徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

1 − 2 + 3 − 4 + …

指数 1 − 2 + 3 − 4 + …

在数学中,1 − 2 + 3 − 4 + …表示以由小到大的接续正整數,依次加後又減、減後又加,如此反复所構成的無窮級數。它是交錯級數,若以Σ符号表示前m项之和,可写作: 此无穷级数发散,即其部分和的序列不会趋近于任一有穷极限。也就是說,單從極限的角度看的話,不存在和。不过,在18世纪中期,莱昂哈德·欧拉写出了一个他承认为悖论的等式: 该等式的严谨解释在很久以后才出现。自1890年起,恩纳斯托·切萨罗、埃米尔·博雷尔与其他一些数学家就在研究有哪些定义良好的方法,可以给发散级数賦予广义和「广义和」是指利用一些特殊的方式,計算--发散级数的「和」,由於发散级数不會有一般定義下的和,因此稱為广义和。——其中包含了对欧拉结果的新解释。这些求和法大部分可简单地指定的“和”為1⁄4。切萨罗求和是少数几种不能计算出之和的方法,因为此级数求和需要某个略强的方法——譬如阿贝耳求和。 级数与格蘭迪級數有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了他在巴塞尔问题上所做的工作,同时也引出了我们现在所知的狄利克雷η函数和黎曼ζ函数。.

52 关系: 埃米尔·博雷尔可和法可數集发散级数定义良好实直线导数尼尔斯·阿贝尔差分巴塞尔问题严谨 (数学)中值定理三角形數广义化伯努利数当且仅当微积分学切萨罗求和函数函数方程等于算术平均数線性泛函约翰·贝兹级数绝对值物理学狄利克雷级数狄利克雷η函数萊昂哈德·歐拉項測試黎曼积分黎曼ζ函數量子諧振子自然数柯西乘积恩纳斯托·切萨罗格蘭迪級數極限 (數列)正整數求和求和法泰勒公式泰勒级数法语方程求解悖论收敛数列数学拉格朗日定理...01 + 2 + 3 + 4 + · · · 扩展索引 (2 更多) »

埃米尔·博雷尔

费力克斯-爱德华-朱斯坦-埃米尔·博雷尔(Félix-Édouard-Justin-Émile Borel, )是一位法國數學家和政治家。.

新!!: 1 − 2 + 3 − 4 + …和埃米尔·博雷尔 · 查看更多 »

可和法

#重定向 发散级数.

新!!: 1 − 2 + 3 − 4 + …和可和法 · 查看更多 »

可數集

在数学上,可数集,或称可列集、可数无穷集合,是与自然数集的某个子集具有相同基數(等势)的集合。在这个意义下不是可数集的集合称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数永远无法终止,集合中每一个特定的元素都将对应一个自然数。 “可数集”这个术语也可以代表能和自然数集本身一一对应的集合。例子参见两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。 为了避免歧义,前一种意义上的可数有时称为至多可数,参见.

新!!: 1 − 2 + 3 − 4 + …和可數集 · 查看更多 »

发散级数

发散级数(Divergent Series)指(按柯西意义下)不收敛的级数。如级数1 + 2 + 3 + 4 + \cdots和1 - 1 + 1 - 1 + \cdots ,也就是说该级数的部分和序列没有一个有穷极限。 如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数 调和级数的发散性被中世纪数学家奥里斯姆所证明。.

新!!: 1 − 2 + 3 − 4 + …和发散级数 · 查看更多 »

定义良好

在数学裡,术语定义良好(定义良好的 well-defined,名词 well-definition)用于确认用一组基本公理以数学或逻辑的方式定义的某个概念或对象(一个函数,性质,关系,等等)是完全无歧义的,满足它必需满足的那些性质。通常定义是无歧义地表述,明白地满足它们所需的性质。但有时候,使用任意选择的方式来陈述定义是经济的,这时我们便要验证定义与选择无关。另一种情形,所需的性质可能不都是显然的,这时要验证它们。这些问题通常来自函数的定义。 譬如,在群论中,术语“定义良好”经常用于处理陪集时,陪集空间上的函数经常选取一个代表来定义:这时非常重要的是验证无论选取陪集的哪个代表,就像算术运算一样(比如,2加3总是5)我们总得到同样的结果。 f(x_).

新!!: 1 − 2 + 3 − 4 + …和定义良好 · 查看更多 »

实直线

實直線有如下含義,它們有互相可作補充的部分:.

新!!: 1 − 2 + 3 − 4 + …和实直线 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

新!!: 1 − 2 + 3 − 4 + …和导数 · 查看更多 »

尼尔斯·阿贝尔

尼尔斯·亨利克·阿贝尔(Niels Henrik Abel,),挪威數學家,開啟許多領域的研究,以證明懸疑餘兩百五十年五次方程的根式解的不可能性和对椭圆函数的研究中提出阿貝爾方程式而聞名。 生于挪威芬岛附近的 ,就读于奥斯陆大学。1825年得到政府资助,游学柏林和巴黎。儘管阿贝尔成就極高,卻生前不得志,無法獲得教席俾專心研究,最後因過度貧窮染上肺结核逝世於挪威的弗鲁兰。死後兩天,來自柏林的聘書才寄到家中。跟同樣早逝的伽羅華一同被奉為群論的先驅。现代有以他名字命名的阿贝尔奖。 法國數學家夏爾·埃爾米特讚曰:「阿貝爾讓數學家們足夠忙上五百年的。」 ;另一法國數學家阿德里安-馬里·勒讓德曰:「這挪威青年的頭腦實在不簡單啊!.

新!!: 1 − 2 + 3 − 4 + …和尼尔斯·阿贝尔 · 查看更多 »

差分

差分,又名差分函數或差分運算,是数学中的一个概念。它将原函数 \ f(x) 映射到 \ f(x+a)-f(x+b)。差分運算,相應於微分運算,是微积分中重要的一个概念。.

新!!: 1 − 2 + 3 − 4 + …和差分 · 查看更多 »

巴塞尔问题

巴塞尔问题是一个著名的数论问题,这个问题首先由在1644年提出,由莱昂哈德·欧拉在1735年解决。由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题马上就出名了,当时他二十八岁。欧拉把这个问题作了一番推广,他的想法后来被黎曼在1859年的论文《论小于给定大数的质数个数》(On the Number of Primes Less Than a Given Magnitude)中所采用,论文中定义了黎曼ζ函数,并证明了它的一些基本的性质。这个问题是以瑞士的第三大城市巴塞尔命名的,它是欧拉和伯努利家族的家乡。 这个问题是精确计算所有平方数的倒数的和,也就是以下级数的和: \sum_^\infin \frac.

新!!: 1 − 2 + 3 − 4 + …和巴塞尔问题 · 查看更多 »

严谨 (数学)

数学上,严谨不同于生活中的严谨,它指数学系统(尤指公理系统)的完备性和相容性。 完备性指公理数量不多不少正好可以推导出这门学科的全部结论;自洽性指公理系统内不存在悖论(即既是真又是假的命题)。比如绝对几何学加上第五公设就成为欧式几何,或者加上第五公设的反命题就成为非欧几何,但后两者并不满足完备性要求,只有绝对几何学才是度量几何类中的完备系统。自洽性与哥德爾不完備定理并不矛盾,前者断言不存在既真又假的命题,而后者断言存在既不可证明又不可证伪的命题,就好比第五公设之于度量几何,连续统假设之于集合论,选择公理之于ZF系统。.

新!!: 1 − 2 + 3 − 4 + …和严谨 (数学) · 查看更多 »

中值定理

在實分析中,中值定理(mean value theorem)描述了連續光滑曲線在兩點之間的光滑性: 中值定理包括微分中值定理和积分中值定理。.

新!!: 1 − 2 + 3 − 4 + …和中值定理 · 查看更多 »

三角形數

一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形數。比如10个点可以组成一个等边三角形,因此10是一个三角形數: 一开始的18个三角形數是1、3、6、10、15、21、28、36、45、55、66、78、91、105、120、136、153、171、190、210、231、253…… 一个三角数乘以九再加一仍是一个三角数。 三角數的個位數字不可能是2、4、7、9,數字根不可能是2、4、5、7、8。 三角数的二倍的平方根取整,是这个三角数的序数。.

新!!: 1 − 2 + 3 − 4 + …和三角形數 · 查看更多 »

广义化

广义化(Generalize),又称一般化、通常化、普遍化、概念化,與之相對的是抽象化。概括作用是指将事物的定义进行修改或者补充以使其适用于更加大的范围。 一个将事物广义化的简单例子是归类。例如:将“大雁”广义化(归类)之后是“鸟类”,将“鸟类”广义化(归类)之后是“动物”。 当然,这样的定义并不严谨。 从逻辑学的角度来定义,只有满足下面两个条件才能说,“A是广义化之后的B”,或者“A是广义上的B”。条件如下:.

新!!: 1 − 2 + 3 − 4 + …和广义化 · 查看更多 »

伯努利数

數學上,白努利數 是一個與數論有密切關聯的有理數序列。前幾項被發現的白努利數分別為: 上標 ± 在本文中用來區別兩種不同的白努利數定義,而這兩種定義只有在 時有所不同:.

新!!: 1 − 2 + 3 − 4 + …和伯努利数 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

新!!: 1 − 2 + 3 − 4 + …和当且仅当 · 查看更多 »

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

新!!: 1 − 2 + 3 − 4 + …和微积分学 · 查看更多 »

切萨罗求和

切薩羅求和(Cesàro summation)是由義大利的數學家恩納斯托·切薩羅(Ernesto Cesàro)發明,是計算無窮級數和的方式。若一級數收斂至α,則其切薩羅和存在,其值為 α,而發散級數也可以用切薩羅求和的方式,計算出切薩羅和。.

新!!: 1 − 2 + 3 − 4 + …和切萨罗求和 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 1 − 2 + 3 − 4 + …和函数 · 查看更多 »

函数方程

函数方程是含有未知函数的方程。函数方程可以有一个解,可以无解,也可以有多个解,甚至可以有无穷多个解。.

新!!: 1 − 2 + 3 − 4 + …和函数方程 · 查看更多 »

等于

数学上,两个数学对象是相等的,若他们在各个方面都相同。这就定义了一个二元谓词等于,写作“.

新!!: 1 − 2 + 3 − 4 + …和等于 · 查看更多 »

算术平均数

算术平均数(Arithmetic mean)是表征数据集中趋势的一个统计指标。 它是一组数据之和,除以这组数据个数/項数。 算术平均数在统计学上的优点,就是它较中位数、众数更少受到随机因素影响, 缺点是它更容易受到极端值影响。 计算公式为: 在统计学中,对样本的平均值用 \bar 表示,对母体数据的平均值用 \mu 表示。 樣本平均數可作為母體平均數的一個不偏估計式.

新!!: 1 − 2 + 3 − 4 + …和算术平均数 · 查看更多 »

線性泛函

在線性代數中,線性泛函是指由向量空間到對應純量域的線性映射。在 \mathbbR^n ,若向量空間的向量以列向量表示;線性泛函則會以行向量表示,在向量上的作用則為它們的矩陣積。一般地,如果 V 是域 k 上的向量空間,線性泛函 f 是一个从 V 到 k 的函数,它有以下的线性特性: 所有從 V 到 k 的線性泛函集合, 記為 \operatorname_k(V,k), 本身即為一向量空間,稱為 V 的 (代數)對偶空間。.

新!!: 1 − 2 + 3 − 4 + …和線性泛函 · 查看更多 »

约翰·贝兹

#重定向 約翰·拜艾茲.

新!!: 1 − 2 + 3 − 4 + …和约翰·贝兹 · 查看更多 »

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

新!!: 1 − 2 + 3 − 4 + …和级数 · 查看更多 »

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

新!!: 1 − 2 + 3 − 4 + …和绝对值 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 1 − 2 + 3 − 4 + …和物理学 · 查看更多 »

狄利克雷级数

在数学中,狄利克雷级数是如下形式的无穷级数: 其中s是一个复数,an是一个复数列。 狄利克雷级数在解析数论中有重要的地位。黎曼ζ函数和狄利克雷L函数都可以用狄利克雷级数来定义。有猜测所有的狄利克雷级数组成塞尔伯格类函数都满足广义黎曼猜想。狄利克雷级数的名称来源于数学家約翰·彼得·狄利克雷。.

新!!: 1 − 2 + 3 − 4 + …和狄利克雷级数 · 查看更多 »

狄利克雷η函数

在数学的解析数论领域,狄利克雷η函数定义为: 其中 ζ 是黎曼ζ函數。但η函数也用常来定义黎曼ζ函數。 对实部为正数的复数s,也可定义为狄利克雷级数表达式形式: 表达式仅当实部为正数时收敛。对任意复数,该表达式是一个阿贝尔和,可定义为一个整函数,并由此可知ζ函數是一个极点在s.

新!!: 1 − 2 + 3 − 4 + …和狄利克雷η函数 · 查看更多 »

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

新!!: 1 − 2 + 3 − 4 + …和萊昂哈德·歐拉 · 查看更多 »

項測試

n項測試(the n-th term test for divergence)是數學上測試無窮級數是否發散的一個方式Kaczor p.336。.

新!!: 1 − 2 + 3 − 4 + …和項測試 · 查看更多 »

黎曼积分

在实分析中,由黎曼创立的黎曼积分(Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。.

新!!: 1 − 2 + 3 − 4 + …和黎曼积分 · 查看更多 »

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

新!!: 1 − 2 + 3 − 4 + …和黎曼ζ函數 · 查看更多 »

量子諧振子

在量子力學裏,量子諧振子(quantum harmonic oscillator)是古典諧振子的延伸。其為量子力學中數個重要的模型系統中的一者,因為一任意勢在穩定平衡點附近可以用諧振子勢來近似。此外,其也是少數幾個存在簡單解析解的量子系統。量子諧振子可用來近似描述分子振動。.

新!!: 1 − 2 + 3 − 4 + …和量子諧振子 · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

新!!: 1 − 2 + 3 − 4 + …和自然数 · 查看更多 »

柯西乘积

在数学上,以法国数学家奧古斯丁·路易·柯西命名的柯西乘积,是指两组数列a_n, b_n的离散卷积。 该数列乘积被认为是自然数R的半群环的元素。.

新!!: 1 − 2 + 3 − 4 + …和柯西乘积 · 查看更多 »

恩纳斯托·切萨罗

恩纳斯托·切萨罗(Ernesto Cesàro,),意大利数学家,出生于那不勒斯。切萨罗的贡献主要集中在微分几何方面,因为在发散级数领域提出切萨罗平均和切萨罗求和而闻名。.

新!!: 1 − 2 + 3 − 4 + …和恩纳斯托·切萨罗 · 查看更多 »

格蘭迪級數

格蘭迪級數(Grandi's series),即1 − 1 + 1 − 1 + …,是在1703年由意大利數學家發表的,後來荷蘭數學家丹尼爾·伯努利和瑞士數學家萊昂哈德·歐拉等人也都曾研究過它。格蘭迪級數寫作 \sum_^ (-1)^n 它是一個發散級數,也因此在一般情況下,這個無窮級數是沒有和的。但若對该發散級數進行一些特別的求和處理時,就會有特定的“和”出現。格蘭迪級數的歐拉和和切薩羅和均為 \frac。 格蘭迪級數与级数1 − 2 + 3 − 4 + …有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了,他在巴塞尔问题上所做的工作,同时也引出了现在所知的狄利克雷η函数和黎曼ζ函数。.

新!!: 1 − 2 + 3 − 4 + …和格蘭迪級數 · 查看更多 »

極限 (數列)

極限,即為一個數列\,使得\lim_a_n.

新!!: 1 − 2 + 3 − 4 + …和極限 (數列) · 查看更多 »

正整數

正整數,在数学中是指大於0的整數。正整數是正数与整数的交集。和整數一样,正整數也是一個可數的無限集合。這個集合在数学上通常用粗體Z+或\mathbb^+来表示。在数论中,正整數也可稱為自然数,即1、2、3……;但在集合论和计算机科学中,自然数则通常是指非负整数,即正整數与0的 集合。.

新!!: 1 − 2 + 3 − 4 + …和正整數 · 查看更多 »

求和

#重定向 求和符号.

新!!: 1 − 2 + 3 − 4 + …和求和 · 查看更多 »

求和法

#重定向 发散级数.

新!!: 1 − 2 + 3 − 4 + …和求和法 · 查看更多 »

泰勒公式

在数学中,泰勒公式(Taylor's Formula)是一个用函数在某点的信息描述其附近取值的公式。這個公式來自於微積分的泰勒定理(Taylor's theorem),泰勒定理描述了一個可微函數,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值,這個多項式稱為泰勒多項式(Taylor polynomial)。泰勒公式还给出了餘項即这个多项式和实际的函数值之间的偏差。泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了帶有餘項的現在形式的泰勒定理。.

新!!: 1 − 2 + 3 − 4 + …和泰勒公式 · 查看更多 »

泰勒级数

在数学中,泰勒级数(Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英國数学家布魯克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。 拉格朗日在1797年之前,最先提出帶有餘項的現在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。开区间(或复平面开片)上,与自身泰勒级数相等的函数称为解析函数。.

新!!: 1 − 2 + 3 − 4 + …和泰勒级数 · 查看更多 »

法语

法語(le français 或 la langue française)属于印欧语系罗曼语族,法語是除英語、西班牙語和阿拉伯語之外最多國家的官方語言也是聯合國工作語言之一,法語也是聯合國、歐盟、北約、奧運會、世貿和國際紅十字會等的官方語言及正式行政語言。法語在11世纪曾是除了中古漢語以外,當時世界上使用人口最多的语言。現時全世界有約一億人将法语作为母语,另有2.8億人使用法语(包括把它作为第二语言的人);这些数字目前仍在增長中,尤其是在非洲大陸。法語被广泛使用,其程度位居世界第二,僅次於英語。法国法语和魁北克法语是世界上最主要的两大法语分支,尽管它们從同一法语方言分化而成,但以两者互相溝通时则会有障礙,这是因為兩者在發音以及少数语法上有所区别。.

新!!: 1 − 2 + 3 − 4 + …和法语 · 查看更多 »

方程求解

數學中的方程求解是指找出哪些值(可能是數、函數、集合)可以使一個方程成立,或是指出這様的解不存在。方程是兩個用等號相連的數學表示式,表示式中有一個或多個未知數,未知數為自由變數,解方程就是要找出未知數要在什麼情形下,才能使等式成立。更準確的說,方程求解不一定是要找出未知數的值,也有可能是將未知數以表示式來表示。方程的解是一組可以符合方程的未知數,也就是說若用方程的解來取代未知數,會使方程變為恆等式。 例如方程的解為,因為若將方程中x取代為,方程會變成恆等式。也可以將y視為未知數,解則為。也可以將x和y都視為未知數,此時會有許多組的解,像是或是等,所有滿足的都是上述方程的解。 依問題的不同,方程求解可能只需要找到一組可以滿足方程的解,也有可能是要找到所有的解()。有時方程會存在許多解,但要找到某種最佳解,這類的問題稱為最佳化問題,找出最佳化問題的解一般不視為方程求解。 有些情形下,方程求解會需要找到解析解,也就是以解析表達式來表達的解。有些情形下,方程求解只需要找到數值解,也就是數值分析的方法求解近似值。許多方程不存在解析解,或是沒有簡單形式的解析解,例如五次方程以及更高次的代數方程,不存在根式解(用有限次的四則運算及根號組合而成的解析解),這是由數學家尼爾斯·阿貝爾證明的。.

新!!: 1 − 2 + 3 − 4 + …和方程求解 · 查看更多 »

悖论

悖論,亦稱為弔詭或詭局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一詞,来自希腊语παράδοξος ,paradoxos,意思是“未预料到的”,“奇怪的”。 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。 paradox其實亦有“似非而是”的解釋。即是用普通常識看上去不正確,但其實是正確或是有可能的。例如“站著比走路更累”。一般常識是走路比站著累,但要一個人例如在公園裡站一個小時,他可能寧願走動一個小時。因為“站著比走路更累”。也例如狹義相對論裡面的雙生子佯謬亦是另外一個例子。 佛法中也有釋迦牟尼佛破外道悖論的例子:如《大智度論》卷一中舉出長爪梵志的例子:長爪梵志提倡一種“一切法不受”的主張,其意思是說他不接受世間一切理論。釋迦牟尼佛就問他:「你接不接受你自己所建立的這個“一切法不受”的理論?」長爪梵志像一匹千里馬一樣有智慧,不必等到鞭子打到身上才起跑,只看到鞭影覺悟了。換句話說,當釋迦牟尼佛提出這個問題的時候,長爪梵志就知道自己的理論是有問題的──如果接受,那就是“接受一種理論”這與他自己建立的“一切法不受”的主張違背;如果不接受,那他的主張就不存在。就這樣,一方面顯示長爪梵志的理論是一種悖論,另一方面也突顯釋迦牟尼佛以非常簡短的開示就把長爪梵志折服了。.

新!!: 1 − 2 + 3 − 4 + …和悖论 · 查看更多 »

收敛数列

#重定向 極限 (數列).

新!!: 1 − 2 + 3 − 4 + …和收敛数列 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 1 − 2 + 3 − 4 + …和数学 · 查看更多 »

拉格朗日定理

拉格朗日定理可以指:.

新!!: 1 − 2 + 3 − 4 + …和拉格朗日定理 · 查看更多 »

0

0(〇/零)是-1与1之间的整数。0既不是正数也不是负数。0是偶数。在数论中,0不属于自然数;在集合论和计算机科学中,0属于自然数。0在整数、实数和其他的代数結構中都有著單位元這個很重要的性質。.

新!!: 1 − 2 + 3 − 4 + …和0 · 查看更多 »

1 + 2 + 3 + 4 + · · ·

#重定向 1 + 2 + 3 + 4 + ….

新!!: 1 − 2 + 3 − 4 + …和1 + 2 + 3 + 4 + · · · · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »