徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

里奇平坦流形

指数 里奇平坦流形

數學中,里奇平坦流形(Ricci-flat manifold)是里奇張量為零的黎曼流形。在物理學中,它們代表了愛因斯坦方程在任何維數之黎曼流形且宇宙常數為零的類比,其所具有的真空解。里奇平坦流形是愛因斯坦流形的特殊情形,後者的宇宙常數並不需要為零。 里奇平坦流形在一般情形下,被限制屬於和乐群。其中重要的例子包括有卡拉比–丘流形與超凱勒流形。 Category:黎曼幾何 Category:流形.

6 关系: 卡拉比-丘流形宇宙學常數物理学黎曼流形里奇曲率張量数学

卡拉比-丘流形

卡拉比–丘流形(Calabi–Yau manifold)在数学上是一个的第一陈类为0的紧致n维凯勒流形(Kähler manifolds),也叫做卡拉比–丘 n-流形。数学家卡拉比(Eugenio Calabi)在1957年猜想所有这种流形(对于每个凯勒类)有一个里奇平坦的度量,该猜想于1977年被丘成桐证明,成为丘定理(Yau's theorem)。因此,卡拉比–丘流形也可定义为「紧里奇平坦卡拉比流形」(compact Ricci-flat Kähler manifold)。 也可以定义卡拉比–丘n流形为有一个SU(n)和樂(holonomy)的流形。再一个等价的定义是流形有一个全局非0的全纯(n,0)-形式。.

新!!: 里奇平坦流形和卡拉比-丘流形 · 查看更多 »

宇宙學常數

宇宙學常數(cosmological constant)或宇宙常數由阿爾伯特·愛因斯坦首先提出,現前常標為希臘文「Λ」,與度規張量相乘後成為宇宙常數項\Lambda g_而添加在愛因斯坦方程式中,使方程式能有靜態宇宙的解。若不加上此項,則廣義相對論所得原版本的愛因斯坦方程式會得到動態宇宙的結果。 這是出於愛因斯坦對靜態宇宙的哲學信念。在哈伯提出膨脹宇宙的天文觀測結果哈伯紅移後,愛因斯坦放棄宇宙學常數,認為是他「一生中最大的錯誤」。 但是1998年天文物理與宇宙學對宇宙加速膨脹的研究則讓宇宙學常數死而復生,認為雖然其值很小,但可能不為零。宇宙常數項的貢獻被認為與暗能量有關。.

新!!: 里奇平坦流形和宇宙學常數 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 里奇平坦流形和物理学 · 查看更多 »

黎曼流形

黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.

新!!: 里奇平坦流形和黎曼流形 · 查看更多 »

里奇曲率張量

在微分幾何中,類似度量張量,里奇張量也是一個在黎曼流形每點的切空間上的對稱雙線性形式。以格雷戈里奥·里奇-库尔巴斯托罗(Gregorio Ricci-Curbastro)為名的里奇張量或里奇曲率張量(Ricci curvature tensor)。提供了一個數據去描述給定的黎曼度規(Riemannian metric)所決定的體積究竟偏離尋常歐幾里得 n- 空間多少的程度。粗略地講,里奇張量是用來描述「體積扭曲」的一個值;也就是說,它指出了n-維流形中給定區域之n-維體積,其和歐幾里得n-空間中與其相當之區域的體積差異程度。更精確的描述請見下文「直接的幾何意義」段落。.

新!!: 里奇平坦流形和里奇曲率張量 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 里奇平坦流形和数学 · 查看更多 »

重定向到这里:

里奇平直流形

传出传入
嘿!我们在Facebook上吧! »