徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

原行星盤

指数 原行星盤

原行星盤(Proplyd or Protoplanetary Disc)是在新形成的年輕恆星(如金牛T星)外圍繞的濃密氣體,因為氣體會從盤的內側落入恆星的表面,所以可以視為是一個吸積盤。但是,不能將這個過程與恆星形成時的吸積混淆在一起。 環繞金牛座T的原行星盤,溫度與大小都與雙星周圍的盤不同。原行星盤的半徑可以達到1,000天文單位,但是溫度並不高,在它們最內側的溫度也不過1,000K,並且經常有噴流伴隨著。 典型的原行星盤來自主要是氫分子的分子雲。當分子雲分得的大小達臨界質量或是密度,將會因自身重力而塌縮。而當雲氣開始塌縮,這時可稱為太陽星雲,密度將變得更高,原本在雲氣中隨機運動的分子,也因而呈現出星雲平均的淨角動量運動方向,角動量守恆導致星雲縮小的同時,自轉速度亦增加。這種自轉也導致星雲逐漸扁平,就像製作意大利薄餅一樣,形成盤狀。從崩塌起約十萬年後,恆星表面的溫度與主序帶上相同質量的恆星相同時,恆星將變得可以被看見,就像金牛座T的情況。吸積盤中的氣體在未來的一千萬年中,盤面消失前,仍會繼續落入恆星。盤面可能是被年輕恆星的恆星風吹散,或僅僅是因為吸積之後,單純的停止輻射而結束。發現的最老的原行星盤已經存在了二千五百萬年之久。 太陽系形成的星雲假說描述原行星盤如何發展成行星系統。靜電和引力互相作用在盤面上的塵埃粒子和顆粒,使它們生常成為星子。這個過程與會將氣體吹散的恆星風競爭,將氣體累積並將物質拉入金牛座T的中心。 在我們的銀河系內,已經觀測到一些年輕恆星周圍的原行星盤。第一個是在1984年發現的繪架座β,最近的則是哈伯太空望遠鏡發現在獵戶座大星雲內正在形成的原恆星盤。 天文學家已經在距離太陽不遠的恆星,天琴座織女星、北冕座貫索四、和南魚座北落師門,發現大量的原行星盤材料,或許本身就已經是原行星盤。 包含織女和北落師門的北河二共同運動星團被分辨出來。利用希巴古衛星資料,估計北河二星團年齡約二億年(誤差約一億年),這顯示以紅外線觀察到的織女和北落師門周圍的殘餘物質可能已成星子,而不僅僅是原行星盤了。哈伯太空望遠鏡已經成功的觀測北落師門的原行星盤,並證實猜測。.

75 关系: 原行星原行星雲原恆星南鱼座恒星列表吸积盘大型毫米波望遠鏡天体化学天体列表天文學太阳系太阳系的形成与演化太陽系形成與演化假說的歷史太陽星雲奥尔特云宇宙化學小行星90377尼斯模型岩屑盤不確定存在的太陽系外行星列表人馬座V4046伽利略衛星微行星後期重轟炸期初期恆星體冰巨行星光致蒸發克卜勒9動態摩擦獵戶座分子雲團碳行星維克托·薩夫羅諾夫繪架座β移動星群織女一绘架座恒星列表猎户座大星云电离氢区隕石學辭彙鐵行星蝘蜓座110913-773444類太陽恆星行星环行星際塵雲行星適居性行星遷移超低溫矮星轩辕增十九赫比格-哈羅天體脈衝星行星金牛座UX金牛T風...金牛T星長蛇座TWHD 106906 bHD 141569HD 142527HD 149026bHD 189733 bHD 95086 bK2-33bLkCa 15MWC 349NGC 1555TRAPPIST-1柯伊伯带恒星恆星磁場棕矮星泛種論木星的卫星星周盤星雲假說托林 (天文学)2M1207b4U 0142+61 扩展索引 (25 更多) »

原行星

原行星是在原行星盤內大小如同月球尺度的胚胎行星。它們應該是由公里尺度的微行星因彼此的重力相互吸引與碰撞而形成的。根據太陽星雲形成的理論,原行星在軌道輕微的擾動下和因此導致的巨大撞擊與碰撞下逐漸形成真正的行星。 在太陽系中,一般認為微行星的碰撞形成了數百個行星胚胎。這些天體類似穀神星和冥王星,其質量約1022到1023公斤,直徑約數千公里。之後數億年中行星胚胎之間彼此碰撞。目前仍無法得知行星胚胎之間互相碰撞而形成行星的詳細過程,但一般認為最初的碰撞可能將第一代的行星胚胎摧毀,被數量較少,但體積較大的第二代胚胎取代。這樣的過程會持續到撞擊結束,最後只有少數胚胎會形成行星。 早期的原行星有較多的放射性元素,這些數量由於放射性衰變,會隨著時間逐漸減少。來自放射線的熱、撞擊和重力的壓力會使原行星發生局部的熔化,有助於它們增長成為行星。在熔化的區域,較重的元素會向中心下沉,較輕的元素會上昇至表面;這種過程就是所知的行星分化。一些隕石的結構中也顯示出有些小行星也發生過分化的作用。 形成月球的大碰撞說假設是一個巨大的,被稱為忒亞的原行星,在太陽系形成的早期與地球發生碰撞。 在內太陽系中,至少有三顆保留原始特徵的原行星存在,即穀神星、智神星和灶神星。而司琴星也有類似原行星的特徵。柯伊伯带中的矮行星也被認為是原行星。 2013年2月,天文學家首次直接觀測到遙遠恆星外圍由塵埃和氣體組成的盤面內原行星正在形成。.

新!!: 原行星盤和原行星 · 查看更多 »

原行星雲

原行星雲或前行星雲(PPN)是在恆星演化的過程中,介於漸近巨星分支晚期(LAGB)和隨後的行星狀星雲(PN)之間,生命週期很短的一種天體。一個原行星雲會發射出強烈的紅外線輻射,因而是一種反射星雲。在中等質量恆星(1-8 M☉)的生命週期中,它是演化階段中倒數第二亮的。.

新!!: 原行星盤和原行星雲 · 查看更多 »

原恆星

原恆星是在星際介質中的巨分子雲收縮下出現的天體,是恆星形成過程中的早期階段。對一個太陽質量的恆星而言,這個階段至少持續大約100,000年。它開始於分子雲核心的密度增加,結束於金牛T星的形成,然後就發展進入主序帶。這個階段由金牛T風-一種恆星風的開始宣告結束,標誌著恆星從質量的吸積進入能量的輻射。 觀測顯示巨型分子雲總體上近似在維里平衡的狀態,星雲中的重力束縛能被星雲中構成分子的動能平衡。任何對雲氣的干擾都可能擾亂它的平衡狀態,干擾的例子可以是來自超新星的震波;星系內旋臂的密度波,或是與其他雲氣的接近或碰撞。無論擾動的來源是何種,只要夠大就可能在雲氣內特定的地區造成重力大於熱動能的重力變化。 英國的物理學家詹姆士·金斯曾詳細的討論過上述的现象。他能顯示,在適當的情況下,一團雲氣或其中的一部分,將開始如上所述的收縮。他導出了一條公式可以計算雲氣所需要的大小和質量,以及在重力收縮開始前的溫度和密度。這個臨界質量就是所知的金斯質量,可以由下式得到: 此處 n是特定區域的密度,m是在雲氣內氣體平均的質量,而T是氣體的溫度。.

新!!: 原行星盤和原恆星 · 查看更多 »

南鱼座恒星列表

以下是星座南鱼座的主要恒星列表,按照亮度降序排列。.

新!!: 原行星盤和南鱼座恒星列表 · 查看更多 »

吸积盘

吸积盘(accretion disc 或 accretion disk)是一种由弥散物质组成的、围绕中心体转动的结构(常见于绕恒星运动的盘状结构)。比较典型的中心体有年轻的恒星、原恒星(protostar)、白矮星、中子星以及黑洞。在中心天体引力的作用下,其周围的气体会落向中心天体。假如气体的角动量足够的大,以致在其落向中心天体的某个位置处,其离心力能够跟中心天体的引力相抗衡,那么,一个类似于盘状的结构就会形成,这种结构就叫做“吸积盘”。在吸积盘中,物质通过较差转动及粘滞向外传递角动量。在这个过程中,气体所携带的引力能得到释放。这些释放的引力能会加热吸积盘中的气体,导致气体向外辐射。计算表明,气体辐射的主要频率(或气体的温度)与中心天体的质量有关。若中心天体为年轻的恒星或者原恒星,那么吸积盘辐射多半处于红外区,而中子星及黑洞产生的吸积盘的辐射多半处于光谱的X-射线区域。.

新!!: 原行星盤和吸积盘 · 查看更多 »

大型毫米波望遠鏡

大型毫米波望遠鏡(Gran Telescopio Milimétrico,縮寫:GTM;Large Millimeter Telescope,縮寫:LMT)是一座在墨西哥的電波望遠鏡,於2011年6月17日啟用。該望遠鏡是在毫米波段下口徑最大且最靈敏的單一天線電波望遠鏡。該望遠鏡的觀測範圍是波長大約在0.85到4 mm 的無線電波。大型毫米波望遠鏡的天線使用了主動反射面(Active surface)技術,口徑50公尺,電波收集面積為2000 m²。.

新!!: 原行星盤和大型毫米波望遠鏡 · 查看更多 »

天体化学

天体化学(Astrochemistry);天体化学研究宇宙中元素和分子的豐度,以及它们和辐射的交互作用;还研究星际间气体和尘埃间的相互作用,特别是分子气体云的形成、相互作用和毁灭。天体化学和天文学以及化学有相互交叉之处。天体化学的研究範圍包含了太陽系行星際物質和星際物質。而研究隕石等太陽系物質元素豐度和同位素比例的學科又被稱為「宇宙化學」;研究星系物質中原子和分子以及前述物質和輻射交互作用的學科有時候稱為「」。天文化學最主要研究星際分子雲的形成、組成成分、演化和最終結局,因為這些相關知識與太陽系如何形成有關聯。 许多年来,天文学家缺少星际间的化学知识,认为星际间只是黑暗,无物。1950至60年代出现射电天文学,开始有令人兴奋的发现;观察氢分子的21公分線显示星际间有丰富的氢、氦、碳、氮等的各种化合物。从空间的微波谱发现,有180种类型的碳,氮等分子的拼料。这些分子绕化学键转动时就产生能量。研究这些新发现的化合物可以为我们提供很有价值的科学信息:.

新!!: 原行星盤和天体化学 · 查看更多 »

天体列表

天体(Astronomical object),又稱星体,指太空中的物体,更廣泛的解釋就是宇宙中的所有的個体。.

新!!: 原行星盤和天体列表 · 查看更多 »

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

新!!: 原行星盤和天文學 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 原行星盤和太阳系 · 查看更多 »

太阳系的形成与演化

太陽系的形成和演化始于46亿年前一片巨大分子云中一小塊的引力坍缩。大多坍缩的质量集中在中心,形成了太阳,其余部分摊平並形成了一个原行星盤,继而形成了行星、卫星、陨星和其他小型的太阳系天体系统。 这被稱為星云假说的广泛接受模型,最早是由18世纪的伊曼纽·斯威登堡、伊曼努尔·康德和皮埃尔-西蒙·拉普拉斯提出。其随后的发展與天文学、物理学、地质学和行星学等多种科学领域相互交织。自1950年代太空时代降臨,以及1990年代太阳系外行星的发现,此模型在解释新发现的过程中受到挑战又被進一步完善化。 从形成開始至今,太阳系经历了相當大的變化。有很多卫星由环绕其母星气体與尘埃组成的星盘中形成,其他的卫星据信是俘获而来,或者来自于巨大的碰撞(地球的卫星月球属此情况)。天体间的碰撞至今都持续发生,並為太阳系演化的中心。行星的位置经常遷移,某些行星间已經彼此易位。这种行星迁移现在被认为对太阳系早期演化起負擔起绝大部分的作用。 就如同太阳和行星的出生一样,它们最终将灭亡。大约50亿年后,太阳会冷却並向外膨胀超过现在的直径很多倍(成为一个红巨星),抛去它的外层成为行星狀星云,並留下被称为白矮星的恒星尸骸。在遥远的未来,太阳的环绕行星会逐渐被经过的恒星的重力卷走。它们中的一些会被毁掉,另一些则会被抛向星际间的太空。最终,数万亿年之后,太阳终将会独自一个,不再有其它天体在太阳系轨道上。.

新!!: 原行星盤和太阳系的形成与演化 · 查看更多 »

太陽系形成與演化假說的歷史

有關世界起源和命運的可以追溯至已知最早的文字記載;然而,幾乎在所有的時代裡都沒有人嘗試將之與"太陽系"的起源理論聯繫在一起,原因只是單純的因為幾乎沒有人知道或是相信太陽系的存在,如同我們現在所理解與認知的太陽系。太陽系形成理論的第一步是一般所接受的日心說,這種模型將太陽放在系統的中心,和將地球放在軌道上繞著太陽轉。這個理論在數千年前就已經醞釀了(阿里斯塔克斯在西元前250年就已經提出),但到了17世紀末期才被廣泛地接受。"太陽系"這個術語在1704年才正式有使用的紀錄。.

新!!: 原行星盤和太陽系形成與演化假說的歷史 · 查看更多 »

太陽星雲

太陽星雲相信是讓地球所在的太陽系形成的氣體雲氣,這個星雲假說最早是在1734年由伊曼紐·斯威登堡提出的。在1755年,熟知斯威登堡工作的康德將理論做了更進一步的開發,他認為在星雲慢慢的旋轉下,由於引力的作用雲氣逐漸坍塌和漸漸變得扁平,最後形成恆星和行星。拉普拉斯在1796年也提出了相同的模型。這些可以被認為是早期的宇宙論。 當初僅適用於我們自己太陽系的形成理論,在我們的銀河系內發現了超過200個外太陽系之後,理論學家認為這個理論應該要能適用整個宇宙中的行星形成。.

新!!: 原行星盤和太陽星雲 · 查看更多 »

奥尔特云

奧爾特雲,又稱奧匹克-奧爾特雲,在理論上是一個圍繞太陽、主要由冰微行星組成的球體雲團。奧爾特雲位於星際空間之中,距離太陽最遠至10萬天文單位(約2光年)左右,也就是太陽和比鄰星距離的一半。同樣由海王星外天體組成的凱伯帶和離散盤與太陽的距離不到奧爾特雲的千分之一。奧爾特雲的外邊緣標誌著太陽系結構上的邊緣,也是太陽引力影響範圍的邊緣。 奧爾特雲由2個部份組成:一個球形外層和一個盤形內層,後者又稱希爾斯雲(Hills cloud)。奧爾特雲天體的主要成份為水冰、氨和甲烷等固體揮發物。 天文學家猜測,組成奧爾特雲的物質最早位於距太陽更近的地方,在太陽系形成早期因木星和土星的引力作用而分散到今天較遠的位置。目前對奧爾特雲沒有直接的觀測證據,但科學家仍然認為它是所有長週期彗星、進入內太陽系的哈雷類彗星、半人馬小行星及木星族彗星的發源之地。奧爾特雲外層受太陽系的引力牽制較弱,因此很容易受到臨近恒星和整個銀河系的引力影響。這些擾動都會不時導致奧爾特雲天體離開原有軌道,進入內太陽系,並成為彗星。根據軌道推算,大部份短週期彗星都可能來自於離散盤,其餘的仍有可能來自奧爾特雲。.

新!!: 原行星盤和奥尔特云 · 查看更多 »

宇宙化學

宇宙化學(Cosmochemistry)是研究宇宙中物體的化學組成和形成這些組成的過程。這主要是通過研究隕石的化學成分和其它實物的樣本。由於隕石母體的小行星有些是太陽系形成初期凝固的第一批固體,宇宙化學通常,但不完全是研究與太陽系有關的物體。.

新!!: 原行星盤和宇宙化學 · 查看更多 »

小行星90377

賽德娜(英文:Sedna)為一顆外海王星天體,小行星編號為90377。它於2003年11月14日由天文學家布朗(加州理工學院)、特魯希略(雙子星天文臺)及拉比諾維茨(耶魯大學)共同發現,它被發現時是太陽系中距離地球最遠的天然天體。賽德娜目前距離太陽88天文單位 ,為海王星與太陽之間距離的3倍。在賽德娜大部分的公轉週期中,它與太陽之間的距離比任何已知的矮行星候選都要遙遠。賽德娜是太陽系中颜色最紅的天體之一。它大部分由水、甲烷、氮冰及托林(Tholin)所構成。國際天文聯會目前並未將賽德娜視為矮行星,但是有一些天文學家認為它應該是一顆矮行星 。 賽德娜的公轉軌道是一個離心率較大的橢圓,遠日點估計為937天文單位,所以它是太陽系中最遙遠的天體之一,比大部份的長週期彗星都還要遠。賽德娜的公轉週期約為11,400年,近日點約為76天文單位,天文學家可以藉此推斷它的起源。小行星中心目前將賽德娜視為黃道離散天體,這類天體是因為海王星向外遷徙造成的引力擾動,从柯伊柏帶散射入高傾斜和高離心率的軌道內。但是這種分類已經引起爭議,因為賽德娜不曾接近海王星,所以海王星的引力擾動無法造成它的軌道如此橢圓。一些天文學家認為賽德娜是人類首度發現的首顆歐特雲天體,其他天文學家則認為賽德娜的橢圓軌道是一顆通過太陽系附近的恆星所造成的,它可能位在與诞生太陽的星團(一个疏散星團)之內,甚至有天文學家認為賽德娜是太陽從其他恆星系所捕捉到的天體。認為賽德娜的軌道是海王星外天體存在的證據。共同發現賽德娜和矮行星鬩神星,妊神星,和鸟神星的天文學家米高·E·布朗認為它是目前為止人類發現的外海王星天體中最重要的一顆,因為瞭解它的特殊公轉軌道可能可以得知太陽系的起源及早期的演化資訊 。.

新!!: 原行星盤和小行星90377 · 查看更多 »

尼斯模型

尼斯模型(Nice model,()是一個太陽系動力演化理論。該理論以提出地,蔚藍海岸天文台所在的法國城市尼斯命名 。該模型的提出是為了解釋太陽系中的類木行星在原行星盤內氣體消散很久之後從原本排列緊湊的位置遷移到今日位置的機制,這個模型和先前其他太陽系形成的模型並不相同。這個模型的太陽系動力學模擬是用來解釋太陽系內許多事件,其中包含了內太陽系的後期重轟炸期、奥尔特云的形成、太陽系小天體的分布,例如柯伊伯带,木星與海王星的特洛伊天体,以及大量被海王星重力影響的共振海王星外天體。這個模型因為許多對太陽系天體觀測的結果符合其預測而獲得成功,並且是近年最被廣泛接受的太陽系早期演化模型;雖然它並沒有被行星科學家普遍接受。該模型其中一個限制就是外行星的衛星和柯伊伯带(參見下文)。.

新!!: 原行星盤和尼斯模型 · 查看更多 »

岩屑盤

岩屑盤是由塵埃和岩屑組成,環繞在恆星周圍成盤狀的星周盤,在年輕的和發展中的恆星都曾經發現過,而且至少也已經發現一顆中子星有岩屑盤環繞著。它們在行星系形成的過程,可以被視為是原行星盤的階段。它們也可能是星子在碰撞階段產生和剰餘下來的殘骸。 迄2001年,可能有岩屑盤的候選者已經超過900顆恆星。它們通常都是在紅外光觀察時特別明亮的恆星系,並且看起來發射出過量的輻射。這些過量的紅外線輻射都是由恆星發射出的能量被星周盤吸收,然後再以紅外線輻射出來的。 在聯星系統中,當主星在被掩蔽的情況下,有些岩屑盤的影像可以直接被觀測到。.

新!!: 原行星盤和岩屑盤 · 查看更多 »

不確定存在的太陽系外行星列表

前有52個太陽系外行星有可能存在,但還是不確定。克卜勒太空望遠鏡於2011年列出一份太陽系外行星候選列表,包含1235顆行星候選。.

新!!: 原行星盤和不確定存在的太陽系外行星列表 · 查看更多 »

人馬座V4046

人馬座V4046(V4046 Sagittarii)是由兩顆屬於金牛T星的黃矮星組成的聯星系統。.

新!!: 原行星盤和人馬座V4046 · 查看更多 »

伽利略衛星

伽利略衛星是木星的四個大型衛星,由伽利略於1610年1月7日首次發現。這四個衛星可以用低倍率望遠鏡來觀測到,如果沒有光害,且環境極好,甚至可用肉眼勉強看到木衛三和木衛四,利用數位單眼相機搭配合適的望遠鏡頭也可以輕易的在較無光害的地方拍下這幾顆伽利略衛星。.

新!!: 原行星盤和伽利略衛星 · 查看更多 »

微行星

微行星被認為是存在於原行星盤和岩屑盤內的固態物體。 一種被廣為接受的行星形成理論是維克托·薩夫羅諾夫(Viktor Safronov)的微行星假說,說明行星的形成是由微小的塵埃顆粒經由不斷的碰撞和黏合,形成越來越大的個體。當這個個體的直徑達到大約1公里的大小,就可以直接經由相互間的重力吸引,更快地形成月球尺度的原行星,成為龐然大物。這就是微行星如何經常被定義的。比微行星小的物體依賴布朗運動或是氣體中的湍流運動,使彼此間能發生足以導致黏合的碰撞。還有,微行星也可能在原行星盤的盤面中段塵埃顆粒密集成層的區域,因為經歷重力的不穩定而聚集。許多的微行星會因為劇烈的撞擊而破碎,但是一些最大的微行星可能經歷這個階段後仍能存在並繼續增長成為原行星,然後成為行星。 一般相信這個時期大約在38億年前,在經歷了後期重轟炸期的階段之後,大部分在太陽系內的微行星不是完全被拋出太陽系外,就是進入距離異常遙遠的軌道,例如歐特雲,或是被來自類木行星(特別是木星和海王星)規則的重力輕輕的推送而與更大的物體碰撞。少數的微行星可能被捕獲成為衛星,像是火衛一和火衛二,以及類木行星許多高傾角的衛星。 到今天仍然存在的微行星對科學家是非常有價值的,因為它們蘊含了有關我們的太陽系誕生時的訊息。雖然它們的外表的化學組成可能已經被強烈的太陽輻射改變,但內部的成分基本上仍是微行星形成時未被碰觸過的原始物質。這使每個微行星都像“時間膠囊”,它們的結構能告訴我們太陽星雲以及我們的行星系統形成時的條件。 參考隕石和彗星。.

新!!: 原行星盤和微行星 · 查看更多 »

後期重轟炸期

後期重轟炸期,又名月球災難,又稱晚期重轟炸,是指約於41億年前至38億年前,即於地球地質年代中的冥古宙及太古宙前後,推斷在月球上發生不成比例的大量小行星撞擊的事件,在地球、水星、金星及火星亦同樣發生。這個事件的證據主要是基於在月球取得的樣板的測年結果,大部份隕擊熔岩都是在一段相當短的時間內形成。有很多的假說嘗試解釋進入太陽系內側的小行星或彗星碎片的成因,但卻仍未有共識。其中一個著名的理論是指當時類木行星正進入軌道,引力將在小行星帶或古伯帶的物體拋入同心軌跡並撞向類地行星。雖然如此,有些爭議指這些月球樣板的數據並不一定來自這種災難事件,而測年的結果聚集在同一段時間是因在同一的撞擊盆地取樣所致。.

新!!: 原行星盤和後期重轟炸期 · 查看更多 »

初期恆星體

初期恆星體 (YSO)表示是一顆進入恆星演化早期階段的天體。 這個分類中包含兩個小組:原恆星和主序前星。有時,也會以質量區分為:大質量初期恆星體(MYSO)、中質量初期恆星體和棕矮星。 初期恆星體經常會依據以光譜能量分布的斜率做標準來分類,這是Lada C.J. 和 Wilking B.A.在1984年提出的,他們以譜指數\alpha \,的間隔和數值為依據,將YSO分為三種(I、II和III): \alpha.

新!!: 原行星盤和初期恆星體 · 查看更多 »

冰巨行星

冰巨行星(ice giant),是一種主要由比氫和氦更重的氣體組成的巨行星,例如氧,碳,氮,和硫。在太阳系里,天王星和海王星均是典型的冰巨行星。它们的质量中包括仅约20%的氢和氦,相对于氣態巨行星(木星和土星)的质量中都含有90%以上的氢和氦。但近期有證據顯示第三個冰巨行星第九行星存在於太陽系中。在1990年代,人们认识到,天王星和海王星是一类独特的巨行星,独立于其他的巨行星。.

新!!: 原行星盤和冰巨行星 · 查看更多 »

光致蒸發

光致蒸發表示的是高能輻射電離氣體,並使它從電離源翻散的過程與程序。這通常是天文物理的範疇,來自炙熱恆星的紫外線、電磁輻射作用在像是分子雲、原行星盤或行星大氣層等的雲氣。.

新!!: 原行星盤和光致蒸發 · 查看更多 »

克卜勒9

克卜勒9(Kepler-9)是一個位於天琴座,克卜勒太空望遠鏡視野內的類太陽恆星。克卜勒9已確定發現三顆系外行星,都是以凌日法發現。前兩顆行星於2010年8月26日宣布發現,第三顆則於2011年1月1日宣布發現。這是首次以凌日法發現多顆行星的行星系。克卜勒9的其中兩顆行星互為軌道共振。.

新!!: 原行星盤和克卜勒9 · 查看更多 »

動態摩擦

在天體物理學之中,動態摩擦描述一物體在空間中移動時,受到周遭其他物體的重力影響而損失動量與動能的現象。動態摩擦最早由錢德拉塞卡於1943年時提出並且進行詳細的探討。.

新!!: 原行星盤和動態摩擦 · 查看更多 »

獵戶座分子雲團

獵戶座分子雲團(Orion Molecular Cloud Complex,亦有譯作獵戶座分子雲複合體)是一個位於獵戶座的巨大星雲。該星雲距地球1500至1600光年,延伸數以百光年計。通過小型望遠鏡或雙筒望遠鏡可以觀測到該星雲的某些部分,其中的獵戶座大星雲更是肉眼可見。 它是天上其中一個可以肉眼看到的恆星形成區,而且恆星正在活躍地形成。該星雲中有很多原行星盤和年輕恆星。正因為恆星活躍地形成,以紅外線波長觀測到的獵戶座分子雲顯得很明亮。.

新!!: 原行星盤和獵戶座分子雲團 · 查看更多 »

碳行星

碳行星(Carbon planet),又稱為鑽石行星或碳化物行星,是Marc Kuchner在恆星理論中提出來假設的行星類型,它們形成於富含碳但缺乏氧的原行星盤,根據行星科學,它們的發展將不同於地球、火星和金星等這些以矽-氧化合物為主要成分的行星。這個理論已有廣大的支持者,現在是由研究員Jade Bond 建立合理的想法。具體來說,不同的系統會有不同的碳和氧的比率,而我們太陽系的類地行星是傾向於氧行星。.

新!!: 原行星盤和碳行星 · 查看更多 »

維克托·薩夫羅諾夫

維克托·謝爾蓋耶維奇·薩夫羅諾夫(Виктор Сергеевич Сафронов,)是一位蘇聯籍俄羅斯天文學家。他提出了行星形成的低質量星雲模型,以及行星如何在太陽周圍的氣體與塵埃星周盤內形成。.

新!!: 原行星盤和維克托·薩夫羅諾夫 · 查看更多 »

繪架座β移動星群

繪架座β移動星群是位於附近相對上較接近地球的一個年輕移動星群。在天文學中,移動星群是在太空中有著相同的起源並有著共同運動的一群恆星集團。 繪架座 β移動星群是天文學上一個很重要的研究對象,因為他與太陽系的距離相當接近,而且在恆星發展的過程中也還很年輕。已經知道繪架座β有氣體和塵埃組成的巨大盤面,可能是原行星盤;也有證據顯示有年輕的氣體巨星環繞著。 這個星群的年齡和距離使它成為搜尋系外行星,和研究行星系統是如何形成的首選目標。.

新!!: 原行星盤和繪架座β移動星群 · 查看更多 »

織女一

織女一又稱為織女星或天琴座α(α Lyr,α Lyrae),是天琴座中最明亮的恆星,在夜空中排名第五,是北半球第二明亮的恆星,僅次於大角星。它與大角星及天狼星一樣,是非常靠近地球的恆星,距離地球只有25.3光年;它也是太陽附近最明亮的恆星之一。在中國古代的「牛郎織女」神話中,織女為天帝孫女,故亦稱天孫。 天文學家對織女星進行過大量的研究,因此它「無疑是天空中第二重要的恆星,僅次於太陽」。織女星大約在西元前12,000年曾是北半球的極星,但因歲差現象地球自轉軸傾斜,再加上日月對地球各部份的引力並不一致,使地球自轉軸緩慢轉圈,週期約兩萬六千年,稱為歲差現象。,它在13,727年會再度成為北極星,屆時它的赤緯會達到+86°14'。織女星是太陽之外第一顆被人類拍攝下來的恆星,也是第一顆有光譜記錄的恆星。它也是第一批經由視差測量估計出距離的恆星之一。織女星也曾是測量光度亮度標尺的校準基線,是UBV測光系統用來定義平均值的恆星之一。在北半球的夏天,觀測者多半可在天頂附近的位置見到織女星,因為身為天文學上星等的標準,其視星等被定義為0等,因此天文學家會以織女星作為光度測定的標準。 織女星的年齡只有太陽的十分之一,但是因為它的質量是太陽的2.1倍,因此它的預期壽命也只有太陽的十分之一;這兩顆恆星目前都在接近壽命的中點上。織女星的光譜分類為A0V,其溫度比天狼星的A1V高一點。它仍处於主序星階段,透過把核心內的氫聚變成氦來發光發熱。織女星比氦重(原子序數較大)的元素豐度異常的低,織女星光度有輕微的周期性變化,因此天文學家懷疑它是一顆變星。它的自轉相當快速,赤道自轉速度是每秒274公里。離心力的影響導致恆星的赤道向外突起,溫度的變化通過光球表面在極點達到最大值。地球上的觀測者視線正朝著織女星的極點。天文學家經過測定後,得知織女星每12.5小時自轉一周,整顆恆星呈扁平狀,赤道直徑比兩極大了23%。 天文學家觀測到織女星紅外線輻射超量,顯示織女星似乎有塵埃組成的拱星盤。這些塵粒可能類似於太陽系的柯伊伯带,是岩屑盤中的天體碰撞產生的結果。這些由於塵埃盤造成紅外線輻射超量的恆星被歸類為類織女恆星。織女星盤的分布並不規則,顯示至少有一顆大小類似木星的行星環繞著織女星公轉。.

新!!: 原行星盤和織女一 · 查看更多 »

绘架座恒星列表

以下是星座绘架座的主要恒星列表,按照亮度降序排列。.

新!!: 原行星盤和绘架座恒星列表 · 查看更多 »

猎户座大星云

獵戶座大星雲(M42,NGC 1976)是一個位於獵戶座的弥漫星雲,距地球1344 ± 20光年,為最接近我們的一個恒星形成區。它的亮度相當高,在全天僅次於船底座星云,在無光害的地區用肉眼就可觀察。 對於天文愛好者而言,M42是一個相當值得一看的深空天體:只要一枝小望遠鏡或雙筒望遠鏡就可以觀賞了。對於天文學家而言,這個星雲是一個熱門的研究對象,由大型的地基望遠鏡,到哈勃太空望遠鏡(HST)都指向它。獵戶座大星雲還是天文攝影愛好者和天文台的大望遠鏡最主要的拍攝對象之一。 近年天文學家已直接观测到該星雲四合星附近的原行星盤(Protoplanetary disk)、棕矮星、氣體激烈且混亂的運動,和附近大量出現的光子化恒星。M42是研究恆星誕生的觀測、研究目標之一。.

新!!: 原行星盤和猎户座大星云 · 查看更多 »

电离氢区

电离氢区(H II區)是發光的氣體和電漿組成的雲氣,有時會有數百光年的直徑,是恆星誕生的場所。從這些氣體中誕生的年輕、炙熱的藍色恆星散發出大量的紫外線,使星雲環繞在周圍的氣體游離。 H II區在數百萬年的歲月中也許可以誕生成千上萬顆的恆星。最後,超新星爆炸和來自星團中質量最大的那些恆星吹出的強烈恆星風,將會吹散掉H II區的氣體,留下來的就是像昴宿星團這樣的星團。 H II區是因為有大量被游離的氫原子而得名的,天文學家同樣的將中性氫的區域稱為HI區,而H2稱為分子氫。在宇宙的遠處的H II區不會被忽略,也能被看見,對其它星系H II區的觀測,在測量距離和化學組成是很重要的研究項目。.

新!!: 原行星盤和电离氢区 · 查看更多 »

隕石學辭彙

這是隕石學與隕石的科學中用的術語。.

新!!: 原行星盤和隕石學辭彙 · 查看更多 »

鐵行星

鐵行星是以鐵為主要成分,有著富含鐵的核心,很少或沒有地函的一種行星類型。水星是太陽系內最大的這種類型天體,但是在系外行星可能有更大的這種天體存在。這種天體也可以稱為砲彈。.

新!!: 原行星盤和鐵行星 · 查看更多 »

蝘蜓座110913-773444

堰蜓座110913-773444(通常簡單表示為堰蜓座110913)是一個看似有原行星盤環繞的天體,它甚至比之前所知最小的棕矮星OTS 44還要小。科學家對這個天體的分類還沒有取得共識,是一顆次棕矮星(與行星)還是一顆流浪行星(與衛星)。 堰蜓座110913-773444是(Kevin Luhman)和賓夕凡尼亞大學的其他夥伴使用史匹哲太空望遠鏡、哈伯太空望遠鏡和兩架位於智利的望遠鏡共同發現的。.

新!!: 原行星盤和蝘蜓座110913-773444 · 查看更多 »

類太陽恆星

類太陽恆星包括太陽型恆星、太陽相似體、孿生太陽等,是與太陽特別相似的那些恆星。這樣的分類是有階層性的,孿生是與太陽最接近的,其次是相似體,最後是太陽型。觀察這些恆星最重要的是能更好的理解太陽與其他恆星相關的各種性質,特別是恆星與行星的適居性。.

新!!: 原行星盤和類太陽恆星 · 查看更多 »

行星环

行星環是指圍繞著行星運轉的宇宙塵和小顆粒形成扁平盤狀的區域。最廣為人知的行星環就是圍繞著土星的土星環,但是太陽系的其他三顆氣體巨星(木星、天王星和海王星)也都有自己的行星環。 最近的報告 認為土星的衛星麗亞可能也有自己的環系統,它可能成為唯一擁有自己的環系統的衛星。.

新!!: 原行星盤和行星环 · 查看更多 »

行星際塵雲

行星際塵雲(Interplanetary dust cloud)是瀰漫在太陽系的行星空間與其它行星系空間的宇宙塵(漂浮在太空中的小顆粒)。它已經被研究了許多年,以了解其本質、起源和大天體之間的關係。 在我們的太陽系,行星際塵埃粒子不僅散射陽光(稱為"黃道光",因為它們被侷限在黃道平面),也產生熱輻射,這是夜晚的天空中5至50微米波長的主要來源(Levasseur-Regourd, A.C. 1996)。這些在地球附近輻射出紅外線特徵的顆粒,典型的大小在50至100微米(Backman, D., 1997)。這些星際塵埃的總質量相當於一顆半徑15公里的小行星(密度大約是2.5公克/公分3)。.

新!!: 原行星盤和行星際塵雲 · 查看更多 »

行星適居性

行星適居性是天文學裡對星體上生命的出現與繁衍潛力的評估指標,其可以適用於行星及行星的天然衛星。 生命的必要條件是能量來源(通常是太陽能但並不全然)。但通常是當其他眾多條件,如該行星的地球物理學、地球化學與天體物理學的條件成熟後,方會稱該行星為適合生命居住的。外星生命的存在仍是未知之數,行星適居性是以太陽系及地球的環境推測其他星體是否會適合生命居住。行星適居性較高的星體通常是那些擁有持續與複雜的多細胞生物與單細胞生命系統的星體。對行星適居性的研究和理论是天體科學的组成部分,正在成为一门新兴学科太空生物學。 對地球以外的星體進行生命探索是極古老的話題,最初是屬於哲學及物理學的研究領域。而在20世紀後期科學界對此有兩個重大突破。其一是使用先進機器對太陽系裡其他行星與衛星進行觀察,獲得這些星體的適居性資料,並將其與地球的相關資料作比較。其二是外太陽系行星的發現,它們是在1995年首度發現的,其後進度不斷加快。這個發現證明了太陽並不是惟一的擁有行星的星體,而且亦擴闊了探索適合生命居住的行星的範圍,使外太陽系星體亦被納入研究之中。.

新!!: 原行星盤和行星適居性 · 查看更多 »

行星遷移

行星遷移(英文:Planetary migration)是行星或者其他恆星旁的天體和恆星周圍的盤內的氣體或者微行星交互作用時發生的現象;該現象會改變行星等天體的軌道半長軸等軌道參數。現在廣被接受的行星形成理論內容指出,原行星盤內行星不會在相當接近恆星的區域形成,因為太過靠近恆星的區域內的天體質量不足以形成行星,並且溫度過高無法讓主要含岩石或冰的微行星存在。恆星旁氣體盤還存在時,質量與地球相當行星可能會向內快速靠近恆星;這也可能會影響巨大行星(質量高於10倍地球質量)的核心形成,如果它們的形成是經由核心吸積機制的話。行星遷移是太陽系外行星中巨大質量且公轉週期極短的熱木星形成最可能的解釋。.

新!!: 原行星盤和行星遷移 · 查看更多 »

超低溫矮星

超低溫矮星(Ultra-cool dwarf)是指光譜為M型的的恆星或亞恆星,並且表面有效溫度低於。TRAPPIST-1是超低溫矮星中最廣為天文界所知道的一個例子。.

新!!: 原行星盤和超低溫矮星 · 查看更多 »

轩辕增十九

巨蟹座55(55 Cancri),中文名轩辕增十九或轩辕增廿,是一對位於巨蟹座的雙星系統,距離地球約41光年。巨蟹座55的兩顆恆分別是巨蟹座55A和巨蟹座55B,其中巨蟹座55A是一顆與太陽差不多的黃矮星,而巨蟹座55B是一顆紅矮星,這顆恆星的距離比地球和太陽之間的距離大上1000倍,但以恆星的尺度來,他們兩個恆星可說是幾乎靠在一起。迄2008年,已發現5個環繞著巨蟹座55A的太陽系外行星,其中4個是性質跟木星類似的氣態巨行星,其中最靠近母恆星的大小就和海王星差不多,另外還有1顆是由岩石構成的岩石行星。也因為這樣,讓巨蟹座55成了目前發現最多太陽系外行星的雙星系統,而且由美國國家航空暨太空總署規劃的類地行星發現者也把巨蟹座55A列為第63個關注的恆星(共有100個)。.

新!!: 原行星盤和轩辕增十九 · 查看更多 »

赫比格-哈羅天體

赫比格-哈羅天體(Herbig-Haro object或HH天體)是宇宙中由新生恆星所形成、狀似星雲的天體。新誕生的恆星以秒速將近數百公里的高速不斷噴出氣體,這些氣體會與恆星周圍的氣體雲和灰塵雲激烈碰撞、產生光芒。赫比格-哈羅天體普遍存在於恆星生成區,在單一新生恆星的極軸附近常可見到排成一列的多個赫比格-哈羅天體。 赫比格-哈羅天體是相當短暫的天文現象,不會持續超過數千年。在氣體持續發散至星際物質中時,赫比格-哈羅天體也就漸漸模糊不可見。哈伯太空望遠鏡觀察了數個複雜的HH天體,其中有些正在消逝,另外一些因為與星際物質的碰撞漸趨激烈而越來越明亮。 HH天體最早在19世紀由美國天文學家舍本·衛斯里·伯納姆(Sherburne Wesley Burnham)所觀測,但當時被紀錄為一發射星雲。直到1940年代,美國天文學家喬治·赫比格與墨西哥天文學家吉列爾莫·哈羅才開始分別對HH天體展開研究,並確認了HH天體是恆星演化的過程。如今赫比格-哈羅天體即是為紀念兩人的貢獻而命名。.

新!!: 原行星盤和赫比格-哈羅天體 · 查看更多 »

脈衝星行星

脈衝星行星(Pulsar planet)是圍繞脈衝星公轉的行星,而脈衝星即高速自轉的中子星。首個被發現的脈衝星行星即為首個被發現的系外行星。.

新!!: 原行星盤和脈衝星行星 · 查看更多 »

金牛座UX

金牛座UX(UX Tauri,UX Tau)是一個位於金牛座的聯星系統,距離地球約450光年。.

新!!: 原行星盤和金牛座UX · 查看更多 »

金牛T風

金牛T風-因為是在這個階段的年輕恆星,所以如此命名-是一種從緩慢旋轉吸積物質的太陽星雲轉換到點燃氫發展成為原恆星階段的現象。 原恆星,僅有大約初始質量的1%成為其最後的質量,但是這些恆星的包層繼續隨著墬入的物質增生。經過10,000至100,000年 ,熱核反應在核心開始進行,然後產生強大的恆風使新的質量不在墬入。這顆原恆星現在因為它的質量被固定了,因此被認為是一顆恆星,並且它的未來發展也被設定了。.

新!!: 原行星盤和金牛T風 · 查看更多 »

金牛T星

金牛T星(T Tauri star, TTS)是變星的一種,他的命名是依據被發現的原型-金牛座T星(T Tauri)而來的。他們都在鄰近分子雲的地方被發現,例如NGC 1555,並且由光學上的觀測確認是一顆有著強烈的色球譜線的變星。.

新!!: 原行星盤和金牛T星 · 查看更多 »

長蛇座TW

長蛇座TW是一顆位於長蛇座 (海蛇) 內,距離地球約176光年的橙色矮星。這顆恆星是最靠近太陽系的金牛T星,它的質量與太陽相近,但年齡只有500萬至1000萬歲。觀察哈伯太空望遠鏡拍攝的影像,這顆恆星看似有著正面朝向我們的塵埃和氣體吸積的原行星盤。還有大約20個低質量的恆星有著與長蛇座TW相似的年齡和空間運動,組成長蛇座TW星協或TWA,這是最靠近太陽和最新近的“化石”恆星形成區域之一。.

新!!: 原行星盤和長蛇座TW · 查看更多 »

HD 106906 b

HD 106906 b是一顆位於南十字座的太陽系外行星,母恆星為,距離地球約300光年。該行星為氣體巨行星,質量大約是木星的11倍,與母恆星的距離大約是650天文單位,即接近970億公里。該行星和母恆星極遠的距離讓天文學界相當重視,因為目前恆星與行星形成的星雲假說無法解釋距離母恆星如此遙遠的行星存在。.

新!!: 原行星盤和HD 106906 b · 查看更多 »

HD 141569

HD 141569是一組距離地球約320光年的三合星,在天球上位於天秤座。該系統主星是一顆B型主序星,另外兩顆伴星是紅矮星,並且兩顆伴星相互環繞,主星與伴星在天球上相距9角秒。1999年時在該系統周圍發現原行星盤,並且在盤內有縫隙結構,被認為存在正在形成中的行星。.

新!!: 原行星盤和HD 141569 · 查看更多 »

HD 142527

HD 142527是一顆位於豺狼座的恆星。該恆星因為其原行星盤而聞名,並且其原行星盤的發現幫助天文學家修正行星形成理論模型。.

新!!: 原行星盤和HD 142527 · 查看更多 »

HD 149026b

HD 149026 b是一個環繞著武仙座恆星HD 149026的太陽系外行星,屬於氣體行星,距離地球267光年,表面溫度高達2,300 K。值得注意的是它在凌星現象被觀測到後所測定的相對於質量和輸入熱量較小的半徑,這暗示它有異常大的行星核。.

新!!: 原行星盤和HD 149026b · 查看更多 »

HD 189733 b

HD 189733 b是一顆距離地球約63光年的太陽系外行星,位於狐狸座。該行星於2005年由一群在法國進行觀測的天文學家在狐狸座恆星HD 189733 A旁以凌日法發現。HD 189733 b是第一顆畫出表面熱量分布圖的系外行星,並確認其表面顏色為深藍色,以及在大氣層中確定了二氧化碳的存在。它的質量比木星高13%,軌道週期2.2日,即軌道速度152.5 km/s,因此人類所知的生命型態存在的可能性極低。.

新!!: 原行星盤和HD 189733 b · 查看更多 »

HD 95086 b

HD 95086 b是一顆年齡介乎1,000至1,700萬年的太陽系外行星,母恆星是位於船底座的A型主序前星HD 95086,距離地球90秒差距(296光年)。該行星發現至今可能是直接攝影法發現的系外行星中質量最低的。.

新!!: 原行星盤和HD 95086 b · 查看更多 »

K2-33b

K2-33b,或稱為EPIC 205117205.01,是一顆極為年輕的超級海王星型太陽系外行星,母恆星是主序前星K2-33。該行星是由美国国家航空航天局的克卜勒太空望遠鏡K2任務(Second Light,「第二道光」)發現,距離地球約472光年(145秒差距),在天球上位於天蠍座。該行星是以觀測行星通過母恆星盤面與地球觀測者之間造成母恆星亮度下降程度的凌日法發現。K2-33b因為年齡只有約930萬年而聞名,並且目前只有一顆系外行星金牛座V830b比它年輕(年齡約200萬年)。.

新!!: 原行星盤和K2-33b · 查看更多 »

LkCa 15

LkCa 15是一顆位於的恆金牛T星。該恆星是年輕的主序前星,並且亮度變化不規則。.

新!!: 原行星盤和LkCa 15 · 查看更多 »

MWC 349

MWC 349是在天鵝座的一對聯星(可能是三合星)系統。.

新!!: 原行星盤和MWC 349 · 查看更多 »

NGC 1555

NGC 1555又稱欣德變光星雲(Hind's Nebula),是金牛座的一個反射星雲,事實上是金牛座T的原行星盤,為金牛座T型星的最早成員。.

新!!: 原行星盤和NGC 1555 · 查看更多 »

TRAPPIST-1

TRAPPIST-1,即 2MASS J23062928-0502285,是一顆表面溫度極低的超冷紅矮星,距離地球約,天球上位於寶瓶座。2017年2月,天文學家在該恆星周圍發現7顆類地行星,是已知行星系統中擁有次多類地行星者,僅次於太陽和克卜勒90。.

新!!: 原行星盤和TRAPPIST-1 · 查看更多 »

柯伊伯带

柯伊伯带(Kuiper belt),又稱作倫納德-柯伊伯带,另譯庫柏帶、--,是位於太陽系中海王星軌道(距離太陽約30天文单位)外側的黃道面附近、天體密集的圓盤狀區域。柯伊伯带的假說最先由美国天文學家弗雷德里克·倫納德提出,十几年後杰拉德·柯伊伯證實了该观点。柯伊伯帶类似于小行星带,但大得多,它比小行星帶宽20倍且重20至200倍。如同主小行星帶,它主要包含小天体或太阳系形成的遗迹。虽然大多数小行星主要是岩石和金属构成的,但大部分柯伊伯带天体在很大程度上由冷冻的挥发成分(称为“冰”),如甲烷,氨和水组成。柯伊伯带至少有三顆矮行星:冥王星,妊神星和鸟神星。一些太阳系中的衛星,如海王星的海卫一和土星的土卫九,也被认为起源于该区域。 柯伊伯带的位置處於距離太陽40至50天文单位低傾角的軌道上。該處過去一直被認為空無一物,是太陽系的盡頭所在。但事實上這裡滿佈着直徑從數公里到上千公里的冰封微行星。柯伊伯带的起源和確實結構尚未明確,目前的理論推測是其來源於太陽原行星盤上的碎片,這些碎片相互吸引碰撞,但最後只組成了微行星帶而非行星,太陽風和物質會在在此處減速。 柯伊伯带有时被误认为是太陽系的邊界,但太阳系还包括向外延伸两光年之远的奥尔特星云。柯伊伯带是短周期彗星的來源地,如哈雷彗星。自冥王星被發現以來,就有天文學家認為其應該被排除在太陽系的行星之外。由於冥王星的大小和柯伊伯带內大的小行星大小相近,20世紀末更有主張該其應被歸入柯伊伯带小行星的行列当中;而冥王星的卫星则應被當作是其伴星。2006年8月,国际天文学联合会將冥王星剔出行星類別,并和谷神星与新发现的阋神星一起归入新分类的矮行星。 柯伊伯带不应该与假设的奥尔特云相混淆,后者比前者遥远一千倍以上。柯伊伯带内的天体,连同离散盘的成员和任何潜在的奥尔特云天体被统称为海王星外天体(TNOs)。冥王星是在柯伊伯带中最大的天體,而第二大知名的海王星外天体,則是在离散盘的阋神星。.

新!!: 原行星盤和柯伊伯带 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: 原行星盤和恒星 · 查看更多 »

恆星磁場

恆星磁場是恆星內部有傳導力的電漿運動產生的磁場。這種運動是經由對流產生的,是一種包含物質有形運動的能量傳輸。地區性的磁場會對電漿產生作用力,在密度沒有可以比較的增益下,有效的增加壓力。因此被磁化的地區相對於其它的電漿上升,直到抵達恆星的光球。這將在恆星的表面創造出星斑和冕圈的相關現象。.

新!!: 原行星盤和恆星磁場 · 查看更多 »

棕矮星

褐矮星又称--矮星,是質量太低,在核心不能維持大規模的氫融合反應,與主序恆星不同的次恆星。它們的質量據有最重的氣體巨星和最輕的恆星,質量上限大約在75至80 木星質量(MJ)。棕矮星的質量至少超過氘融合所需要的13 MJ,而超過〜65 MJ,鋰融合就可以進行。 在2013年3月,有一篇論文提出質量非常低的棕矮星和巨大行星的分界大約在〜13木星質量,引起了學界的討論。相似的研究涉及DENIS-P J082303.1-491201 b,在2014年3月發現的一個極低溫的聯星系統,質量較低的成員大約只有29木星質量,並且被列名為質量最大的系外行星。儘管如此,一個學派認為要基於形成;另一派認為要依據內部的物理。 棕矮星一樣可以依據光譜分類,主要的類型有M、L、T、和Y。不管它們的名稱,棕矮星有著不同的顏色。依據A.

新!!: 原行星盤和棕矮星 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 原行星盤和氧 · 查看更多 »

泛種論

泛種論,或稱胚種論、宇宙撒種說(Panspermia,πανσπερμία ),是一種假說,猜想各種形態的微生物存在於全宇宙,並藉著流星、小行星與彗星散播、繁衍。 在泛種論相關的假說裡,生命可以在宇宙中移動、存活,是一些行星遭到撞擊後,彈射到宇宙中,夾帶類似嗜極生物的细菌之類生命體的殘骸。這些生命隨著殘骸移動到其他行星或原行星盤前可能會進入類似休眠的状态,完全靜止活動。當這些生命進入適合生存的行星,牠們便會開始活動並啟動進化這是一種泛種論的變體,稱為「死亡胚種論」(necropanspermia),出自於天文學家保羅·威森(Paul Wesson)的論述:「有機體在到達銀河系的新家前技術性進入死去、復活,無論如何,這是可能的。」 。泛種論並未解釋生命的起源,它只是說明了維持生命存續的可能。.

新!!: 原行星盤和泛種論 · 查看更多 »

木星的卫星

木星擁有69顆已確認的天然衛星,是太陽系內擁有最大衛星系統的行星。當中最大的4顆,統稱伽利略衛星,由伽利略于1610年發現,這是首次(除了月球)發現不是圍繞太陽的天體。19世紀末起,越來越多更小型的木星衛星被發現,並命名為羅馬神話中的諸神之王朱庇特(或同等的宙斯)的各位情人、傾慕者和女兒。 木星的衛星之中有8顆屬於規則衛星,它們沿幾乎呈正圓的順行軌道公轉,軌道相對木星的赤道面傾斜度近乎零。4顆伽利略衛星的質量最大,足以形成近球體形狀。其餘4顆規則衛星的體積則小得多,軌道更接近木星,是木星環塵埃的主要來源。剩餘的衛星都屬於不規則衛星,它們分別有順行和逆行軌道,距離木星較遠,軌道傾角和離心率都非常高。這類衛星都很可能曾經圍繞太陽公轉,之後被木星所捕獲的天體。自2003年以來,共有17顆已發現但未命名的不規則衛星。.

新!!: 原行星盤和木星的卫星 · 查看更多 »

星周盤

星周盤 (circumstellar disk)是在環繞著恆星的軌道上,由氣體、塵埃、星子、小行星或碰撞的碎屑堆積,構成花托或環狀的物質。環繞在年輕的恆星周圍,將來可能成為構成行星的原料;環繞在成熟的恆星,它們可以發展成微星;而如果是環繞著白矮星,則表明了是整個恆星演化過程剩下來的材料。這些盤面可以呈現如下的形式:.

新!!: 原行星盤和星周盤 · 查看更多 »

星雲假說

星雲假說是在天體演化學的場合要解釋太陽系的形成與演化最被廣泛接受的模型。它建議太陽系是在星雲物質中形成的,這個理論最早是伊曼努爾·康德於1755年發表在自然史和天空理論。起初使用在太陽系的行星系統形成過程,現在更應用在宇宙的工作中。被廣泛接受的變體現代星雲假說是太陽星雲盤假說(solar nebular disk model,SNDM)或簡單的太陽星雲模型。這個星雲假說提供太陽系各種性質的解釋,包括行星軌道接近圓形和共軌道面,和它們的運動方向與太陽自轉方向的一致性。一些星雲假說的元素反映在現代的行星形成,但大多數的元素已經被取代。 依據星雲假說,形成恆星的雲是大質量和濃稠的分子氫-巨分子雲(giant molecular cloud,GMC)。這些雲是引力不穩定,並且物質在內部密集叢生的合併,然後旋轉、坍縮形成恆星。恆星形成是一個複雜的過程,總是先在年輕恆星周圍形成氣體的原行星盤。在某些情況下這可能孕育行星,但尚不清楚。因此,行星系統的形成被認為是恆星形成的自然結果。一顆類似太陽的恆星通常需要100萬年的十來形成,從原行星盤發展出行星系統還需要再1000萬年。 - 原行星盤是餵養中心恆星的吸積盤。起初很熱,稍後盤面逐漸變冷,成為所謂的金牛T星階段;此時,可能是岩石和冰的小塵埃顆粒形成。顆粒最終可能凝聚成公里尺度的微行星。如果盤有足夠的質量,增長會開始失控,導致迅速 -100,000年到300,000年- 形成月球到火星大小的原行星。臨近恆星,原行星會經過暴力的合併,生成幾顆類地行星。這個階段可能要經歷1億年至10億年。 巨行星的形成是一個更複雜的過程。它被認為要越過凍結線才會發生,在哪裡元行星主要由各種類型的冰組成。其結果是,它們會比原行星盤內側的巨大許多倍。原行星形成後的演化並不完全清楚,有些原行星會繼續成長,最終達到5-10地球質量-臨界值,必須開始從盤中吸積氫和氦。由核心積累氣體在開始時是很緩慢的,需要持續數百萬年,但是在原行星的質量達到30地球質量(),它就會以失控的速率加速吸收。像木星和土星這樣的行星,被認為只要一萬年就能累積如此大量的質量。當氣體耗盡時,吸積就停止了。在形成的期間或形成之後,行星都可以長距離的遷移。冰巨星像是天王星和海王星,被認為是失敗的核心,形成得太晚而盤面幾乎已經消失了。.

新!!: 原行星盤和星雲假說 · 查看更多 »

托林 (天文学)

托林(tholin,來自θολός,「不清澈的」)是一种存在于远离恒星的寒冷星体上的物质,是一类共聚物分子,由原初的甲烷、乙烷等簡單結構有機化合物在紫外线照射下形成,但它并不是单一的纯净物,并没有确定的化学分子或明确的混合物与之对应。托林通常为浅红色或棕色的外观。托林無法在今日的地球自然環境下形成,但在外太陽系以冰組成的天體表面有極大的含量。.

新!!: 原行星盤和托林 (天文学) · 查看更多 »

2M1207b

2M1207b是一顆圍繞棕矮星2M1207的太陽系外行星,距離地球大約為170光年,位於半人馬座。2M1207b也是第一顆以直接攝影法發現的系外行星,是由Gael Chauvin所領導的歐洲南天天文台觀測團隊在2004年9月於智利使用帕瑞納天文台的甚大望遠鏡所發現的A giant planet candidate near a young brown dwarf.

新!!: 原行星盤和2M1207b · 查看更多 »

4U 0142+61

4U 0142+61是一顆位於仙后座的磁星,距離地球約13,000光年。 根據2006年4月6日出版的《自然》雜誌報導,麻省理工的Deepto Chakrabarty等人發現有一原行星盤圍繞著這顆脈衝星,因此或可證明有不少中子星均擁有自己的脈衝星行星,推翻之前人們認為中子星的強大電磁輻射無法使行星誕生的說法。而該原行星盤亦含有不少較重的金屬元素。另外,這顆恆星約於距今10萬年前發生超新星爆發。.

新!!: 原行星盤和4U 0142+61 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »