徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

藍掉隊星

指数 藍掉隊星

藍掉隊星(Blue stragglers,BSS),或稱藍離散星、吸血鬼恆星,是疏散星團或球狀星團中與其他成員有相同的光度,但表面溫度較高的藍色恆星。因此,在星團的赫羅圖中,它們的位置有別於星團的其他成員。藍掉隊星看似違背了現行恆星演化的標準理論,因為在同時誕生的恆星在赫羅圖上應該很明確的位在同一條曲線上,而由此一位置可以測量出它們原始的質量。因為藍掉隊星偏離了這條曲線,顯示它們在恆星演化中有不同的經歷。 產生的原因還不是很清楚,但主流的假說是它們原本是雙星,經由合併才成為藍掉隊星。兩顆恆星的合併只會創造出一顆質量更大的恆星,這顆恆星的表面溫度會比同年齡的恆星更熱和更亮。如果這種理論是正確的,則藍掉隊星就不會成為恆星演化理論上的問題,合併後的恆星在核心會有更多的氫,使它的行為像較年輕的恆星。有證據支持這種看法,在星團內藍掉隊星的數量明顯的與恆星的密集度有關,越密集處的數量越多,特別是在球狀星團的核心區域。因為在單位體積內的恆星數目越多,碰撞和密接的機會越高,而星團內確實比其他區域更容易發生。 檢驗這種假說的一種方法是研究藍掉隊星中的脈動變星。在星震學中,合併的恆星在脈動上的特性會與一般的恆星有所不同,或許可以測量出其間的差異。儘管在擁擠的區域中經常能找到小光度振幅的藍掉隊星,然而,在缺乏明顯的藍掉隊脈動星下,脈動的測量是非常困難的。 藍掉隊星的自轉迅速,通常都在太陽的75倍以上,質量也是星團中其他成員的2-3倍。最近的研究顯示藍掉隊星的碳和氧比附近區域的其他恆星要少,這意味著一顆恆星的變熱和變藍是從軌道上的另一顆恆星攫取物質所導致的;而質量被竊取的恆星會使得原本在深層含有較多碳和氧等重元素的區域被暴露在表面。.

10 关系: 大陵五型變星光度球狀星團疏散星团鳳凰座SX型變星质量雙星恆星演化星震學

大陵五型變星

大陵五變星或大陵五型雙星是以英仙座β星(中國星名為大陵五)為代表的一種食变星。 當溫度較低的恆星由較熱的恆星前方經過時,會遮蔽後方恆星部份或全部的光,這是這對聯星光度的主極小,所以由地球觀察到的聯星亮度會下降;但稍後,當較熱的恆星經過過較冷恆星前方時,也會造成光度的下降,稱為第二極小或次極小。 由週期,或兩次主極小的時間間隔,是非常規律的,可以測量出聯星的公轉週期,這個時間就是兩顆星在軌道上互相環繞一周的時間。大部分的大陵五型變星是相當接近的雙星,它們的週期都不長,通常都在幾天之內。以知週期最短的是玉夫座VZ (0.145天),最長的則是御夫座ε,長達9892天(27年)。 大陵五型聯星系統的伴星是球形或略微橢球形,與所謂的天琴座β變星和大熊座W變星有所不同,這兩種變星的伴星都更為靠近,以致於引力會影響到恆星的外型。 通常,這類型的光度變化在一個視星等左右,已知變化最大的是天鷹座V342,光度變化達到3.4等。伴星可以是任何一種光譜類型,但較明亮的都屬於B、A、F或G型光譜。 大陵五型變星的原型是在1669年被Geminiano Montanari發現的英仙座β星,造成變光的機制則在1782年才被约翰·古德利克正確的予以闡明。 已知的大陵五型變星有數千顆,在2003年版的變星總目錄(gcvs)中已經列出了3,554顆,佔總數的9%,一些有趣的大陵五型變星可以在著名的變星列表中查到。.

新!!: 藍掉隊星和大陵五型變星 · 查看更多 »

光度

光度在科學的不同領域中有不同的意義。.

新!!: 藍掉隊星和光度 · 查看更多 »

球狀星團

球狀星團是外觀呈球形,在軌道上繞著星系核心運行,很像衛星的恆星集團。球狀星團因為被重力緊緊束縛,使得恆星高度的向中心集中,因此外觀呈球形。 球狀星團被發現多在星系的暈之中,遠比在星系盤中被發現的疏散星團擁有更多的恆星,但球狀星團的數量相較疏散星團相對的稀少,在銀河系內迄今只發現大約150個至158個。在銀河系內也許還有10- 20個或更多個尚未被發現。這些球狀星團環繞星系公轉的半徑可以達到40,000秒差距(大約130,000光年)或更遠的距離。越大的星系擁有越多:以仙女座星系為例,可能有500個球狀星團。有些巨大的橢圓星系,特別是位於星系團中心的,像是M87,有多達13,000個球狀星團。 在本星系群擁有足夠質量的星系,都有關聯性的球狀星團,並且幾乎每個曾經探測過的大質量星系都被發現擁有球狀星團的系統。人馬座矮橢球星系和有 爭議的大犬座矮星系似乎正在將它們的球狀星團(像是帕羅馬12)捐贈給銀河系。這表明這個星系的許多球狀星團在之前是如何取得的。 雖然這些球狀團看起來包含一些最初在銀河系產生的恆星,但它們的起源和在銀河系演化中扮演的角色仍不清楚。球狀星團看起來和矮橢圓星系有著顯著的不同,它是母星系形成恆星時的一部分,而不是一個獨立的星系。然而,由天文學家最近的推測顯示,球狀星團和矮橢球可能不能很明確的區分為兩種不同類型的天體。.

新!!: 藍掉隊星和球狀星團 · 查看更多 »

疏散星团

疏散星團,也稱為銀河星團,是由同一個巨分子雲中的數百顆至數千顆恆星形成的集團。在銀河系中發現的疏散星團已經超過1,100個,並且被認為還存在更多。它們環繞著銀河中心運轉時,只靠著微弱的引力吸引維繫在一起,並且很容易因為與其它集團或氣體雲的近距離接觸而瓦解。疏散星團的壽命通常只有幾億年,但少數質量特別大的可以存活數十億年。相較之下,質量更大的球狀星團,擁有更多的恆星,成員彼此間的引力極為強大,可以存活的時間也更長。只有在星系的螺旋臂和不規則星系能發現疏散星團,它們只存在於恆星形成活躍區。 年輕的疏散星團可能仍然在它們形成的分子雲中,照亮它們在分子雲內創造出來的H II區。隨著時間推移,來自星團的輻射壓會將分子雲吹散。通常情況下,在輻射壓將氣體驅散之前,大約有10%質量的氣體能凝聚形成恆星。 疏散星團是研究恆星演化的關鍵天體。因為集團中的恆星成員年齡和化學成分都相仿,它們的特性(像是距離、年齡、金屬量和消光)也比單獨的恆星容易測量。有些疏散星團,像是昴宿星團、畢宿星團或英仙α星團,都可以用裸眼直接看見。還有一些,例如雙星團,則幾乎不用儀器也可以察覺它們的存在,而使用雙筒望遠鏡或光學望遠鏡還可以看見更多,野鴨星團,M11,就是個例子。.

新!!: 藍掉隊星和疏散星团 · 查看更多 »

鳳凰座SX型變星

鳳凰座SX型變星是變星的一種,這些恆星的亮度表現出週期在0.03~0.08天 (0.7~1.9小時) 的脈動變化,它們的光譜類型在A2~F5,星等變化可以達到0.7等。相較於太陽,這些恆星的金屬量較低,這意味著其它元素相較於氫和氦的豐度是較低的。在相同分類的恆星中,它們也有著較高的空間速度和低光度,這些屬性使鳳凰座SX型變星和表兄弟的盾牌座δ型變星有所區別。後著有著較成的週期、高金屬量和較大的變光幅度。 鳳凰座SX型變星主要分出現在球狀星團和銀暈中,變光週期和亮度明顯的有週光關係。已知所有有鳳凰座SX型變星的球狀星團內都有藍掉隊星,這些恆星看起來比在同一個星團中有著相同亮度的主序星更藍 (有著更高的溫度)。.

新!!: 藍掉隊星和鳳凰座SX型變星 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 藍掉隊星和质量 · 查看更多 »

雙星

雙星可以指:.

新!!: 藍掉隊星和雙星 · 查看更多 »

恆星演化

恆星演化是恆星在生命過程中所經歷急遽變化的序列。恆星依據質量,一生的範圍從質量最大的恆星只有幾百萬年,到質量最小的恆星比宇宙年齡還要長的數兆年。右方的表顯示質量和恆星壽命的關聯性。所有的恆星都從通常被稱為星雲或分子雲的氣體和塵埃坍縮中誕生。在幾百萬年的過程中,原恆星達到平衡的狀態,安頓下來成為所謂的主序星。 恆星大部分的生命期都在以核融合產生能量的狀態。最初,主序星在核心將氫融合成氦來產生能量,然後,氦原子核在核心中佔了優勢。像太陽這樣的恆星會從核心開始以一層一層的球殼將氫融合成氦。這個過程會使恆星的大小逐漸增加,通過次巨星的階段,直到達到紅巨星的狀態。質量不少於太陽一半的恆星也可以經由將核心的氢融合成氦來產生能量,質量更重的恆星可以依序以同心圓產生質量更重的元素。像太陽這樣的恆星用盡了核心的燃料之後,其核心會塌縮成為緻密的白矮星,並且外層會被驅離成為行星狀星雲。質量大約是太陽的10倍或更重的恆星,在它缺乏活力的鐵核塌縮成為密度非常高的中子星或黑洞時會爆炸成為超新星。雖然宇宙的年齡還不足以讓質量最低的紅矮星演化到它們生命的尾端,恆星模型認為它們在耗盡核心的氫燃料前會逐漸變亮和變熱,然後成為低質量的白矮星The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer, and Fred C. Adams, The Astrophysical Journal, 482 (June 10, 1997), pp.

新!!: 藍掉隊星和恆星演化 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 藍掉隊星和氢 · 查看更多 »

星震學

星震學(英文:Asteroseismology,來自古希臘文 ἀστήρ,astēr,恆星、σεισμός, seismos,振動、-λογία, -logia,研究。或稱為stellar seismology)是藉由分析恆星震動频谱研究恆星內部結構的學問。在恆星上不同的振動模式會有不同的穿透深度。天文學家利用都卜勒效應觀測天體的震動,研究天體的震動可以了解無法被直接觀測到的天體內部結構,例如氦的豐度以及對流區的深度;其原理就像地震學家通過研究地震波來了解地球和其他行星。 星震學是用來研究恆星內部結構的工具。振動頻率可以提供震波來源和通過區域的物質密度。恆星光譜可以讓天文學家分析恆星組成,因此光譜學和星震學結合可以得知恆星內部結構。星震學可以將恆星的光小幅變化成聲波。.

新!!: 藍掉隊星和星震學 · 查看更多 »

重定向到这里:

蓝掉队星蓝离散星

传出传入
嘿!我们在Facebook上吧! »