我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

行波反应堆

指数 行波反应堆

行波反應堆(TWR, Traveling wave reactor)是一種通過嬗變將不可裂變材料轉變為可裂變核材料,接下來利用這些材料的裂變來發電的一種反應堆設計。行波反應堆屬於钠冷快中子反应堆,在設計上屬於第四代反應堆。和其他快中子反應堆和增殖反應堆不同的是,行波反應堆可以直接使用貧化鈾、天然鈾、釷和輕水堆產生的核廢料作為燃料。理論上,行波反應堆甚至可以使用其自身產生的乏燃料作為燃料。如果行波反應堆普及,就可以免除鈾濃縮和乏燃料再處理等環節,降低核能的成本和環境風險。在行波反應堆中,裂變集中發生在裂變區,而不是整個堆芯。這個裂變區會從堆芯中心向外擴散,就像水波一樣向外運動,行波反應堆由此得名。理論上,一次裝料后,行波反應堆可以自持運行數十年,不需要添加新燃料,也不需要清除乏燃料。然而建造一座行波反应堆非常困难。目前尚未有這種反應堆投入商業運行。.

目录

  1. 23 关系: 反應棒中子温度乏核燃料快中子增殖反应堆化石燃料全球变暖第四代反應堆習近平貧鈾鈾-235鈾-238钠冷快中子反应堆釷燃料發電金属核武器核武器擴散比尔·盖茨泰拉能源濃縮鈾放射性废料

  2. 核電反應堆類型

反應棒

反应棒又称反应堆燃料棒(fuel rod),是反应堆中核裂变材料的来源。多为较低纯度的浓缩铀,製作成一顆顆燃料丸或燃料柱再封裝金屬外殼成為燃料棒。視反應爐型式的不同,通常會以多根燃料棒組成一組燃料束(fuel bundle)或燃料組件(fuel assembly)。 被裝進反应堆后,这些反应棒会在反应堆中待上大约3年,在这3年中,它们会消耗自身包含的铀的3%,在这之后,它们会被送到乏燃料水池,在这里,核裂变中产生的一些半衰期短的同位素会衰变掉。在这里待上大约5年后,这些反应棒的放射性会降低到安全范围之内,之后就会被装进干式贮存桶永久储藏,等待未來進行深地質處置或被送到再处理工厂进行再处理。 使用铀作为燃料的反应堆中,裂变产物中包括钚,一种可以制造核武器的裂变材料,因此反应棒的再处理有时会引起国际争议。.

查看 行波反应堆和反應棒

中子温度

中子温度,亦称中子能量,指的是自由中子的动能,单位通常是电子伏特。由于中子经过不同温度的减速剂会有不同的速度分布,一般可以使用温度来衡量中子的动能。中子的能量分布基本上符合热运动的麦克斯韦-玻尔兹曼分布。定性的来说,温度越高,自由中子的动能也越高。中子的动能、速度和波长之间满足物质波的德布罗意公式。.

查看 行波反应堆和中子温度

乏核燃料

乏核燃料是经受过辐射照射、使用過的核燃料,通常是由核电站的核反应堆产生。这种燃料无法繼續维持核反应。乏核燃料中仍然包含有大量的放射性元素,因此具有放射性,如果不加以妥善处理,会严重影响环境与接触它们的人的健康。.

查看 行波反应堆和乏核燃料

快中子增殖反应堆

快中子增殖反應堆(Fast breeder reactor),或稱快中子滋生反應堆、快滋生反應堆、快堆等,是一種核子反應器,核燃料和一顆快中子在核分裂後產生更多的中子,且利用增殖性材料吸收快中子後形成可裂变物质,產生的燃料多於消耗的燃料。另外也有利用熱中子進行滋生反應的「熱滋生反應器」。.

查看 行波反应堆和快中子增殖反应堆

化石燃料

化石燃料,亦稱礦石燃料,是一種碳氫化合物或其衍生物,包括煤炭、石油和天然氣等天然資源。其中原油通过石油化学工业精炼生产得到的产品也称为石化燃料。化石燃料之间的差異很大,可以從低碳氫比的揮發性物質(如甲烷)、到液態的石油到沒有揮發性的无烟煤。化石燃料的運用使得工業大規模發展,从而替代了历史上的水車。 當發電的時候,在燃燒化石燃料的過程中會產生能量,從而推動渦輪機產生動力。舊式的發電機是使用蒸汽來推動渦輪機。現時,很多發電站都已採用燃氣渦輪引擎,那是利用燃氣直接來推動渦輪機。 化石燃料仍是目前主要能源來源之一,但是化石燃料屬於耗竭性能源,需要數百萬年才能生成,而消耗速度又遠超過生成速度。因此化石燃料的供應量不足會造成能源危機。特別是從石油提煉出來的汽油影響最大。20世紀下半葉就因為石油供應不足而出現三次石油危機。現時,全球正趨向發展可再生能源,這可以幫助增加全球的能源所需。 每年燃燒化石燃料產生的二氧化碳約有213億噸,但自然界只能吸收其中的一半,因此每年在大氣中約增加107億噸的二氧化碳。二氧化碳是溫室氣體的主来源之一,因此也是加快全球變暖的因素之一。此外,生物燃料中的二氧化碳成份是來自大氣層,因此發展生物燃料可以減少在大氣層上的二氧化碳,從而減低溫室效應。.

查看 行波反应堆和化石燃料

全球变暖

--,或稱--,指的是在一段時間中,地球的大气和海洋因溫室效應而造成溫度上升的氣候變化,為公地悲劇之一,而其所造成的效應稱之為全球变暖效应。 目前學界已有共識認為人為活動導致全球暖化是事實,「全球暖化存在,且人類活動極有可能是導致半個世紀的全球暖化現象的主要原因」這點,在學術界當中是沒有爭議且有著強烈的共識的,超過97%的氣候科學家認為「人類活動極有可能是導致近半個世紀的全球暖化現象的主要原因」。 在1906至2005年間,全球平均接近地面的大氣層溫度上升了0.74攝氏度。普遍來說,科學界發現過去50年可觀察的氣候改變的速度是過去100年的雙倍,因此推論該時期的氣候改變是由人類活動所推動。 二氧化碳和其他溫室氣體的含量不斷增加。正是全球变暖的人為因素中主要部分。據資料顯示 ,大氣中一氧化二氮(N2O)的含量比18世紀中葉(1750年)工業革命開始從275ppbv增加到310ppbv,二氧化碳(CO2)的含量從280ppmv增加到360ppmv,甲烷(CH4)從700ppbv增加到1720ppbv,這些增長趨勢主要緣于人類的活動。燃燒化石燃料、清理林木和耕作等都增強了溫室效應。自從1950年,太陽輻射的變化與火山活動所產生的变暖效果比人類所排放的溫室氣體的還要高。這些結論得到30多個來自八大工業國家的研究團體所確認。 美國賓州大學的科学家在夏威夷的茂納羅亞峰上设立4个7米高和一个27米高的采样塔,每小时采样4次,分析二氧化碳的变化情况。(如右图) 目前全球平均温度的变化,二氧化碳濃度的變化與氣溫上升,實際上並沒有直接的關係,从工业革命开始,二氧化碳的含量急剧增加,虽然植物的光合作用吸收了很大一部分二氧化碳,海洋也溶解一部分二氧化碳并固定成碳酸鈣,但空气中二氧化碳的含量还是逐步增加。根据美国弗吉尼亚大学和英国東安格-里-亞大學联合研究的结果,在进入20世纪后半叶,全球温度上升的趋势非常明显,温度变化情况见下图。 全球性的溫度增量带来包括海平面上升和降雨量及降雪量在數額上和樣式上的變化。這些變動也許促使極端氣候事件更強更頻繁,譬如洪水、旱災、熱浪、颶風和龍捲風。除此之外,還有其它後果,包括更高或更低的農產量、冰河撤退、夏天時河流流量減少、物種消失及疾病肆虐。預計全球变暖所因致事件的數量和強度;但是很難把這些特殊事件連接到全球变暖。因為二氧化碳在大氣中有50年到200年的壽命,很多研究集中在2100年或之前的時間。但是無論氣候變化的成因或結果為何,許多人是非常關心的;對於應付預言後果的政策應該如何實施,引起了全球廣泛的政治爭論、公開辯論及各種學術研究。這些政策討論重點是應該減少還是扭轉未來的暖化及怎麼應付預計的後果。.

查看 行波反应堆和全球变暖

第四代反應堆

四代反應爐(Generation IV reactors,縮寫:Gen IV)是一系列研究中的理論反應爐設計。除了,多數方案被認為在2030-2040年前不可能付諸商業運轉。現時商轉中的反應爐多是第二代反應爐與只有十来个第三代的系統運行(2014年),而大部分的第一代系統已退役一段时间。.

查看 行波反应堆和第四代反應堆

習近平

#重定向 习近平.

查看 行波反应堆和習近平

貧鈾

貧鈾,也稱為貧化鈾或耗乏鈾或衰變鈾等等,英文簡寫為DU,是一種主要由鈾-238構成的物質,為核燃料製程中的的副產物,故也是一種核廢料。自然界中的鈾,含有約99.27%的鈾-238、0.72%的鈾-235及0.0055%的鈾-234,鈾-235可用於核子反應爐或核武器中的核裂變反應材料,但必須先將濃度提高成為濃縮鈾才能使用,而在濃縮過程中所排出鈾-235濃度更低的廢料部份,就稱為貧鈾,其中鈾-235和鈾-234的濃度大約只有天然鈾的三分之一,放射性則约為天然鈾的60%。也有部分贫铀通过再处理已使用的核燃料生产,但這類貧鈾會含有鈾-236。美国NRC规定鈾-235含量在0.711%以下,美国国防部规定鈾-235含量在0.3%以下,实际使用0.2%以下,分类为贫铀。 貧鈾的密度高達19.1g/cm3,與鎢相近,可作為飛行器的配重塊、放射線療法和工業用放射造影器材的屏蔽物,並且可作為放射性物質所使用的貨箱。軍事上則常用作貧化鈾彈或裝甲,這是因為貧鈾能大幅提昇裝甲穿透力或裝甲強度,並且貧鈾彈在命中後另具有攝氏三千度的高溫燒灼效果。 由于贝塔衰变,贫铀存在轫致辐射。 然而使用貧鈾彈會可能導致長期的健康問題,肝、腎、心臟和腦等許多器官都可能受到輻射的影響。由於貧鈾微弱的放射性,所以人們視它為有毒金屬,但毒性較汞等重金屬低。貧鈾粉末可能被吃、喝或吸入人體,貧鈾有一萬年以上的半衰期。由貧鈾彈衝擊物體而爆發時產生的氣膠,可能散佈污染廣大的面積,而被人吸入體內。在2003年美國對伊拉克的攻擊行動中,三週內估計使用了約95萬顆、超過1000噸的貧鈾彈,大部份都在市區。目前暫無決定性資料顯示某些人的健康問題與貧鈾有關聯,但人工培養細胞與實驗室動物的研究已發現貧鈾的慢性效應(長期曝露)造成白血病、基因疾病、神經疾病等的可能性。同時目前無論是南斯拉夫還是伊拉克,這些曾經被使用過貧鈾彈的地區均產生了不同因核輻射引起的各種疾病。.

查看 行波反应堆和貧鈾

鈾-235

鈾235(符号:235U),是鈾的三種同位素之一,當中只有鈾235能夠發生核分裂,引發連鎖核裂變反應,可用作核電及核彈。1935年由加拿大科學家發現。根據國際原子能機構的定義,濃度為3%的鈾235為核電廠發電用低濃縮鈾,高於80%稱作高濃縮鈾,大於90%則叫作為武器級高濃縮鈾。.

查看 行波反应堆和鈾-235

鈾-238

鈾238(符号:238U)是鈾在自然界中最常見的同位素,放射性強度遠低於鈾-235,因此鈾238並不是可裂變物質。但是它可以藉由捕捉慢中子並經過兩次貝塔衰變變成可分裂的。被快中子碰撞後會吸收其能量,使得快中子不能進一連鎖反應。 大約99.284%的天然鈾是鈾238,半衰期為4.468 × 109年,在原子核大於84的放射性元素中,其半衰期特別的長,顯示其擁有特別穩定的原子核。 Category:鈾的同位素.

查看 行波反应堆和鈾-238

鈽(Plutonium,--)是原子序数94、元素符號為Pu的放射性超鈾元素。它屬於錒系金屬,外表呈銀白色,接觸空氣後容易腐蝕、氧化,在表面生成無光澤的二氧化鈽。鈽有六种同素異形體和四種氧化態,易和碳、鹵素、氮、矽起化學反應。鈽暴露在潮濕的空氣中時會產生氧化物和氫化物,其體積最大可膨脹70%,屑狀的钚能自燃。它也是一种放射性毒物,会於骨髓中富集。因此,操作、處理鈽元素具有一定的危險性。 鈽是天然存在於自然界中質量最重的原子。它最穩定的同位素是鈽-244,半衰期約為八千萬年,足夠使鈽以微量存在於自然環境中。 鈽最重要的同位素是鈽-239,半衰期為2.41萬年,常被用來製造核子武器。鈽-239和鈽-241都易于裂變,即它們的原子核可以在慢速熱中子撞擊下產生核分裂,釋出能量、伽馬射線以及中子輻射,從而形成核連鎖反應,並應用在核武器與核反應爐上。 鈽-238的半衰期為88年,並放出α粒子。它是放射性同位素熱電機的熱量來源,常用於驅動太空船。 鈽-240自發裂變的比率很高,容易造成中子通量激增,因而影響了鈽作為核武及反應器燃料的適用性。 分離鈽同位素的過程成本極高又耗時費力,因此鈽的特定同位素時幾乎都是以特殊反應合成。 1940年,格倫·西奧多·西博格和埃德溫·麥克米倫首度在柏克萊加州大學實驗室,以氘撞擊鈾-238而合成鈽元素。麥克米倫將這個新元素取名Pluto(意為冥王星),西博格便開玩笑提議定其元素符號為Pu(音類似英語中表嫌惡時的口語「pew」)。科學家隨後在自然界中發現了微量的鈽。二次大戰時曼哈頓計劃則首度將製造微量鈽元素列為主要任務之一,曼哈頓計劃後來成功研製出第一個原子彈。1945年7月的第一次核試驗「三一试验」,以及第二次、投於長崎市的「胖子原子彈」,都使用了鈽製作內核部分。關於鈽元素的人體輻射實驗研究並在未經受試者同意之下進行,二次大戰期間及戰後都有數次核試驗相關意外,其中有的甚至造成傷亡。核能發電廠核廢料的清除,以及冷戰期間所打造的核武建設在核武裁減後的廢用,都延伸出日後核武擴散以及環境等問題。非陸上核試驗也會釋出殘餘的原子塵,現已依《部分禁止核試驗條約》明令禁止。.

查看 行波反应堆和钚

钍(Thorium,,舊譯作釖、鋀)是原子序数为90的元素,其元素符號為Th,屬锕系元素,具有放射性。其拉丁文名称來自北欧神话的雷神索尔(Thor)。 钍-232会通过吸收慢中子而变成可作核燃料之用的铀-233。钍、铀两种元素是核能发电厂最重要的燃料。.

查看 行波反应堆和钍

钠(Natrium,化学符号:Na)是一种化学元素,它的原子序数是11,相对原子质量为23。鈉单质不會在地球自然界中存在,因為鈉在空氣中會迅速氧化,並與水產生劇烈反應,所以常見於化合物中,元素狀態的鈉通常以特殊物質(如石蠟、煤油)保存,以防與空氣中的水份或氧氣產生化合物。.

查看 行波反应堆和钠

钠冷快中子反应堆

钠冷快中子反应堆(Sodium-cooled Fast Reactor,缩写:SFR),是一種快中子增殖反應爐,以液態鈉做為冷卻劑。位於美國愛達荷州、全世界第一座可發電的反應爐EBR-I即使用液態鈉鉀合金。是目前快中子增殖反應爐的主流,在日本(常陽機和文殊機)法國(狂想曲號、鳳凰號和超級鳳凰號)都曾建造。這種反應爐也是研究中第四代反應爐的形式之一, 在美國阿貢國家實驗室有深入的研究。.

查看 行波反应堆和钠冷快中子反应堆

釷燃料發電

釷元素能否取代鈾、鈽(鈈)等核燃料作發電用途值得關注。葉恭平博士支持釷燃料發電因為釷的蘊藏量較多、燃料裝造較簡易、產生較少核廢料、不易製成武器,而且釷裂變發電較有效率等。 發展一個乾淨及安全的核子動力是一個備受重視的目標Dean, Tim.

查看 行波反应堆和釷燃料發電

金属

金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.

查看 行波反应堆和金属

核武器

--,也叫--或原子武器,簡稱核武,是利用核反应的光热辐射、電磁脈衝、冲击波和感生放射性造成杀伤和破坏作用,以及造成大面积放射性污染,来阻止对方军事行动以达到战略目的的大杀伤力武器。主要包括核分裂武器(第一代核武,通常稱為原子弹)和核融合武器(亦稱為氫彈,分为两級及三級式)。亦有些还在武器内部放入具有感生放射的轻元素,以增大辐射强度扩大污染,或加強中子放射以殺傷人員(如中子弹)。 除此以外,核武器還可以根據用途而細分為戰略核武器及戰術核武器,前者是一般意義上的核武器範疇,為大當量的核武器和遠射程,後者則屬於小當量和近射程。其中,後者可用於戰爭前線。戰術核武器的概念以及發展相對戰略核武器為遲緩,是在第二次世界大战以後多年才逐步形成的,而戰術核武器需要對核能技術的要求亦較高以及複雜,其前提是要擁有戰略核武器。 有紀錄的核武器的研發始於第二次世界大戰前夕,由納粹德國率先提出方案,美國方面的計畫則晚了數個月。但由於當時錯誤的實驗方向與發展,令希特勒認為開發核武器的費用將會過於龐大,加上原先德國有興趣的是核子反應所能提供的能源而並非核武,因此放棄開發核武器。 當1945年納粹德國投降後,大量的德國科學家分散至各國持續研究,進一步幫助了西方國家與蘇聯在核能方面的技術發展。.

查看 行波反应堆和核武器

核武器擴散

核武器擴散是指地球上越來越多國家擁有核武器且核物總數越來越多的狀態,其帶來的政治、軍事、經濟相關變化和問題。垂直扩散指的是一个国家同时增加核武器的种类多样性和数量,例如发生在冷戰時美国和苏联之间;水平扩散指的是以往沒有的国家拥有了核武。.

查看 行波反应堆和核武器擴散

比尔·盖茨

威廉·亨利·盖茨三世(William Henry Gates III,),通稱比爾·蓋茨(Bill Gates),是一名美國著名企業家、投资者、軟件工程師、慈善家。他與保羅·艾倫一起創建微軟公司,曾任微軟董事長、CEO和首席軟件設計師,並持有公司超過8%的普通股,也是公司最大的個人股東。。 1995年到2007年的《福布斯》全球億萬富翁排行榜中,比爾·蓋茨曾經連續13年蟬聯世界首富。2008年6月27日離開微軟公司,並把580億美元個人財產捐到比尔及梅琳达·盖茨基金会。《福布斯》杂志2014年美国富豪排名,比尔·盖茨以812億美元资产重登榜首。 盖茨在2000年1月辞去微软首席执行官。他仍然担任董事长,并为自己创立一个新职位「首席软体架构师」(Chief Software Architect)。2006年6月,盖茨宣布,他将在微软的全职工作转变为兼职工作,他渐渐的转移他的职责。他于2014年2月辞去微软的董事长,同时仍作为技术顾问,協助新任命的首席执行官萨帝亚·纳德拉。 2017年11月当选为中国工程院外籍院士。.

查看 行波反应堆和比尔·盖茨

泰拉能源

泰拉能源(TerraPower)是一家总部设在美国华盛顿州贝尔维尤的核反应堆设计公司。泰拉能源是一种称为行波反应堆(TWR)的快堆核反应堆。不像标准的轻水反应堆,例如以浓缩铀为燃料的压水反应堆或沸水反应堆,行波反应堆使用贫铀替代燃料,在无需更换燃料的条件下预计运行时间40到60年。铀-235裂变的副产品可以重新用于其他行波反应堆反应堆。 2015年9月,泰拉能源与中国核工业集团公司签署协议,在2018年到2025年在位于中国福建省的霞浦县的霞浦核电站建造600 MW的反应堆。 约1150 MW的商业电厂被计划2020代后期发电。.

查看 行波反应堆和泰拉能源

濃縮鈾

浓缩铀(Enriched Uranium),指经过同位素分离处理后,铀235含量超过天然含量的铀金属,与其相对的是贫化铀。.

查看 行波反应堆和濃縮鈾

放射性废料

放射性废料是一种包含放射性物质的废料,一般在如核裂变一类的核反应中产生。事实上,一些不与核工业直接关联的的产业在各自的生产活动中也会排放出一定量的放射性废料。放射性废料按其单位体积或单位质量的放射性强弱,共分为高、中、低三级,其中低放射性廢物占据主要部分,中级与高放射性廢物较少。 一般来说,物质的放射性会随时间的推移而减弱,所以原则上所有放射性废料都可以与外界隔绝一段时间,达到使其组分不再能引起危害的目的。医用放射性物质或工业放射性物质的封存时间一般为几小时至几年,而高级废料则需要封藏上千年。如今,处置这几类放射性废料的主要途径有:.

查看 行波反应堆和放射性废料

另见

核電反應堆類型