徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

石珊瑚目

指数 石珊瑚目

石珊瑚目(Scleractinia)是一種水中動物,和海葵很相似,但卻有硬的骨骼,以便將他們固定在光線充足、海水流動快速的地方。牠們最早於三疊紀中期出現,於二疊紀末取代了床板珊瑚及四射珊瑚。大部份珊瑚礁的骨架都是由石珊瑚目所形成。 石珊瑚目可以分為兩類:.

31 关系: 动物古生代多系群三叠纪亚目化石刺胞動物門共生光合作用珊瑚礁珊瑚纲热带蟲黃藻骨骼鹿角珊瑚屬鹿角珊瑚科霰石蜂巢珊瑚屬鈣質藻類腦珊瑚腸繫膜透光帶極地氧气演化浮游生物海葵海洋无性生殖

动物

動物是多細胞真核生命體中的一大類群,統稱為動物界。動物身體的基本形態會隨著其發育而變得固定,通常是在其胚胎發育時,但也有些動物會在其生命中有變態的過程。 大多數動物能自發且獨立地移動探索,只有極少數的動物(如珊瑚)是固定在一點無法移動。動物行為學是研究動物行為的科學,較著名的行為理論為康納德·洛倫茨提出的本能理論。 已發現的動物化石,多是在五億四千萬年前的寒武紀大爆發時的海洋物種。.

新!!: 石珊瑚目和动物 · 查看更多 »

古生代

古生代(Paleozoic,符号PZ)是地质时代中的一个代,开始于同位素年龄542±0.3百万年(Ma),结束于251±0.4Ma。 古生代是显生宙的第一个代,上一个代是元古宙的新元古代,下一个代是中生代。古生代包括寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪、二叠纪。其中寒武纪、奥陶纪、志留纪又合称早古生代,泥盆纪、石炭纪、二叠纪又合称晚古生代。 古生代意為遠古的生物時代,持續约3亿年。對動物界來說,這是一個重要時期。它以一場至今不能完全解釋清楚的進化拉開了寒武紀的序幕。寒武紀動物的活動範圍只限於海洋,但在古生代的廷續下,有些動物的活動轉向乾燥的陸地。古生代後期,爬行動物和類似哺乳動物的動物出現,古生代以迄今所知最大的一次生物絕滅宣吿完結。 早古生代稱為無脊椎動物時代。 晚古生代稱為魚類及兩棲類時代。.

新!!: 石珊瑚目和古生代 · 查看更多 »

多系群

多系群(英语:Polyphyletic group)在生物系統發生學中,是指一個分類群當中的成員,在演化樹上分別位于相隔著其他分支的分支上;也就是說,該分類群並不包含其所有成員的最近共同祖先。一般而言,生物的科學分類會盡量避免使一個正式的分類群成為多系群。 舉例而言,「恆溫動物」(溫血動物)通常指鳥類與哺乳類,但是鳥類與哺乳類的祖先皆為變溫動物(冷血動物),因此哺乳類與鳥類的恆溫性是分別發展出來,也因此「恆溫動物」是一個多系群,且並非一個系統發生學上的分類群。.

新!!: 石珊瑚目和多系群 · 查看更多 »

三叠纪

三叠纪(Triassic)是2.5亿至2亿年前的一个地质时代,它位于二叠纪和侏罗纪之间,是中生代的第一个纪。三叠纪的开始和结束各以一次灭绝事件为标志。虽然这段时间的岩石标志非常明显和清晰,其开始和结束的准确时间却如同其它古远的地质时代无法非常精确地被确定。其误差在正负数百万年。 三叠纪的名称是1834年弗里德里希·冯·阿尔伯提起的,他将在中欧普遍存在的位于白色的石灰岩和黑色的页岩以及其间的红色的三层岩石层统称为三叠纪。今天,三叠纪被分成更多亚层。 标志三叠纪的典型的红色沙岩说明当时的气候比较温暖干燥,没有任何冰川的迹象。今天一般认为当时在两极没有陆地或覆冰。因为当时地球上只有一个大陆,因此当时的海岸线比今天要短得多,三叠纪时遗留下来的近海沉积比较少,只有在西欧比较丰富。因此三叠纪的分层主要是依靠暗礁地带的生物化石来分的。 由于三叠纪以一次灭绝事件开始,因此其生物开始时分化很厉害。六放珊瑚亚纲是这时候出现的,第一批被子植物和第一种会飞的脊椎动物(翼龙)可能也是这时候出现的。.

新!!: 石珊瑚目和三叠纪 · 查看更多 »

亚目

亚目(suborder)是生物分类法中的一级,一般是界于目和科之间,但有時亚目和科之間會再分下目(又譯作次目)。亞目的拉丁文名稱較無固定的字尾。.

新!!: 石珊瑚目和亚目 · 查看更多 »

化石

化石是存留在岩石中的古生物遗体、遗物或生活痕跡,最常見的是骸骨和貝殼等。 化石,古代生物的遗体、遗物或遗迹埋藏在地下变成的跟石头一样的东西。研究化石可以了解生物的演化并能帮助确定地层的年代。保存在地壳的岩石中的古动物或古植物的遗体或表明有遗体存在的证据都谓之化石。從太古宙(34億年前)至全新世(1萬年前)之間都有化石出現。 简单地说,化石就是生活在遥远的过去的生物的遗体或遗迹变成的石头。在漫长的地质年代里,地球上曾经生活过无数的生物,这些生物死亡后的遗体或是生活时遗留下来的痕跡,许多都被当时的泥沙掩埋起来。在随后的岁月中,这些生物遗体中的有机质分解殆尽,坚硬的部分如外壳、骨骼、枝叶等与包围在周围的沉积物一起经过石化变成了石头,但是它们原来的形态、结构(甚至一些细微的内部构造)依然保留着;同样,那些生物生活时留下的痕跡也可以这样保留下来。我们把这些石化了的生物遗体、遗迹就称为化石。从化石中可以看到古代动物、植物的样子,从而可以推断出古代动物、植物的生活情况和生活环境,可以推断出埋藏化石的地层形成的年代和经历的变化,可以看到生物从古到今的变化等等。 其實有很長一段時間,化石作用被認定是單純的「石化」,後來人類才逐漸瞭解化石形成的原理。這是一種非常複雜的過程,是生物、物理、化學三種現象的結合。而化石的形成,需要一些特殊條件:第一,死去的有機體被迅速埋在沙土、淤泥或河泥中而沒有分解。海底和湖底是非常有利的環境,草原和沙漠也不錯。其次,此生物不曾腐壞,而由礦物逐漸取代該生物體的有機物質。最後,化石若要保存幾百萬年不變,必須在石化後,不再經歷任何地質變動。.

新!!: 石珊瑚目和化石 · 查看更多 »

刺胞動物門

刺胞動物門(學名:Cnidaria),又名刺絲胞動物門,是動物界的一個門。除及少數種類為淡水生活外,绝大多数种均为海洋生活,大多数在浅海,有些在深海,现存种类大约有11000种。刺胞動物曾經和櫛水母動物一起分作腔腸動物門,後櫛水母動物獨立成一門。 刺絲胞动物门动物有如下特点:.

新!!: 石珊瑚目和刺胞動物門 · 查看更多 »

共生

共生一詞在英文或是希臘文,字面意義就是「共同」和「生活」,這是兩生物體之間生活在一起的交互作用,甚至包含不相似的生物體之間的吞噬行為。術語「宿主」通常被用來指共生關係中較大的成員,較小者稱為「共生體」。共生依照位置可以分為外共生、內共生,就外共生而言,共生體生活在宿主的表面,包括消化道的內表面或是外分泌腺體的導管;而在內共生,共生體生活在宿主的細胞內或是個體身體內部但是在細胞外都有可能,而20世紀末的科學家研究結果推測,細胞內的葉綠體和粒線體也可能是內共生的形式之一。 美國微生物學家瑪葛莉絲(L.

新!!: 石珊瑚目和共生 · 查看更多 »

光合作用

光合作用是植物、藻類等生產者和某些細菌,利用光能把二氧化碳、水或硫化氢變成碳水化合物。可分为產氧光合作用和不產氧光合作用。 植物之所以称为食物链的生产者,是因为它们能够透过光合作用利用无机物生产有机物并且贮存能量,其能量轉換效率約為6%。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为10%左右。對大多數生物來説,這個過程是賴以生存的關鍵。而地球上的碳氧循环,光合作用是其中最重要的一环。.

新!!: 石珊瑚目和光合作用 · 查看更多 »

珊瑚礁

礁(Coral reef)是石珊瑚目的动物形成的一种结构。这个结构可以大到影响其周围环境的物理和生态条件。在深海和浅海中均有珊瑚礁存在。它们是成千上万的由碳酸钙组成的珊瑚虫的骨骼在数百年至数萬年的生长过程中形成的。珊瑚礁为许多动植物提供了生活环境,其中包括蠕虫、软体动物、海绵、棘皮动物和甲壳动物等,估计占海洋物种数的25%Mulhall M (Spring 2009) Duke Environmental Law and Policy Forum 19:321–351.

新!!: 石珊瑚目和珊瑚礁 · 查看更多 »

珊瑚纲

纲(學名:)是刺胞動物門的一个纲。例如海葵、石珊瑚、红珊瑚和已经绝灭的四射珊瑚、横板珊瑚等,全为海生。.

新!!: 石珊瑚目和珊瑚纲 · 查看更多 »

礁,也称岩礁、礁岩或礁石,指很小的岛,通常被定义为小到无法居住或其上不貯存淡水。.

新!!: 石珊瑚目和礁 · 查看更多 »

热带

热带,(Tropics)是地球上南、北回归线(南、北纬23度26分)之间的地区的总称,无极昼极夜现象。.

新!!: 石珊瑚目和热带 · 查看更多 »

蟲黃藻

蟲黃藻 (Zooxanthella;複數Zooxanthellae,)是海藻的一種,是多種海洋動物和原生動物內的一種一種金黃色細胞間共生菌,特別是珊瑚綱生物,如石珊瑚和熱帶海葵等常見。蟲黃藻大多數都是自營生物,並會為宿主提供易位式還原碳化物,如:葡萄糖、甘油、氨基酸等光合作用的產物 。 蟲黃藻可以為珊瑚礁提供高達90%的能源需求。 作為回報,珊瑚為蟲黃藻提供保護、居所、營養(主要是含有氮和磷的廢料)和恆定供應光合作用所需的二氧化碳。 透過對養分、光線及對過剩細胞的驅逐,珊瑚可以控制蟲黃藻的數量,以免其過度繁殖,這個動作稱為排出共生藻,而周圍的珊瑚有些會繼續接受他們。 蟲黃藻亦有在其他原生動物(例如:foraminiferans和放射蟲)和一些無脊椎動物裡居住。 造礁珊瑚對蟲黃藻非常倚賴,使珊瑚被限制於只能在透光區內生長。.

新!!: 石珊瑚目和蟲黃藻 · 查看更多 »

骨骼

是組成脊椎動物內骨骼的堅硬器官,功能是運動、支持和保護身體,及儲藏礦物質。骨組織是一種密實的結締組織。骨骼由各種不同的形狀組成,有複雜的內在和外在結構,使骨骼在減輕重量的同時能夠保持堅硬。骨骼的成分之一是礦物質化的骨骼組織,其內部是堅硬的蜂巢狀立體結構;其他組織還包括了骨髓、骨膜、神經、血管和軟骨。 人體的骨骼具有支撑身体的作用,其中的硬骨組織和軟骨組織皆是人體結締組織的一部分(而硬骨是結締組織中唯一細胞間質較為堅硬的)。成人有206塊骨頭,而新生儿的有超過270塊。由於諸如頭骨會隨年紀增長而癒合,因此成人骨骼個數少一兩塊或多一兩塊都是正常的。另外,成人有28~32個牙恆齒,多的一般稱為智齒,小孩乳齒20顆。骨与骨之間的間隙一般稱之為關節,除了少部分的不動關節可能以軟骨連接之外,大部分是以韌带连接起來的。關節可分成不動關節、可動關節以及難以被歸類的中間型可稱為少動關節。光有骨骼是不具有讓身體運動的作用的,一般俗稱的運動系統(這種分類其實是不嚴謹的,因為通常骨骼已經可以被稱做骨骼系統,包含軟骨硬骨以及連結骨與骨的韌帶甚至包含關節部分(關節液,因為關節是位置不是細胞更不是組織)。所謂的運動系統,應該是被譯作「超系統」的super system之一,人體一般分為六種super system)還包含了肌肉(骨骼肌)系統。骨骼肌是橫紋肌,可隨意志伸縮,一般一種「動作」是由一對肌肉對兩塊骨頭(一個關節)作拮抗,而肌肉末端以肌腱和經過關節的下一個骨頭連接。其實韌帶和肌腱也是結締組織,所以運動(超)系統中只有肌肉組織跟結締組織,頂多再包含骨髓內的神經及控制肌肉的運動神經屬於神經組織。.

新!!: 石珊瑚目和骨骼 · 查看更多 »

鹿角珊瑚屬

軸孔珊瑚屬中,有超過150個品種,佔全世界已有記錄的石珊瑚品種數目的20%,於印度洋-太平洋一帶水域生長的珊瑚礁,軸孔珊瑚是數量多的珊瑚品種。 分類:珊瑚礁 nl:Acroporidae.

新!!: 石珊瑚目和鹿角珊瑚屬 · 查看更多 »

鹿角珊瑚科

在珊瑚的分類學上,這是一個頗大的科,當中包含四個屬。牠們擁有相同的特徵,就是珊瑚杯細小而且結構簡單。.

新!!: 石珊瑚目和鹿角珊瑚科 · 查看更多 »

霰石

石(Aragonite),又称“文石”,是碳酸鹽礦物。方解石與霰石皆是自然發生並常見的兩種碳酸鈣多形體。霰石的晶格與方解石的晶格不同,所以晶體的形狀也不同。霰石的形狀也許是柱狀晶體或是纖維狀,偶爾地也有分叉鐘乳石狀的,這種形狀叫做鋼花。 霰石的主要產地在秘魯、蒙古、捷克及斯洛伐克。另外,美國卡爾斯巴德霰石礦出產鐘乳石狀的霰石,西班牙阿拉貢礦場出產柱狀霰石晶體(阿拉貢出產的霰石被稱為 Aragonite)。 軟體動物的殼中也有霰石,由於軟體動物殼中的霰石受到強烈的生物控制,因此霰石晶體的形狀與那些無機霰石顯然地不同。有些軟體動物裡,整個殼都是霰石,另外有些軟體動物是 bimineralic 複合殼 (霰石加上方解石)。 海洋中的霰石無機沉澱物叫做海洋水泥和洞穴石灰岩。 古代斑彩螺的化石,霰石真珠質的 nacreous 層數形成彩虹色的石頭,這叫做彩斑菊石。彩斑菊石是因為有霰石及雜質,使它呈現彩虹色,後來被認定為有價值的寶石。 常溫常壓下,霰石的熱力學結構不穩定,並以10^7至10^8年的時間尺度轉化為方解石。 位於太平洋的一個名為雅浦島的小島,霰石甚至被用作石制貨幣的原料,沿用至十九世紀,被稱之為雅浦島石幣。 File:Aragonite 2 Enguidanos.jpg File:Aragonito.jpg file:Aragonito maclas.jpg.

新!!: 石珊瑚目和霰石 · 查看更多 »

蜂巢珊瑚屬

#重定向 蜂巢珊瑚.

新!!: 石珊瑚目和蜂巢珊瑚屬 · 查看更多 »

鈣質

鈣對生物體而言是必需的營養物質,在絕大多數的生物體內皆具有顯著影響生理功能與生物化學功能不可或缺、且極為重要的角色。對於「人」這種生物體來說,鈣當然也是具有不可或缺且顯著影響的角色,往往也因此一般在討論「鈣」的生理生化角色的時候,人們極為容易僅以「鈣在人體中的角色」概括之,或是忽略其在不同生物體之間所扮演之相同、相似、相異的角色。。 本頁面是用以討論鈣質在生物體中的相關用途與機制。 生物必須藉由來自外在環境的供應來補充每日固定的流失,這包含但不只限於攝食,或是單指細胞必須透過許多機制將鈣從環境透過通道蛋白進入細胞中這是因為,.

新!!: 石珊瑚目和鈣質 · 查看更多 »

藻類

藻類,又稱作懸浮植物,包括數種不同類以光合作用產生能量的生物,其中有屬於真核細胞的藻類,也有屬於原核細胞的藻類。它們一般被認為是簡單的植物,並且一些藻類與比較高等的植物有關。雖然其他藻類看似從藍綠藻得到光合作用的能力,但是在演化上有獨立的分支。所有藻類缺乏真的根、莖、葉和其他可在高等植物上發現的組織構造。藻類與細菌和原生動物不同之處,是藻類產生能量的方式為光合自營。 藻類涵蓋了原核生物、原生生物界和植物界。原核生物界中的藻類有生活在無機動物中的原核綠藻。屬於原生生物界中的藻類有裸藻門、甲藻門(或稱渦鞭毛藻)、隱藻門、金黃藻門(包括矽藻等浮游藻)、紅藻門、綠藻門和褐藻門。而生殖構造複雜的輪藻門則屬於植物界。屬於大型藻者一般僅有紅藻門、綠藻門和褐藻門等為大型肉眼可顯而易見之固著性藻類。此類大型藻幾乎99%以上之種類棲息於海水環境中,故大型藻多以海藻稱之。另外,有些肉眼可見的固著性藍綠藻和少數之矽藻嚴格而言應該亦屬於大型藻的範圍。.

新!!: 石珊瑚目和藻類 · 查看更多 »

腦珊瑚

#重定向 有溝珊瑚.

新!!: 石珊瑚目和腦珊瑚 · 查看更多 »

腸繫膜

腸繫膜(Mesenterium、mesentery,)是一種雙層皺摺腹膜,附着于腸子内部及腹腔內壁,作用为固定大小肠于腹腔内。「腸繫膜」(mesentery)一般特指小腸的腸繫膜,而「腸繫膜器官」(mesenteric organ)則是指包括結腸系膜、闌尾繫膜、乙狀结腸繫膜與直腸繫膜聯合在一起的其餘大腸腸繫膜。根据的研究,腸繫膜顯現出解剖學與功能上的特徵,已被提名為一種器官。 傳統教學上,通常將腸繫膜描述為一種分段的結構,並將各段分別命名為升結腸繫膜、橫結腸繫膜與降結腸繫膜,而乙狀結腸系膜、闌尾繫膜與直腸繫膜也被認為分別於後腹壁終止嵌入。2012年,在詳細的顯微鏡與電子顯微鏡實驗下,確認腸繫膜為一種單一且連續性的結構,從開始延伸到直腸繫膜的遠側。此種更為簡化的概念,使得在結腸、直腸手術等不同的面向得到實質性的進展,也對於手術、解剖學與產前發育相關的科學領域有所影響。.

新!!: 石珊瑚目和腸繫膜 · 查看更多 »

透光帶

透光帶(英語:Photic zone、Euphotic Zone、Sunlight zone),又名真光层、表層洋帶或者透光層,是指湖泊或海洋中, 光度足以供浮游植物行光合作用的深度範圍,大約從海表面至水深100〜200 m之間,這層水體受大氣層和陽光的影響,水溫常有明顯的季節性變動,具有基礎生產力,也是各類生物密度最高的水層。 當深度達到200米的時候,可見光已經基本被吸收殆盡,200米以上的這一片“光照區”在海洋學中被稱為透光層。透光層是海洋光合作用的生物的主要聚集區。 透光層的深度受水體水質所影響,在混沌的水體中,透光層可能少於1公尺;在乾淨的水體中卻可達到50公尺。从大气-水界面开始,真光层一直延伸到光线亮度降低到表面亮度1%的区域(亦称作“真光层深度”)。.

新!!: 石珊瑚目和透光帶 · 查看更多 »

極地

地球的極地為於地球兩極附近的地區(緯度66.5°以上)。北極和南極為其中心地;北極的北冰洋和南極的南極大陸皆被大量的冰層包圍。現時位於兩極的海冰正因人為全球暖化而在溶化。.

新!!: 石珊瑚目和極地 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 石珊瑚目和氧气 · 查看更多 »

演化

--(evolution),指的是生物的可遺傳性狀在世代間的改變,操作定義是種群內基因頻率的改變。基因在繁殖過程中,會經複製並傳遞到子代。而基因的突变可使性狀改變,進而造成個體之間的遺傳變異。新性狀又會因為物種迁徙或是物種之間的水-平-基因轉移,而隨著基因在族群中傳遞。當這些遺傳變異受到非隨機的自然选择或隨機的遺傳漂變影響,而在族群中變得較為普遍或稀有時,就是演化。演化會引起生物各個層次的多樣性,包括物種、生物個體和分子 。 地球上所有生命的共同起源,約35-38億年前出現,其被稱為最後共同祖先,但是2015年一項在西澳的古老岩石進行的研究中發現41億年前「的行跡」。 新物種(物種形成)、種內的變化()和物種的消失(絕種)在整個地球的不斷發生,這被形態學和生化性狀證實,其中包括共同的DNA序列,這些共同性狀在物種之間更相似,因為它源於最近的共同祖先,並且可以作為進化關係的依據建立生命之樹(系统发生学),其利用現有的物種和化石建立,化石記錄的事物包括由的石墨 、,以至多細胞生物的化石。生物多樣性的現有模式被物種形成和滅絕塑造。據估計,曾經生活在地球上的物種99%以上已經滅絕。地球目前的物種估計有1000萬至1400萬。其中約120萬已被記錄。 物種是指一群可以互相進行繁殖行為的個體。當一個物種分離成各個交配行為受到阻礙的不同族群時,再加上突變、遺傳漂變,與不同環境對於不同性狀的青睞,會使變異逐代累積,進而產生新的物種。生物之間的相似性顯示所有已知物種皆是從共同祖先或是祖先基因池逐漸分化產生。 以自然選擇為基礎的演化理論,最早是由查爾斯·達爾文與亞爾佛德·羅素·華萊士所提出,詳細闡述出現在達爾文出版於1859年的《物種起源》.

新!!: 石珊瑚目和演化 · 查看更多 »

浮游生物

浮游生物(Plankton)泛指生活於水中而缺乏有效移動能力的漂流生物,其中分有浮游植物及浮游動物。部分浮游生物具游動能力,但其游動速度往往比它自身所在的洋流流速來得緩慢,因而不能有效地在水中靈活游動。浮游生物,在海洋、湖泊及河川等水域的生物中,自身完全没有移动能力,或者有也非常弱,因而不能逆水流而动,而是浮在水面生活,这类生物总称为浮游生物。 大多數的浮游生物體型微小,有些種類的浮游生物甚至只有幼蟲階段,而在成熟後則變成體型較大,而且具有更好的移動力,這類浮游生物稱作季節性浮游生物,如:海膽、海星、雙殼類和幼魚。其它浮游生物則一生的時間都活在浮游狀態下,稱為終生浮游生物,如:橈足類、箭蟲、磷蝦等。.

新!!: 石珊瑚目和浮游生物 · 查看更多 »

海葵

海葵目(學名:,sea anemones),六放珊瑚亚纲的一目。虽然海葵目动物看上去很像花朵,但其实是捕食性动物,有些海葵本身是透明的,產生黃褐色乃至紅、綠等的色彩是靠共生藻和本身的色素生成,因而牠主要還是以光合作用來提供能源。这种无脊椎动物没有骨骼,锚靠在海底固定的物体上,如岩石和珊瑚。它们可以很缓慢的移动,但緊急的時候少數品種甚至會擺動軀體來游泳。海葵非常长寿,通常可以生存數百年,甚至有發現到2000多歲的高齡海葵。寄居蟹有时会把海葵背在背上作为伪装,也有很多生物與之共生。.

新!!: 石珊瑚目和海葵 · 查看更多 »

海洋

海洋即“海”和“洋”的总称。一般人们将大陆边缘的水域被称为“海”,把远离陆地的水域称为“洋”。少数地球以外的星体曾经也有海洋,一些尚有海洋或冰洋,如卫星土卫六的甲烷海洋、木卫二表面的冰等,一些行星如火星、金星曾经可能有过海洋或火浆洋。.

新!!: 石珊瑚目和海洋 · 查看更多 »

无性生殖

无性生殖是指生物体不以透過生殖细胞的结合方式,也就是不經由減數分裂來產生配子,直接由母体細胞分裂後产生出新个体的生殖方式。主要分为、分裂生殖、出芽生殖、斷裂生殖和營養器官繁殖、孢子繁殖等。这种生殖的速度通常都較有性生殖快很多。但是,這種生殖方式的生物常常會因為其後代無法適應新環境而滅絕,這也是無性生殖的缺點之一。 个别雌性脊椎动物在人工圈养或濒临灭绝的情况下也可能通过无性生殖的方式繁育下一代。.

新!!: 石珊瑚目和无性生殖 · 查看更多 »

重定向到这里:

硬珊瑚石珊瑚

传出传入
嘿!我们在Facebook上吧! »