我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

退行速度

指数 退行速度

退行速度是天文學上描述天體遠離而去的速度,通常是將地球當成靜止不動的。.

目录

  1. 7 关系: 地球哈勃定律紅移观测者電磁輻射星系慣性

  2. 天文小作品

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

查看 退行速度和地球

哈勃定律

在物理宇宙學裏,哈伯定律(Hubble's law)表明,來自遙遠星系光線的紅移與它們的距離成正比。這條定律是因證實者哈伯而命名。它被認為是的第一個觀察依據,和今天經常被援引作為支持大爆炸的一個重要證據。 在宇宙学研究中,哈伯定律成为宇宙膨胀理论的基础,以方程式表示 其中,v 是由紅移現象測得的星系遠離速率,H_0 是哈伯常數,D是星系與觀察者之間的距離。 2012年12月20日,美國國家航空暨太空總署的威爾金森微波各向異性探測器實驗團隊宣布,哈伯常數為69.32 ± 0.80 (km/s)/Mpc。 2013年3月21日,從普朗克卫星觀測獲得的数据,哈伯常數為67.80 ± 0.77 千米每秒每百万秒差距(67.80 ± 0.77 km/s/Mpc)。,table 9.

查看 退行速度和哈勃定律

紅移

在物理學领域,紅移(Redshift)是指電磁輻射由於某种原因導致波长增加、頻率降低的现象,在可見光波段,表现为光谱的谱线朝紅端移動了一段距离。相反的,電磁輻射的波長变短、频率升高的现象则被稱為藍移。紅移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步加深,任何电磁辐射的波長增加都可以称为紅移。对於波长较短的γ射線、X-射線和紫外線等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对於波长较长的紅外線、微波和無線電波等波段,尽管波长增加實際上是遠離红光波段,这种现象还是被称为“红移”。 當光源移動遠離觀測者时,观测者观察到的电磁波谱會發生紅移,这类似于聲波因为都卜勒效應造成的頻率變化。這樣的紅移现象在日常生活中有很多應用,例如都卜勒雷達、雷達槍,在天體光譜學裏,人们使用都卜勒紅移測量天體的物理行為 。 另一種紅移稱為宇宙學紅移,其機制為。這機制說明了在遙遠的星系、類星體,星系間的氣體雲的光谱中觀察到的红移现象,其紅移增加的比例與距離成正比。這種關係为宇宙膨脹的观点提供了有力的支持,比如大霹靂宇宙模型。 另一種形式的紅移是引力紅移,其為一種相對論性效應,當電磁輻射傳播遠離引力場時會觀測到這種效應;反過來說,當電磁輻射傳播接近引力場時會觀測到引力藍移,其波長變短、频率升高。 红移的大小由“红移值”衡量,红移值用Z表示,定义为: 这裡\lambda_0\,是谱线原先的波长,\lambda\,是观测到的波长,f_0\,是谱线原先的频率,f\,是观测到的频率。.

查看 退行速度和紅移

观测者

观测者(英文:Observer)。是物理学中,理想化的(通常是假想的)测量相关物理性质的人或仪器。 在相对论中,观测者有特别的意义,由于信息的传播是有速度的,那么某一时刻能够影响到一个观测者的事件是有一定范围的,此时观测者能影响到的事件也是有一定范围的,这个范围称为光锥。对于此时的观测者来说,光锥之外的宇宙是没有意义的。 在狭义相对论中 观测者更多是指惯性参考系。有时也会指代任意非惯性参考系;特殊情况下,匀加速参照系(Rindler frame)有时称为「加速观测者」。与此同时惯性参考系也许会称为「惯性观测者」来避免混淆。注意这种用法扩展了「观测者」的本意。参考系固有的非局部构造,覆盖整个时空或者重要部分;因此说观测者(在狭义相对论中)有具体位置是毫无意义的。同样,惯性观测者不可再进行加速,加速观测者也不可停止加速。 Category:狹義相對論.

查看 退行速度和观测者

電磁輻射

#重定向 电磁辐射.

查看 退行速度和電磁輻射

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

查看 退行速度和星系

慣性

在物理學裡,慣性()是物體抵抗其運動狀態被改變的性質。物體的慣性可以用其質量來衡量,質量越大,慣性也越大。艾薩克·牛頓在鉅著《自然哲學的數學原理》裡定義慣性為: 更具體而言,牛頓第一定律表明,存在某些參考系,在其中,不受外力的物體都保持靜止或等速直線運動。也就是說,從某些参考系觀察,假若施加於物體的淨外力為零,則物體運動速度的大小與方向恒定。慣性定義為,牛頓第一定律中的物體具有保持原來運動狀態的性質。滿足牛頓第一定律的參考系,稱為慣性參考系。稍後會有關於慣性參考系的更詳細論述。 慣性原理是經典力學的基礎原理。很多學者認為慣性原理就是牛頓第一定律。遵守這原理,物體會持續地以現有速度移動,除非有外力迫使改變其速度。 在地球表面,慣性時常會被摩擦力、空氣阻力等等效應掩蔽,從而促使物體的移動速度變得越來越慢(通常最後會變成靜止狀態)。這現象誤導了許多古代學者,例如,亞里斯多德認為,在宇宙裡,所有物體都有其「自然位置」──處於完美狀態的位置,物體會固定不動於其自然位置,只有當外力施加時,物體才會移動。.

查看 退行速度和慣性

另见

天文小作品