目录
合数
合數(也稱為合成數)是因數除了1和其本身外具有另一因數的正整數(定義為包含1和本身的因數大於或等於3個的正整數)。依照定義,每一個大於1的整數若不是質數,就會是合數。而0與1則被認為不是質數,也不是合數。例如,整數14是一個合數,因為它可以被分解成2 × 7。 起初105个合数为:4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140,141,142,143,144,145,146,147,148,150.
查看 164和合数
因數
因數是一個常見的數學名詞,又名「--」。.
查看 164和因數
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
查看 164和自然数
梅滕斯函數
梅滕斯函數為一數論中的函數,針對所有正整數n定义,得名自弗朗茨·梅滕斯,梅滕斯函數定义如下 其中μ是默比乌斯函数。 上述定義也可以延伸到實數: 以較不嚴謹的說法來看,M(n)是計算到n為止的无平方数因数的数,其中有偶數個質因數的個數,減去有奇數個質因數的個數。.
查看 164和梅滕斯函數
欧拉函数
在數論中,對正整數n,歐拉函數\varphi(n)是小於或等於n的正整數中與n互質的數的數目。此函數以其首名研究者歐拉命名,它又稱為φ函數(由高斯所命名)或是歐拉總計函數(totient function,由西爾維斯特所命名)。 例如\varphi(8).
查看 164和欧拉函数
1
1(一/壹)是0与2之间的自然数,是最小的正奇數.
查看 164和1
163
163是162與164之間的自然數。.
查看 164和163
165
165是164與166之間的自然數。.
查看 164和165
2
2(二)是1与3之间的自然数,2是唯一的偶數質數 (又稱偶素數)。.
查看 164和2
4
4(四)是3与5之间的自然数,是第一个合成数。.
查看 164和4
41
41是40与42之间的自然数。.
查看 164和41
82
82是81与83之间的自然数。.
查看 164和82