目录
多邊形數
多邊形數是可以排成正多邊形的整數。古代數學家發現某些數目的豆子或珠子可以排成正多邊形。例如10可以排成三角形: 但它不能排成正方形,而9則可以: 有些數既可排成三角形,又可排成正方形,例如36(這些數稱為三角平方數): 多邊形數可以幫助數數目。例如將一堆圓形的藥丸倒進一個等邊三角形的盒,便可以透過數每邊的藥丸數目來知道藥丸的數目。 將多邊形數擴充到下一個項的方法是,擴充某兩個相連的臂,然後將中間的空白處補上。下面的圖,每個增加的層用「+」表示。.
查看 178和多邊形數
二进制
在數學和數字電路中,二進制(binary)數是指用二進制記數系統,即以2為基數的記數系統表示的數字。這一系統中,通常用兩個不同的符號0(代表零)和1(代表一)來表示。以2為基數代表系統是二進位制的。數字電子電路中,邏輯門的實現直接應用了二進制,因此現代的計算機和依赖計算機的設備裡都用到二進制。每個數字稱為一個位元(二進制位)或比特(Bit,Binary digit的縮寫)。.
查看 178和二进制
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
查看 178和素数
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
查看 178和自然数
177
177是176與178之間的自然數。.
查看 178和177
179
179是一個178與180之間的自然數。.
查看 178和179