我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

碳鎓离子

指数 碳鎓离子

碳鎓离子(Carbonium ion)是非经典类型的五配位或四配位碳正离子,比如五配位的离子R5C+。.

目录

  1. 16 关系: 三中心两电子键碳正离子红外光谱美国化学会志甲烷鎓化合物非经典碳正离子超强酸配位数降冰片烷Science (journal)活化能活性中间体星际物质流变分子

  2. 活性中间体
  3. 碳正离子

三中心两电子键

三中心两电子键,又写作3c-2e,是一种缺电子化学键,其中三个原子只靠两个电子成键。三个原子轨道重组后生成三个分子轨道:一个成键轨道、一个非键轨道和一个反键轨道,两个电子进入成键轨道中。这种键型中的成键轨道通常有向三个原子中的两个原子偏向的趋势,而不是均匀分布在其中。以3D图像表现时,三中心两电子键形状类似香蕉,因此也被称为香蕉键。 最簡單的例子是三氫陽離子,其鍵能只有4.5eV,故廣泛存在於星際介質中。 很多硼化合物中都涉及3c-2e,例如乙硼烷B2H6。由于其单体甲硼烷BH3的中心硼原子只有六个价电子,属于缺电子化合物,因此为了达到八隅体,乙硼烷中含有两个三中心两电子的B-H-B键,这两个3c-2e键分布在其他六个原子所形成的平面上下。参见:乙硼烷#结构。 三甲基铝Al(CH3)3中也含有3c-2e键,其分子中一个甲基的碳原子为桥连。有时超共轭也可看作是不对称三中心两电子键的一种类型。 碳正离子重排涉及三中心的过渡态。由于过渡态与碳正离子能量相当,因此这个重排反应几乎不需要活化能,速率很快。 非经典碳正离子中碳的正电荷不只定域在一个原子上,含有三中心两电子键,碳的配位数也因此从3增大到4或5。一个例子是降冰片基正离子。 Category:化学键.

查看 碳鎓离子和三中心两电子键

碳正离子

碳正離子,又稱作碳陽離子,是一個帶有正電的碳原子,其中最簡單的形式為甲基碳正離子CH3+,跟乙基碳陽離子C2H5+。有些碳正離子基會帶有兩個或更多的正電,正電可能會在同一個或是不同的碳上,如乙烯雙陽離子基C2H42+。 直到1970年代早期,碳陽離子都被視為碳離子。在近代的化學中,帶正電的碳原子就視作一個碳陽離子。根據碳原子的價數可以分成兩大類:三價的碳離子(質子化的碳烯),或五到六價的碳離子(質子化的烷類),而命名法為G.A.Olah所發表,碳正離子能藉由分散或离域正電荷來達到穩定。.

查看 碳鎓离子和碳正离子

红外光谱

#重定向 红外光谱学.

查看 碳鎓离子和红外光谱

美国化学会志

《美国化学会志》(Journal of the American Chemical Society,或譯美國化學會期刊、美國化學學會期刊),常用缩写为J.

查看 碳鎓离子和美国化学会志

甲烷

烷(化學式:;英文:Methane),是結構最簡單的烷類,由一個碳原子以及四個氫原子組成。它是最簡單的烴類也是天然氣的主要成分。甲烷在地球上有很高的相對豐度,使之成為很有發展潜力的一種燃料,但在標準狀態下收集以及存儲氣態的甲烷是一個十分有挑戰性的課題。 在自然狀態下,甲烷可以在地底下或者海底找到,而大氣中也含有甲烷,這些甲烷稱為大氣甲烷。在原始大氣中,甲烷是主要成分之一。自1750年以來,地球大氣中的甲烷濃度增加了約150%,造成的全球暖化效應並佔總長壽命輻射以及全球所有溫室氣體的20%(不包括水蒸氣)。在太空中,不少星體的表面和大氣中也有甲烷。 甲烷的結構是由一個碳和四個氫原子透過sp3混成的方式化合而成,並且是所有烴類物質中,含碳量最小,且含氫量最大的碳氫化合物,因此甲烷分子的分子結構是一個正四面體的結構,碳大約位於該正四面體的幾何中心,氫位於其四個頂點,且四個碳氫鍵的鍵的鍵角相等、鍵長等長。標準狀態下的甲烷是一種無色無味的氣體。一些有機物在缺氧情況下分解時所產生的沼氣其實就是甲烷。.

查看 碳鎓离子和甲烷

鎓化合物

鎓化合物(),是由氮族元素(第V族/ 第V A族/15族)、氧族元素(第VI族 /第VI A族/16族)、卤素(第VI族/第VI A族/17族)的单核氢化物被质子化得到的阳离子,以及一些用其他基团(例如:有机自由基、卤素原子、四甲基铵)取代氢原子形成的衍生阳离子;更复杂的衍生物含有多个中心原子,例如亚胺离子和腈鎓离子。(IUPAC的定义参见金色书,其定义有所不同) 它们也被称作鎓离子,这些离子形成的化合物叫作鎓盐。鎓离子带有一个正电荷,双鎓离子带有两个正电荷,依此类推。.

查看 碳鎓离子和鎓化合物

非经典碳正离子

非经典碳正离子或非经典离子是有機化學中的一種碳正离子,含有三中心两电子键,σ键的电荷不只定域在一个原子上,「非经典离子」一詞一開始是由J.D. Roberts在1951年用來描述环丁烷正離子,但此在1949年化學家Saul Winstein就用這種離子解釋降冰片基化合物的反應性。 上述提及的化合物是exo-降冰片基和对溴苯磺酰基的化合物(下圖中標示1)及其endo異構物(下圖中標示3),而其反應是在乙酸中和乙酸鉀進行酰化反应。重要的是在亲核取代反应中二種異構物都產生了相同的生成物(下圖中標示2),而exo构型反應的反應速率是endo构型反應或是環己烷類似反應的350倍。.

查看 碳鎓离子和非经典碳正离子

超强酸

超强酸是指比纯硫酸酸性更强的酸。IUPAC 金皮書 简单的超强酸包括三氟甲磺酸和氟磺酸,它们的酸性都是硫酸的上千倍。在更多的情况下,超强酸不是单一纯净物而是几种化合物的混合物。注意:以前有说法认为王水酸性很强,是超强酸,这种说法基于的是王水能溶解金、铂等金属这个现象,但实际上,这仅仅体现的是王水的强氧化性,而且,就酸性而言,王水不及纯硫酸。 超强酸这一术语由詹姆斯·布莱恩特·科南特于1927年提出,用于表示比通常的无机酸更强的酸。乔治·安德鲁·欧拉因其在碳正离子和超强酸方面的研究获得1994年诺贝尔化学奖。.

查看 碳鎓离子和超强酸

配位数

配位化学中,配位数指化合物中中心原子周围的配位原子个数,此概念首先由阿尔弗雷德·维尔纳在1893年提出。 配位数通常为2-8,也有高达10以上的,如铀和钍的双齿簇状硝酸根离子U(NO3)62−、Th(NO3)62−,及2007年研究的PbHe152+离子(铅的配位数至少为15),2015年研究的CoB16−(配位数为16)。 此概念也可延伸至任何化合物,也就是配位数等同于共价键键连数,例如,可以说甲烷中碳的配位数为4。这种说法通常不计π键。 晶体学中,配位数是晶格中与某一原子相距最近的原子个数。配位数与晶体结构或晶胞类型有关,且决定原子堆积的紧密程度,體心立方堆積中原子配位数为8。最高的配位数为12,存在于六方紧密堆积和立方紧密堆积结构中。.

查看 碳鎓离子和配位数

降冰片烷

降冰片烷 (系统命名为双环庚烷)是一种有机化合物。它是一种饱和的桥环化合物,化学式为C7H12。它是一种熔点为88°C的晶体。它是由环己烷的碳骨架在1,4位桥连一个亚甲基形成的。 这种物质可以由相关的化合物降冰片烯和降冰片二烯的催化氢化来制备。降冰片基碳正离子(C7H11+)是一种很吸引人的非经典碳正离子。.

查看 碳鎓离子和降冰片烷

Science (journal)

#重定向 科学 (期刊).

查看 碳鎓离子和Science (journal)

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

查看 碳鎓离子和氢

活化能

活化能(Activation energy)是一个化学名词,又被称为阈能。这一名词是由阿瑞尼士在1889年引入,用来定义一个化学反应的发生所需要克服的能量障碍。活化能可以用于表示一个化学反应发生所需要的最小能量,因此活化能越高,反应越难进行。反应的活化能通常表示为Ea,单位是千焦耳每摩尔(kJ/mol)。 活化能基本上是表示势垒(有时称为能垒)的高度。.

查看 碳鎓离子和活化能

活性中间体

活性中间体(或中间体/活性中間物)是化学反应過程中產生的存在時間短,能量高,高反應性的分子.當反應產生時會快速的轉變成更穩定的分子。只有在特殊情況下才能將其分離出來並儲存,比如低溫。中間體的存在能夠幫助解釋部分化學反應如何進行。 多數化學反應為多步反應,即反應不會一次完成。且活性中間體高能量,不穩定,容易再反應變成產物。有機化學中,活性常見的活性中間體有碳正离子、碳负离子、自由基和卡宾等。活性中間體通常難以分離,並且只能通過光譜手段觀測。有些分步進行的合成路徑涉及較穩定的中間體,例如格氏試劑的製備,碳負離子、醚和與鎂離子形成絡合物,穩定了碳負離子中間體。此格式試劑再用於各種烷基化反應。 File:Radical metilo--methyl radical.png|自由基 File:Carbene.png|碳烯 File:Methyl cation.svg|碳正離子 File:碳负离子.png|碳負離子 File:Carbyne quartet.png|卡宾 File:1,2-Didehydrobenzol.svg|苯.

查看 碳鎓离子和活性中间体

星际物质

星際物質(缩写为ISM)是存在於星系和恆星之間的物質和輻射場(ISRF)的总称。星際物質在天文物理的準確性中扮演著關鍵性的角色,因為它是介於星系和恆星之間的中間角色。恆星在星際物質密度較高的分子雲中形成,並且經由行星狀星雲、恆星風、和超新星獲得能量和物質的重新補充。換個角度看,恆星和星際物質的相互影響,可以協助測量星系中氣體物質的消耗率,也就是恆星形成的活耀期的時間。 以地球的標準,星際物質是極度稀薄的電漿、氣體、和塵埃,是離子、原子、分子、塵埃、電磁輻射、宇宙射線、和磁場的混合體。物質的成分是99%的氣體和1%的塵埃,充滿在星際間的空間。這種極端稀薄的混合物,典型的密度從每立方公尺只有數百到數億個質點,以太初核合成的結果來看氣體的成分,在數量上應該是90%氫和10%的氦,和其他微跡的「金屬」(以天文學說法,除氢和氦以外的元素都是金屬)。 2013年9月12日,美国航空航天局正式宣布,旅行者1号在2012年8月25日已经达到了星际物质(ISM),使其成为第一个这样做的人造物体。星际等离子体和灰尘会被研究直到任务结束的2025年。.

查看 碳鎓离子和星际物质

流变分子

流变分子(fluxional molecule)是指内部原子在对称的位置上不停交换的一种分子。 因为事实上,从某些方面看,所有的分子都在流变,例如有机化合物中键的旋转,所以流变这个概念主要取决于上下文的关系以及检测的手段。 一般来说,当一个分子的光谱信号因为化学交换作用存在超出海森堡不确定原理所预测的行展宽时,我们说这个分子是一个流变分子。在某些例子中,由于流变的速率很低不能通过光谱检测,此时就会用同位素标记法。 常见的流变分子:.

查看 碳鎓离子和流变分子

另见

活性中间体

碳正离子

亦称为 CH5+。