目录
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
查看 600和自然数
NASCAR
#重定向 全國運動汽車競賽協會.
查看 600和NASCAR
楔形数
楔形数指可以表示成三个不同质数的积的正整数。将任何楔形数带入默比乌斯函数,结果都得-1.
查看 600和楔形数
普洛尼克数
普洛尼克数(pronic number),也叫矩形数(oblong number),是两个连续非负整数积,即n\times(n+1)。第n个普洛尼克数都是n的三角形数的两倍。开头的几个普洛尼克数是 普洛尼克数也可以表达成n^2+n。对于第n个普洛尼克数也正好等于头n个偶数的和,即(2n- 1)^2与中心六邊形數的差,普洛尼克数不可能是奇数。除了0以外,普洛尼克數也不可能是平方數。 显然,2是唯一的一个素普洛尼克数,也是斐波那契数列中唯二的普洛尼克数(另一個是0)。.
查看 600和普洛尼克数