徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

1 − 2 + 3 − 4 + …和格蘭迪級數

快捷方式: 差异相似杰卡德相似系数参考

1 − 2 + 3 − 4 + …和格蘭迪級數之间的区别

1 − 2 + 3 − 4 + … vs. 格蘭迪級數

在数学中,1 − 2 + 3 − 4 + …表示以由小到大的接续正整數,依次加後又減、減後又加,如此反复所構成的無窮級數。它是交錯級數,若以Σ符号表示前m项之和,可写作: 此无穷级数发散,即其部分和的序列不会趋近于任一有穷极限。也就是說,單從極限的角度看的話,不存在和。不过,在18世纪中期,莱昂哈德·欧拉写出了一个他承认为悖论的等式: 该等式的严谨解释在很久以后才出现。自1890年起,恩纳斯托·切萨罗、埃米尔·博雷尔与其他一些数学家就在研究有哪些定义良好的方法,可以给发散级数賦予广义和「广义和」是指利用一些特殊的方式,計算--发散级数的「和」,由於发散级数不會有一般定義下的和,因此稱為广义和。——其中包含了对欧拉结果的新解释。这些求和法大部分可简单地指定的“和”為1⁄4。切萨罗求和是少数几种不能计算出之和的方法,因为此级数求和需要某个略强的方法——譬如阿贝耳求和。 级数与格蘭迪級數有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了他在巴塞尔问题上所做的工作,同时也引出了我们现在所知的狄利克雷η函数和黎曼ζ函数。. 格蘭迪級數(Grandi's series),即1 − 1 + 1 − 1 + …,是在1703年由意大利數學家發表的,後來荷蘭數學家丹尼爾·伯努利和瑞士數學家萊昂哈德·歐拉等人也都曾研究過它。格蘭迪級數寫作 \sum_^ (-1)^n 它是一個發散級數,也因此在一般情況下,這個無窮級數是沒有和的。但若對该發散級數進行一些特別的求和處理時,就會有特定的“和”出現。格蘭迪級數的歐拉和和切薩羅和均為 \frac。 格蘭迪級數与级数1 − 2 + 3 − 4 + …有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了,他在巴塞尔问题上所做的工作,同时也引出了现在所知的狄利克雷η函数和黎曼ζ函数。.

之间1 − 2 + 3 − 4 + …和格蘭迪級數相似

1 − 2 + 3 − 4 + …和格蘭迪級數有(在联盟百科)8共同点: 巴塞尔问题切萨罗求和狄利克雷级数狄利克雷η函数萊昂哈德·歐拉黎曼ζ函數恩纳斯托·切萨罗方程求解

巴塞尔问题

巴塞尔问题是一个著名的数论问题,这个问题首先由在1644年提出,由莱昂哈德·欧拉在1735年解决。由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题马上就出名了,当时他二十八岁。欧拉把这个问题作了一番推广,他的想法后来被黎曼在1859年的论文《论小于给定大数的质数个数》(On the Number of Primes Less Than a Given Magnitude)中所采用,论文中定义了黎曼ζ函数,并证明了它的一些基本的性质。这个问题是以瑞士的第三大城市巴塞尔命名的,它是欧拉和伯努利家族的家乡。 这个问题是精确计算所有平方数的倒数的和,也就是以下级数的和: \sum_^\infin \frac.

1 − 2 + 3 − 4 + …和巴塞尔问题 · 巴塞尔问题和格蘭迪級數 · 查看更多 »

切萨罗求和

切薩羅求和(Cesàro summation)是由義大利的數學家恩納斯托·切薩羅(Ernesto Cesàro)發明,是計算無窮級數和的方式。若一級數收斂至α,則其切薩羅和存在,其值為 α,而發散級數也可以用切薩羅求和的方式,計算出切薩羅和。.

1 − 2 + 3 − 4 + …和切萨罗求和 · 切萨罗求和和格蘭迪級數 · 查看更多 »

狄利克雷级数

在数学中,狄利克雷级数是如下形式的无穷级数: 其中s是一个复数,an是一个复数列。 狄利克雷级数在解析数论中有重要的地位。黎曼ζ函数和狄利克雷L函数都可以用狄利克雷级数来定义。有猜测所有的狄利克雷级数组成塞尔伯格类函数都满足广义黎曼猜想。狄利克雷级数的名称来源于数学家約翰·彼得·狄利克雷。.

1 − 2 + 3 − 4 + …和狄利克雷级数 · 格蘭迪級數和狄利克雷级数 · 查看更多 »

狄利克雷η函数

在数学的解析数论领域,狄利克雷η函数定义为: 其中 ζ 是黎曼ζ函數。但η函数也用常来定义黎曼ζ函數。 对实部为正数的复数s,也可定义为狄利克雷级数表达式形式: 表达式仅当实部为正数时收敛。对任意复数,该表达式是一个阿贝尔和,可定义为一个整函数,并由此可知ζ函數是一个极点在s.

1 − 2 + 3 − 4 + …和狄利克雷η函数 · 格蘭迪級數和狄利克雷η函数 · 查看更多 »

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

1 − 2 + 3 − 4 + …和萊昂哈德·歐拉 · 格蘭迪級數和萊昂哈德·歐拉 · 查看更多 »

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

1 − 2 + 3 − 4 + …和黎曼ζ函數 · 格蘭迪級數和黎曼ζ函數 · 查看更多 »

恩纳斯托·切萨罗

恩纳斯托·切萨罗(Ernesto Cesàro,),意大利数学家,出生于那不勒斯。切萨罗的贡献主要集中在微分几何方面,因为在发散级数领域提出切萨罗平均和切萨罗求和而闻名。.

1 − 2 + 3 − 4 + …和恩纳斯托·切萨罗 · 恩纳斯托·切萨罗和格蘭迪級數 · 查看更多 »

方程求解

數學中的方程求解是指找出哪些值(可能是數、函數、集合)可以使一個方程成立,或是指出這様的解不存在。方程是兩個用等號相連的數學表示式,表示式中有一個或多個未知數,未知數為自由變數,解方程就是要找出未知數要在什麼情形下,才能使等式成立。更準確的說,方程求解不一定是要找出未知數的值,也有可能是將未知數以表示式來表示。方程的解是一組可以符合方程的未知數,也就是說若用方程的解來取代未知數,會使方程變為恆等式。 例如方程的解為,因為若將方程中x取代為,方程會變成恆等式。也可以將y視為未知數,解則為。也可以將x和y都視為未知數,此時會有許多組的解,像是或是等,所有滿足的都是上述方程的解。 依問題的不同,方程求解可能只需要找到一組可以滿足方程的解,也有可能是要找到所有的解()。有時方程會存在許多解,但要找到某種最佳解,這類的問題稱為最佳化問題,找出最佳化問題的解一般不視為方程求解。 有些情形下,方程求解會需要找到解析解,也就是以解析表達式來表達的解。有些情形下,方程求解只需要找到數值解,也就是數值分析的方法求解近似值。許多方程不存在解析解,或是沒有簡單形式的解析解,例如五次方程以及更高次的代數方程,不存在根式解(用有限次的四則運算及根號組合而成的解析解),這是由數學家尼爾斯·阿貝爾證明的。.

1 − 2 + 3 − 4 + …和方程求解 · 方程求解和格蘭迪級數 · 查看更多 »

上面的列表回答下列问题

1 − 2 + 3 − 4 + …和格蘭迪級數之间的比较

1 − 2 + 3 − 4 + …有52个关系,而格蘭迪級數有27个。由于它们的共同之处8,杰卡德指数为10.13% = 8 / (52 + 27)。

参考

本文介绍1 − 2 + 3 − 4 + …和格蘭迪級數之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »