定义域(称为f、g可复合),则其复合函数h.

新!!: 莫比乌斯变换和复合函数 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 莫比乌斯变换和复数 · 查看更多 »

奥古斯特·费迪南德·莫比乌斯

奥古斯特·费迪南德·莫比乌斯(August Ferdinand Möbius,),德国数学家和天文学家,被认为是拓扑学的先驱。 莫比乌斯最著名的成就是发现了三维欧几里得空间中的一种奇特的二维单面环状结构——后人称为莫比乌斯带。其他重要的成就包括在射影几何中引进齐次坐标系、莫比乌斯变换(Möbius transformations),数论中的莫比乌斯变换、莫比乌斯函数、莫比乌斯反演公式等等。.

新!!: 莫比乌斯变换和奥古斯特·费迪南德·莫比乌斯 · 查看更多 »

射影几何

在數學裡,投影幾何(projective geometry)研究在投影變換下不變的幾何性質。與初等幾何不同,投影幾何有不同的設定、投影空間及一套基本幾何概念。直覺上,在一特定維度上,投影空間比歐氏空間擁有「更多」的點,且允許透過幾何變換將這些額外的點(稱之為無窮遠點)轉換成傳統的點,反之亦然。 投影幾何中有意義的性質均與新的變換概念有關,此一變換比透過變換矩陣或平移(仿射變換)表示的變換更為基礎。對幾何學家來說,第一個問題是要找到一個足以描述這個新的想法的幾何語言。不可能在投影幾何內談論角,如同在歐氏幾何內談論一般,因為角並不是個在投影變換下不變的概念,如在透視圖中所清楚看到的一般。投影幾何的許多想法來源來自於對透視圖的理論研究。另一個與初等幾何不同之處在於,平行線可被認為會在無窮遠點上交會,一旦此一概念被轉換成投影幾何的詞彙之後。這個概念在直觀上,正如同在透視圖上會看到鐵軌在水平線上交會一般。有關投影幾何在二維上的基本說明,請見投影平面。 雖然這些想法很早以前便已存在,但投影幾何的發展主要還是到19世紀才開始。大量的研究使得投影幾何變成那時幾何的代表學科。當使用複數的坐標(齊次坐標)時,即為研究複投影空間之理論。一些更抽象的數學(包括不變量理論、代數幾何義大利學派,以及菲利克斯·克萊因那導致古典群誕生的愛爾蘭根綱領)都建立在投影幾何之上。此一學科亦吸引了許多學者,在綜合幾何的旗幟之下。另一個從投影幾何之公理化研究誕生的領域為有限幾何。 投影幾何的領域又可細分成許多的研究領域,其中的兩個例子為投影代數幾何(研究投影簇)及投影微分幾何(研究投影變換的微分不變量)。.

新!!: 莫比乌斯变换和射影几何 · 查看更多 »

射影线性群

射影线性群是代数学里群论中的一类群的称呼。射影线性群也叫射影一般线性群(一般记作 PGL),是某个系数域为\mathbb的向量空间V上的一般线性群在射影空间 P(V) 上诱导的群作用。具体来说,射影线性群是商群: 其中的\mathcal(V)是V上的一般线性群,而\mathbb(V)是由V上的所有数乘变换构成的\mathcal(V)的子群。之所以在\mathcal(V)中约去\mathbb(V),是因为它们在射影空间上的作用是平凡的(所以构成群作用的核)。\mathbb(V) 有时也被记作 \mathcal(V),因为它是一般线性群的中心。 与射影线性群类似的还有射影特殊线性群,一般记作PSL。它的定义与射影线性群相似,只不过不是在一般线性群而是在特殊线性群上。 其中的\mathcal(V)是V上的特殊线性群,而\mathcal(V)是\mathbb(V)在\mathcal(V)中的子群(即行列式等于1的数乘变换构成的子群)。显然 \mathcal(V) 是 \mathcal(V) 的中心。若V.

新!!: 莫比乌斯变换和射影线性群 · 查看更多 »

一般线性群

在數學中,n 次一般線性群是 n×n 可逆矩陣的集合,和與之一起的普通矩陣乘法運算。這形成了一個群,因為兩個可逆矩陣的乘積也是可逆矩陣,而可逆矩陣的逆元還是可逆矩陣。叫這個名字是因為可逆矩陣的縱列是線性無關的,因此它們定義的向量/點是在一般線性位置上的,而在一般線性群中的矩陣把在一般線性位置上的點變換成在一般線性位置上的點。 为了使定义更明确,必需規定哪類對象可以成為矩陣的元素。例如,在 R(實數集)上的一般線性群是實數的 n×n 可逆矩陣的群,并指示為 GLn(R)或 GL(n, R)。 更一般的說,在任何域 F(比如複數集)或環 R(比如整數集的環)上的 n 次一般線性群是帶有來自 F(或 R)的元素的 n×n 可逆矩陣的群,帶有矩陣乘法作為群運算。這裡的環被假定為符合結合律和有乘法單位元的。典型符號是 GLn(F)或 GL(n, F),如果域是自明的也可簡寫為 GL(n)。 更一般的說,向量空間的一般線性群 GL(V)仍是抽象自同構群,不必需寫為矩陣。 '''特殊線性群''',寫為 SL(n, F)或 SLn(F),是由行列式.

新!!: 莫比乌斯变换和一般线性群 · 查看更多 »

平移

在仿射幾何,平移(translation)是將物件的每點向同一方向移動相同距離。 它是等距同構,是仿射空間中仿射變換的一種。它可以視為將同一個向量加到每點上,或將坐標系統的中心移動所得的結果。即是說,若\mathbf是一個已知的向量,\mathbf是空間中一點,平移T_(\mathbf).

新!!: 莫比乌斯变换和平移 · 查看更多 »

广义圆

广义圆是近代几何中的一个概念,表示直线和圆的集合。广义圆的概念主要出现在反演几何里。圆和直线的反演有着相似的性质,因此在反演几何里可以将两者合并为一类,以方便研究。 平面上的反演几何假设平面是由普通的欧几里得平面和一个无穷远点组成。在反演几何中,直线的定义是欧几里得直线加上无穷远点,成为一个经过无穷远点,半径为无穷大的圆。.

新!!: 莫比乌斯变换和广义圆 · 查看更多 »

庞加莱半平面模型

在非欧几里得几何中,庞加莱半平面模型(Poincaré half-plane model)是赋有庞加莱度量的上半平面,这是二维双曲几何的一个模型。 它以昂利·庞加莱命名,但最初是贝尔特拉米(Eugenio Beltrami)发现的,他用这个模型与克莱因模型以及庞加莱圆盘模型(属于黎曼)证明了双曲几何与欧几里得几何的相容性等价(equiconsistent)。圆盘模型与半平面模型在共形映射下是等价的。.

新!!: 莫比乌斯变换和庞加莱半平面模型 · 查看更多 »

交比

数学上,複平面上四点的交比是 这个定义可以连续延拓至整个黎曼球面,即複平面加上无穷远点。 一般来说,交比可以定义在射影直线(黎曼球面就是複射影直線)。在任何仿射坐标卡中,交比由上式给出。交比是射影几何的不变量,就是说射影变换保持交比不变。 从前人们注意到如果四条直线穿过一点P,第五条直线L不穿过P,分别与四条直线交于四点,那么在L上按序取四点的有向长度,所算出的交比是独立于L。它是这四直线系的不变量。 四个複数的交比为实数当且唯当四点共线或共圆。.

新!!: 莫比乌斯变换和交比 · 查看更多 »

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

新!!: 莫比乌斯变换和單位矩陣 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

新!!: 莫比乌斯变换和几何学 · 查看更多 »

全纯函数

全纯函数(holomorphic function)是複分析研究的中心对象;它们是定义在複平面C的开子集上的,在複平面C中取值的,在每点上皆複可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个複平面上都全纯的函数称为整函数(entire function)。「在一点a全纯」不仅表示在a可微,而且表示在某个中心为a的複平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。.

新!!: 莫比乌斯变换和全纯函数 · 查看更多 »

共形映射

数学上,共形变换(Conformal map)或稱保角变换,來自於流体力学和几何学的概念,是一个保持角度不变的映射。 更正式的说,一个映射 称为在 z_0 \, 共形(或者保角),如果它保持穿过 z_0 \, 的曲线间的定向角度,以及它们的取向也就是说方向。共形变换保持了角度以及无穷小物体的形状,但是不一定保持它们的尺寸。 共形的性质可以用坐标变换的导数矩阵雅可比矩阵的术语来表述。如果变换的雅可比矩阵处处都是一个标量乘以一个旋转矩阵,则变换是共形的。.

新!!: 莫比乌斯变换和共形映射 · 查看更多 »

等距同构

在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.

新!!: 莫比乌斯变换和等距同构 · 查看更多 »

缩放

在欧几里得几何中,均匀缩放是放大或缩小物体的线性变换;缩放因子在所有方向上都是一样的;它也叫做位似变换。均匀缩放的结果相似(在几何意义上)于原始的物体。 更一般的是在每个坐标轴方向上的有单独缩放因子的缩放;特殊情况是方向缩放(在一个方向上)。形状可能变化,比如矩形可能变成不同形状的矩形,还可能变成平行四边形(保持在平行于轴的线之间的角度,但不保持所有的角度)。.

新!!: 莫比乌斯变换和缩放 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

新!!: 莫比乌斯变换和群 · 查看更多 »

非奇异方阵

若方块矩阵A\,满足条件\left|A\right|(\rm(A))\ne0,则称A\,为非奇异方阵,否则称为奇异方阵。.

新!!: 莫比乌斯变换和非奇异方阵 · 查看更多 »

黎曼球面

数学上,黎曼球面是一种将複數平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义 它由19世纪数学家黎曼而得名。也称为.

新!!: 莫比乌斯变换和黎曼球面 · 查看更多 »

黎曼曲面

数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.

新!!: 莫比乌斯变换和黎曼曲面 · 查看更多 »

镜面反射

面反射可以指:.

新!!: 莫比乌斯变换和镜面反射 · 查看更多 »

核 (代数)

在归入线性代数的各种数学分支中,同态的核测量同态不及于单射的程度。 核的定义在不同上下文中采用不同的形式。但是在所有形式中,同态的核是平凡的(在与那个上下文有关的意义上),当且仅当这个同态是单射。同态基本定理(或第一同构定理)是应用于核所定义的商代数的采用了各种形式的一个定理。.

新!!: 莫比乌斯变换和核 (代数) · 查看更多 »

旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

新!!: 莫比乌斯变换和旋转 · 查看更多 »

数学家

数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.

新!!: 莫比乌斯变换和数学家 · 查看更多 »

重定向到这里:

Moebius變換分式线性变换莫比烏斯變換

传出传入
嘿!我们在Facebook上吧! »