徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

细菌萜醇

指数 细菌萜醇

细菌萜醇也称为“细菌异萜醇”,是一种由乳酸杆菌合成的、具有11个萜醇基的脂质。 这种分布于细菌中的聚萜醇是细胞膜多糖的O抗原侧链、细胞壁胞壁质的多醣骨架以及其它荚膜多糖和甘露糖胶的生物合成中间体。 细菌萜的醇磷酸酯在肽聚糖的合成中能跨膜运输N-乙酰胞壁酸(NAM)和N-乙酰葡萄糖胺(NAG)。杆菌肽则能抑制该过程。 在沙门氏杆菌O抗原侧链的生物合成过程中,糖残基依次从GDP-甘露糖、TDP-鼠李糖、UDT-半乳糖分子上转移到细菌萜醇磷酸酯的磷酸残基上。之后,这三个糖基依次转移使多糖链延伸,完成时再把多糖链转移到称为类脂A的受体上。在溶壁微球菌(Micrococcus lysodeikticus)的甘露糖胶合成中,和上面例子示意的过程不同的只是还会生成一个含磷酸残基的中间体(磷酸甘露糖)。.

9 关系: 反应中间体受体多糖细菌生物合成跨膜运输肽聚糖N-乙酰胞壁酸杆菌肽

反应中间体

化学动力学中,反应中间体指在一个非基元反应中反应物转化为产物过程出现的中间物种。通常,反应中间体的寿命很短,浓度相对反应物和产物也很低,因此不出现在最终产物中。 例如,考虑以下反应: 该反应的机理由两步基元反应组成。 物种X*称为反应中间体。.

新!!: 细菌萜醇和反应中间体 · 查看更多 »

受体

受體可以是指:.

新!!: 细菌萜醇和受体 · 查看更多 »

多糖

多醣(Polysaccharide)由多個單醣分子脫水聚合,以糖苷键连接而成,可形成直鏈或者有分支的長鏈,水解后得到相应的單醣和寡糖。例如用来储存能量的淀粉和糖原,以及用来组成生物结构的纤维素和甲壳素。 多糖常常由略带修饰的重复单元构成。由于结构不同,多糖高分子和构成它的单糖分子性质迥异,可能无定形,甚至不溶于水。 自然界中存在的糖类(如葡萄糖、果糖和甘油醛)一般为单糖,通式为(CH2O)n,其中 n\ge 3。与此相对,多糖的通式为为CxH2O)y,其中x通常在200到2500之间。鉴于多糖通常由六碳糖构成,多糖的通式也可写作(C6H10O5)n,其中 40\le n\le 3000,不过多糖和寡糖的分界见仁见智。 多糖是一种重要的生物高分子,在生物中有储存能量和组成结构的作用。淀粉(包括直链淀粉和支链淀粉)是葡萄糖的聚合物,在植物中用来储存能量。动物将能量储存在糖原(也叫动物淀粉)中。糖原也是由葡萄糖聚合而成,但分子中支链更多。动物更活跃,所以利用的是代谢更快的糖原。 纤维素和甲壳素是两种组成生物结构的多糖。纤维素构成植物的细胞壁,可谓地球上数量最多的有机分子。纤维素应用广泛,不仅在造纸业和纺织业中举足轻重,而且是生产人造丝、醋酸纤维素、赛璐珞、硝化纤维等的原料。甲壳素结构和纤维素类似,但支链中含有氮,所以强度更高。其存在于节肢动物的外骨骼和真菌的细胞壁中。甲壳素也有很多作用,比如可用作手术缝合线。.

新!!: 细菌萜醇和多糖 · 查看更多 »

细菌

細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

新!!: 细菌萜醇和细菌 · 查看更多 »

生物合成

生物合成(Biosynthesis)是简单的物质在生物体内经过酶催化后转变为更复杂的物质的多步骤的过程。在生物合成过程中,简单的化合物通过化学反应,转换成其他化合物,或聚合形成大分子。这个过程通常在代谢途径中完成。生物合成有时候在单个细胞的细胞器内进行,而一些需要多种酶催化的合成会在多个细胞的细胞器中进行。生物合成的例子包括脂膜和核苷酸的合成。 生物合成的必要元素包括:先导化合物、化学能(如ATP)和包括辅酶(如NADH和NADPH)在内的催化酶。通过上述元素可以合成生物大分子的基本元素。 一些重要的生物大分子包括由氨基酸通过肽键连接而成的蛋白质和由核苷酸通过磷酸二酯键连接而成的DNA分子。.

新!!: 细菌萜醇和生物合成 · 查看更多 »

跨膜运输

跨膜运输(membrane transport)是细胞生物学中,细胞控制像離子或是小分子的溶質通過生物膜(由磷脂双分子层及蛋白質組成)的許多機制。跨膜运输的調節是透過選擇性滲透的機制(生物膜可以控制不同化學結構的物質進出)。因此有可能一些物質可以跨膜运输,而另外一些物質不行。.

新!!: 细菌萜醇和跨膜运输 · 查看更多 »

肽聚糖

-- -- -- -- -- -- -- -- -- 肽聚醣,存在於真細菌中的革蘭氏陽性菌和革蘭氏陰性菌的細胞壁中。肽聚糖的骨架是由兩种糖衍生物:N-乙酰葡糖胺(GlcNAc)和N-乙酰胞壁酸(MurNAc)交替相連而形成的多糖鏈,這些鏈相互交聯形成肽聚糖(如圖1)。從每個N-乙酰胞壁酸引出一條寡肽鏈,與相鄰多糖鏈上的N-乙酰胞壁酸相連(如圖2),使兩條平行的糖鏈橫向相連構成網絡,這樣構成了整個細菌表面的細胞壁(如圖3)。 一個細菌只被一個胞壁質分子所包圍。胞壁質也可以由幾層由多肽相互交聯的網絡組成。尤其革蘭氏陽性菌的胞壁質具有很多層。並不是所有細菌都具有相同的胞壁質,它們在肽鏈的氨基酸組成上會有不同,但糖鏈骨架總是一樣的。革蘭氏陽性菌的組成區別更大一些。 這層胞壁質的殼可以幫助細菌的細胞質抵抗滲透造成的内壓。如果胞壁質被溶菌酶等物質溶解,細菌將會破裂。在細菌生長時,胞壁質網需要增長,在其中就會形成較大的漏洞。胞壁質的結構單元由細胞質合成後輸出。在細胞膜外的薄壁質網中的糖鏈和多肽鏈被特殊的水解酶局部斷開,再由特殊的酶在其中插入從細胞新輸出的結構單元。這個過程需要不同的酶精確協作。如果這種協作被破壞,則胞壁斷裂后不能癒合,造成細菌破裂。某些抗生素就是通過這個機制殺菌的。.

新!!: 细菌萜醇和肽聚糖 · 查看更多 »

N-乙酰胞壁酸

N-乙酰胞壁酸(N-Acetylmuramic acid,简称为MurNAc或NAM)是N-乙酰葡糖胺与乳酸形成的醚类,化学式C11H19NO8。它与N-乙酰葡糖胺共同为细菌细胞壁的组成单糖。.

新!!: 细菌萜醇和N-乙酰胞壁酸 · 查看更多 »

杆菌肽

桿菌肽(bacitracin)是由枯草桿菌的變種"崔西"之地衣狀菌素有機體所產生的相關环肽之混合物,在1945年首次分離出來。這些肽藉由干擾"肽聚醣合成"及細胞壁而破壞革蘭氏陽性菌及革兰氏阴性菌的微生物體。 桿菌肽,主要是用來作為外用製劑(因為內服使用時,它會引起腎損害) 雖然使用任何抗生素會形成抗生素抗藥性,而杆菌肽局部的外用較少會產生如內服使用的腎損害。然而,如桿菌肽一般的抗生素機制已顯示出會有皮膚刺激的副作用,並且可能減慢癒合的程度。.

新!!: 细菌萜醇和杆菌肽 · 查看更多 »

重定向到这里:

细菌异萜醇

传出传入
嘿!我们在Facebook上吧! »