徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

超越數

指数 超越數

在數論中,超越數是指任何一個不是代數數的无理数。只要它不是任何一個有理係數代數方程的根,它即是超越數。最著名的超越數是e以及π。.

36 关系: 卡塔兰常数區間多項式夏爾·埃爾米特大卫·希尔伯特不可數集三等分角幾乎所有代數數化圓為方圓周率刘维尔数倍立方米尔斯常数约瑟夫·刘维尔無理數E (数学常数)E的π次方費根鮑姆常數黎曼ζ函數錢珀瑙恩數阿培里常数自然對數Γ函数林德曼-魏尔斯特拉斯定理根 (数学)格尔丰德-施奈德定理欧拉-马歇罗尼常数正弦正數有理数数论整数02的√2次方

卡塔兰常数

卡塔兰常数 G,是一个偶尔出现在组合数学中的常数,定义为: 其中β是狄利克雷β函数。它的值大约为: 目前还不知道G是有理数还是无理数。.

新!!: 超越數和卡塔兰常数 · 查看更多 »

區間

在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。.

新!!: 超越數和區間 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 超越數和多項式 · 查看更多 »

夏爾·埃爾米特

夏尔·埃尔米特或译作夏勒·厄密(Charles Hermite,,)是一位杰出的法国数学家,因证明e是超越数而闻名。他的研究领域还涉及数论、线性泛函分析(一种无穷维线性代数)、不变量理论、正交多项式、椭圆函数和代数学。埃尔米特多项式、埃尔米特规范形式、埃尔米特算子(自伴算子)、埃尔米特矩阵(自伴矩阵)和立方埃尔米特样条插值法都以他命名。其中有关内积空间中自伴算子(厄密算符)的趣味理论意外地成为了半个世纪后兴起的量子力学研究的基础代数工具。 “自伴算子(埃尔米特算子)可与实数类比,其特征值一定是实数”这个不太起眼的基础性质却是量子力学必须引用自伴算子来表达可观测物理量的最大原因,而量子力学中的算子运算也为线性代数学中的对偶空间理论提供了一个重要而奇妙的应用实例。.

新!!: 超越數和夏爾·埃爾米特 · 查看更多 »

大卫·希尔伯特

大卫·希尔伯特(David Hilbert,),德国数学家,是19世纪和20世纪初最具影响力的数学家之一。希尔伯特1862年出生于哥尼斯堡(今俄罗斯加里宁格勒),1943年在德国哥廷根逝世。他因为发明了大量的思想观念(例:不变量理论、、希尔伯特空间)而被尊为伟大的数学家、科学家。 他提出了希尔伯特空间的理論,是泛函分析的基礎之一。他热忱地支持康托的集合论与无限数。他在数学上的领导地位充分体现于:1900年,在巴黎的国际数学家大会提出的一系列问题(希尔伯特的23个问题)为20世纪的许多数学研究指出方向。 希尔伯特和他的学生为形成量子力学和广义相对论的数学基础做出了重要的贡献。他还是证明论、数理逻辑、区分数学与元数学之差别的奠基人之一。.

新!!: 超越數和大卫·希尔伯特 · 查看更多 »

不可數集

不可數集是無窮集合中的一種。一個無窮集合和自然数之間要是不存在一個双射,那麼它就是一個不可數集。集合的不可数性与它的基数密切相关:如果一个集合的基数大于自然数的基数,那么它就是不可数的。.

新!!: 超越數和不可數集 · 查看更多 »

三等分角

三等分角是古希臘平面几何里尺規作圖领域中的著名问题,與化圓為方及倍立方問題並列為尺规作图三大難題。尺规作图是古希腊人的数学研究课题之一,是对具体的直尺和圆规画图可能性的抽象化,研究是否能用规定的作图法在有限步内达到给定的目标。三等分角问题的内容是:“能否仅用尺规作图法将任意角度三等分?” 三等分角问题提出后,在漫长的两千余年中,曾有众多的尝试,但没有人能够给出严格的答案 。随着十九世纪群论和域论的发展,法国数学家首先利用伽罗瓦理论证明,這個問題的答案是否定的:不存在仅用尺规作图法将任意角度三等分的通法。具体来说,汪策尔研究了给定单位长度後,能够用尺规作图法所能达到的长度值。所有能够经由尺规作图达到的长度值被称为规矩数,而汪策尔证明了,如果能够三等分任意角度,那么就能做出不属于规矩数的长度,从而反证出通过尺规三等分任意角是不可能的。 如果不将手段局限在尺规作图法中,放宽限制或借助更多的工具的话,三等分任意角是可能的。然而,作为数学问题本身,由于三等分角问题表述简单,而证明困难,并用到了高等的数学方法,在已證明三等分角问题不可能之後后,仍然有许多人尝试给出肯定的证明。.

新!!: 超越數和三等分角 · 查看更多 »

#重定向 1.

新!!: 超越數和一 · 查看更多 »

幾乎所有

在數學中,幾乎所有(Almost all)有幾種特別的用法。 有時,「幾乎所有」一詞表示除了有限集合下的所有元素,其正式名稱為餘有限空間(cofinite set),「幾乎所有」一詞也可表示除了可數集下的所有元素,其正式名稱為餘可數集(cocountable set),參照幾乎。 簡單的例子是幾乎所有質數是奇數,事實上只有一個質數(2)不是奇數,其餘的都是奇數。 當討論到實數時,「幾乎所有」一詞有時表示除了勒貝格測度為0的集合以外的所有實數,其正式名稱為幾乎處處。此概念下,幾乎所有實數都不在康托爾集中,即使康托爾集為不可數集也是如此。 在數論中,若P(n)是一個有關正整數的性質,而若p(N)表示當n小於N時,使P(n)成立n的個數,且 (參照極限)此時可以說對於幾乎所有的正整數n,P(n)成立,正式名稱是漸進幾乎必然,表示為下式: 例如質數定理說小於或等於N的質數個數漸進等於N/ln N。因此質數的比例大約是1/ln N,在N趨近於無限大時,上式會趨近於0。因此雖然存在無窮個質數,但幾乎所有的正整數都是合數。 偶爾「幾乎所有」會用來表示測度理論的幾乎處處,或是機率理論中的幾乎一定。.

新!!: 超越數和幾乎所有 · 查看更多 »

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

新!!: 超越數和代數數 · 查看更多 »

化圓為方

化圓為方是古希臘数学里尺規作圖领域當中的命題,和三等分角、倍立方問題被並列為尺规作图三大难题。其問題為:求一正方形,其面積等於一給定圓的面積。如果尺规能够化圆为方,那么必然能够从单位长度出发,用尺规作出长度为\pi的线段。 进入十九世纪后,随着群论和域论的发展,数学家对三大难题有了本质性的了解。尺规作图问题可以归结为判定某些数是否满足特定的条件,满足条件的数也被称为规矩数。所有规矩数都是代数数。而1882年,数学家林德曼證明了\pi為超越數,因此也證實該問題僅用尺規是無法完成的。 如果放寬尺规作图的限制或允许使用其他工具,化圆为方的問題是可行的。如借助西皮阿斯的,阿基米德螺線等。.

新!!: 超越數和化圓為方 · 查看更多 »

圓周率

圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.

新!!: 超越數和圓周率 · 查看更多 »

刘维尔数

如果一个实数x满足,对任意正整数n,存在整数p, q,其中q > 1有 就把x叫做刘维尔数。 刘维尔在1844年证明了所有刘维尔数都是超越数,第一次说明了超越数的存在。.

新!!: 超越數和刘维尔数 · 查看更多 »

倍立方

倍立方是古希腊数学里尺规作图领域當中的著名问题,和三等分角、化圓為方問題被並列為古希臘尺规作图三大难题。尺规作图是古希腊人的数学研究课题之一,是对具体的直尺和圆规画图可能性的抽象化,研究是否能用规定的作图法在有限步内达到给定的目标。倍立方问题的内容是: “能否用尺规作图的方法作出一立方体的稜长,使该立方体的体积等于一给定立方体的两倍?” 倍立方问题的实质是能否通过尺规作图从单位长度出发作出\sqrt的问题。 三大難題提出后,在漫长的两千余年中,曾有众多的尝试,但没有人能够给出严格的答案。随着十九世纪群论和域论的发展,法国数学家首先利用伽罗瓦理论证明,三等分角問題的答案是否定的。运用类似的方法,可以证明倍立方问题的答案同样是否定的。具体来说,给定单位长度後,所有能够经由尺规作图达到的长度值被称为规矩数,而如果能够作出\sqrt,那么就能做出不属于规矩数的长度,从而反证出通过尺规作图作出给定立方体体积两倍的立方体是不可能的。 如果不将手段局限在尺规作图法中,放宽限制或借助更多的工具的话,作出给定立方体体积两倍的立方体是可行的。.

新!!: 超越數和倍立方 · 查看更多 »

米尔斯常数

米尔斯常数是使对于所有正整数n,二重指数函数 的整数部分都是素数的最小正实数A。这个常数以W·H·米尔斯命名,他在1947年证明了这个常数的存在。 米尔斯常数的值是未知的,但如果黎曼猜想成立,它的值大约为:.

新!!: 超越數和米尔斯常数 · 查看更多 »

约瑟夫·刘维尔

约瑟夫·刘维尔(Joseph Liouville,)是19世纪的法国数学家,生于加来海峡省的圣奥梅尔。刘维尔一生从事数学、力学和天文学的研究,涉足广泛,成果丰富,尤其对双周期椭圆函数、微分方程边值问题、数论中代数数的丢番图逼近问题和超越数有深入研究。刘维尔构造了所谓的“刘维尔数”并证明了其超越性,是第一个证实超越数的存在的人。.

新!!: 超越數和约瑟夫·刘维尔 · 查看更多 »

無理數

無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.

新!!: 超越數和無理數 · 查看更多 »

E (数学常数)

-- e,作为數學常數,是自然對數函數的底數。有時被稱為歐拉數(Euler's number),以瑞士數學家歐拉命名;還有個較少見的名字納皮爾常數,用來紀念蘇格蘭數學家約翰·納皮爾引進對數。它是一个无限不循环小数,數值約是(小數點後20位,):.

新!!: 超越數和E (数学常数) · 查看更多 »

E的π次方

e^\pi \,是一个数学常数。与e和π一样,它是一个超越数。这可以用格尔丰德-施奈德定理来证明,并注意到: 其中i是虚数单位。由于−i是代数数,但肯定不是有理数,因此eπ是超越数。这个常数在希尔伯特第七问题中曾提到过。一个相关的常数是 2^,2的根号2次方,又称为格尔丰德-施奈德常数。相关的值 \pi + e^\pi\,也是无理数。.

新!!: 超越數和E的π次方 · 查看更多 »

費根鮑姆常數

費根鮑姆常數是分岔理論中重要兩個的數學常數,這兩個常數因數學家費根鮑姆而得名。.

新!!: 超越數和費根鮑姆常數 · 查看更多 »

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

新!!: 超越數和黎曼ζ函數 · 查看更多 »

錢珀瑙恩數

錢珀瑙恩數(Champernowne constant)是一個實數的超越數,其十進制表示法有重要的特性,得名自數學家,在1933年以研究生的身份發表有關錢珀瑙恩數的論文。 在十進制下,可以用連續整數來定義錢珀瑙恩數: C_.

新!!: 超越數和錢珀瑙恩數 · 查看更多 »

阿培里常数

在数学中,阿培里常数是一个时常会遇到的常数。在一些物理问题中阿培里常数也会很自然地出现。比如说量子电动力学里,阿培里常数出现在电子的磁旋比展开的第二项与第三项中。 阿培里常数的准确定义是黎曼ζ函数的一个值:ζ(3), 它的前45位准确数字为: 这个常数的倒数也是一个有意义的常数:考虑任意三个随机抽取的正整数,它们之间互素的概率正是阿培里常数的倒数。.

新!!: 超越數和阿培里常数 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

新!!: 超越數和自然對數 · 查看更多 »

Γ函数

\Gamma \,函数,也叫做伽瑪函數(Gamma函数),是階乘函數在實數與複數上的擴展。對於實數部份為正的複數z,伽瑪函數定義為: 此定義可以用解析開拓原理拓展到整個複數域上,非正整數外。 如果z為正整數,則伽瑪函數定義為: 這顯示了它與階乘函數的聯繫。可見,伽瑪函數將n!拓展到了實數與複數域上。 在概率論中常見此函數,在組合數學中也常見。.

新!!: 超越數和Γ函数 · 查看更多 »

林德曼-魏尔斯特拉斯定理

林德曼-魏尔斯特拉斯定理()是一个可以用于证明实数的超越性的定理。它表明,如果  是代数数,在有理数  内是线性独立的,那么e^, \ldots,e^在  内是代数独立的;也就是说,扩张域\mathbb(e^, \ldots,e^)在  内具有超越次数 。 一个等价的表述是:如果  是不同的代数数,那么指数  在代数数范围内是线性独立的。 这个定理由林德曼和魏尔斯特拉斯命名。林德曼在1882年证明了对于任何非零的代数数α,eα都是超越数,因此推出了圆周率是超越数。魏尔斯特拉斯在1885年证明了一个更一般的结果。 这个定理,以及格尔丰德-施奈德定理,可以推广为Schanuel猜想。.

新!!: 超越數和林德曼-魏尔斯特拉斯定理 · 查看更多 »

根 (数学)

數學上,函數f的一個根(或稱零點)是f的定義域D中適合f(x).

新!!: 超越數和根 (数学) · 查看更多 »

格尔丰德-施奈德定理

格尔丰德-施奈德定理(Gelfond–Schneider theorem)是一个可以用于证明许多数的超越性的结果。这个定理由Aleksandr Gelfond在1934年、Theodor Schneider在1935年分别独立证明,它回答了希尔伯特第七问题。.

新!!: 超越數和格尔丰德-施奈德定理 · 查看更多 »

欧拉-马歇罗尼常数

#重定向 歐拉-馬斯刻若尼常數.

新!!: 超越數和欧拉-马歇罗尼常数 · 查看更多 »

正弦

在數學中,正弦(英語:sine、縮寫sin)是一種週期函數,是三角函数的一種。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为(4n+1)π/2(n为整数)时,该函数有极大值1;在自变量为(4n+3)π/2时,该函数有极小值-1。正弦函数是奇函数,其图像关于原点对称。.

新!!: 超越數和正弦 · 查看更多 »

正數

正数,在数学上是指大于0的实数,如1、3.7,1.5等,与负数相对。和实数一样,正數也是一個不可數的無限集合。這個集合在数学上通常用粗體R+或ℝ+来表示。正数与0统称非负数。.

新!!: 超越數和正數 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

新!!: 超越數和有理数 · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

新!!: 超越數和数论 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

新!!: 超越數和整数 · 查看更多 »

0

0(〇/零)是-1与1之间的整数。0既不是正数也不是负数。0是偶数。在数论中,0不属于自然数;在集合论和计算机科学中,0属于自然数。0在整数、实数和其他的代数結構中都有著單位元這個很重要的性質。.

新!!: 超越數和0 · 查看更多 »

2的√2次方

2^的值为: 阿勒克山德·格爾豐德利用格尔丰德-施奈德定理证明这是一个超越数,回答了希尔伯特第七问题。 它的平方根也是一个超越数。 这可以用来说明一个无理数的无理数次方有时可以是有理数,因为这个数的\sqrt次方等于2。 即:.

新!!: 超越數和2的√2次方 · 查看更多 »

重定向到这里:

超越数

传出传入
嘿!我们在Facebook上吧! »