徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

海因斯2-428

指数 海因斯2-428

海因斯2-428是在核心有著兩顆白矮星聯星系統的行星狀星雲,這個核心的兩顆白矮星系統是第一個被發現的Ia超新星候選者。在它們被發現的當時,這個恆星系統是已知最重的白矮星雙星系統。.

11 关系: 太阳质量紅外線天文衛星白矮星聯星系統行星状星云錢德拉塞卡極限银道坐标系重力波Ia超新星J2000.0標準燭光

太阳质量

太阳质量(符號為)是天文学上用于测量恒星、星团或星系等大型天体的质量单位,定义为太阳的质量,约为2×1030千克,表示为: 1个太阳质量是地球质量的333000倍。 太陽質量也可以用年的長度、地球和太陽的距離天文單位和萬有引力常數(G)的形式呈現: 現在,天文單位和萬有引力常數的數值都已經被精確的測量,然而,還是不太常用太陽質量來表示太陽系的其他行星或聯星的質量;只在大質量天體的測量上使用。現今,使用行星際雷達已經測出很準確的天文單位和" G ",但是太陽質量在習俗中仍然繼續被當成天文學歷史上未解的謎題來探究。.

新!!: 海因斯2-428和太阳质量 · 查看更多 »

紅外線天文衛星

紅外線天文衛星(Infrared Astronomical Satellite,IRAS)是在太空中的天文台,以紅外線巡天,執行勘查整個天空的任務。.

新!!: 海因斯2-428和紅外線天文衛星 · 查看更多 »

白矮星

白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能。在太陽附近的區域內已知的恆星中大約有6%是白矮星。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素、愛德華·皮克林和威廉·佛萊明等人注意到, p. 1白矮星的名字是威廉·魯伊登在1922年取的。 白矮星被認為是中、低質量恆星演化階段的最終產物,在我們所屬的星系內97%的恆星都屬於這一類。, §1.

新!!: 海因斯2-428和白矮星 · 查看更多 »

聯星系統

聯星系統是天文學的術語,指在空間中的兩個天體(通常是恆星、星系或小行星)彼此間有引力上的交互作用存在,因而繞著共同的質心運轉。有些定義(像是雙行星,但不是聯星)需要質心不在兩個天體的任何一個內部。聚星系統像雙星系統一樣,只是有三個或更多的天體。.

新!!: 海因斯2-428和聯星系統 · 查看更多 »

行星状星云

行星狀星雲是恆星演化至老年的紅巨星末期,氣體殼層向外膨脹並被電離,形成擴大中的發射星雲,經常以英文的縮寫"PN"或複數的"PNe"來表示。"行星狀星雲"這個名稱源自1780年代的天文學家威廉·赫歇爾,但並不是個適當的名字,只因為當他通過望遠鏡觀察時,這些天體呈現類似於行星的圓盤狀,但又是霧濛濛的雲氣。因此,他結合"行星"與"星雲",創造了這個新名詞。赫歇爾的命名雖然不適當,但仍被普遍的採用,並未被替換。相較於恆星長達數十億年歲月的一生,行星狀星雲只能存在數萬年,只是很短暫的現象。 大多數行星狀星雲形成的機制被認為是這樣:在恆星結束生命的末期,也就是紅巨星的階段,恆星外層的氣體殼被強勁的恆星風吹送進太空。紅巨星在大部分的氣體被驅散後,來自高溫的行星狀星雲核心(PNN,planetary nebula nucleus)輻射的紫外線會將被驅散的恆星外層氣體電離。吸收紫外線的高能氣體殼層圍繞著中央的恆星發出朦朧的螢光,使其成為一個色彩鮮豔的行星狀星雲。 行星狀星雲在銀河系演化的化學上扮演關鍵性的角色,將恆星創造的元素擴散成為銀河系星際物質中的元素。在遙遠的星系內也觀察到行星狀星雲,收集它們的資訊有助於了解化學元素的豐度。 近年來,哈伯太空望遠鏡的影像顯示許多行星狀星雲有著極其複雜和各種各樣的形狀。大約只有五分之一呈現球形,而且其中大多數都不是球對稱。產生各種各樣形狀的功能和機制仍都不十分清楚,但是中央的聯星、恆星風和磁場都可能發揮作用。.

新!!: 海因斯2-428和行星状星云 · 查看更多 »

錢德拉塞卡極限

錢德拉塞卡極限(Chandrasekhar Limit),以印度裔美籍天文物理學家蘇布拉馬尼揚·錢德拉塞卡命名,是無自轉恆星以電子簡併壓力阻擋重力塌縮所能承受的最大質量,這個值大約是1.4倍太陽質量 ,計算的結果會依據原子核的結構和溫度而有些差異, F. X. Timmes, S. E. Woosley, and Thomas A. Weaver, Astrophysical Journal 457 (February 1, 1996), pp.

新!!: 海因斯2-428和錢德拉塞卡極限 · 查看更多 »

银道坐标系

銀道座標系,是以太陽為中心,並且以銀河系明顯排列群星的平面為基準的天球坐標系統,它的「赤道」是銀河平面。相似於地理坐標,銀道坐標系的位置也有經度和緯度。 許多的星系,包括我們太陽和地球所在的銀河系皆為盤狀結構:我們能看到的多數銀河系物質(除了暗物質)都緊挨著這個銀道面。銀河系本身也像地球一樣有著自轉軸,銀道坐標系利用本身特性來定義坐標系統,也就是以太陽相對於銀心(銀河系中心)轉動來決定銀河系自轉。 在任何天球坐標系都需要定義赤道和極點。銀道坐標系也一樣,需要一條垂直於赤道的子午線作為銀經的起點。經由國際會議決定銀道坐標系的銀緯和銀經分別以「b」和「l」標示,銀極的銀緯(b)是90°(b.

新!!: 海因斯2-428和银道坐标系 · 查看更多 »

重力波

重力波可以指:.

新!!: 海因斯2-428和重力波 · 查看更多 »

Ia超新星

超新星(Type Ia supernova)出現在其中的一顆是白矮星,而另一顆可以是巨星或低質量恆星的聯星系統(兩顆軌道互繞的恆星)。白矮星是已完成其正常命週期核融合反應的恆星殘骸。但是,一般最常見的碳-氧白矮星,如果他們的溫度上升得足夠高,仍有進行核融合反應,進一步釋放大量能量的能力。物理上,低自轉速率的碳-氧白矮星會低於1.44太陽質量()有點令人費解的是,儘管與電子簡併壓力無法阻擋災難性坍縮的錢德拉塞卡質量(Chandrasekhar mass)有所不同,這個限制通常被稱為錢德拉塞卡極限。如果一顆白矮星可以從其聯星系統的伴星逐漸吸積質量,一般假設當其接近此一質量極限時,核心將達到碳融合的點火溫度。如果白矮星與另一顆恆星合併(極為罕見的事件),它將在瞬間就超越了質量限制並開始坍縮,也會再次提升溫度超越核融合的燃點。在啟動核融合之後幾秒鐘,白矮星絕大部分的質量會經歷熱失控反應,釋放出極為巨大的能量(1–),在超新星爆炸中解除恆星的束縛。 這種類型的超新星由於爆炸的白矮星通過吸積的機制使質量幾乎一致,因此產生一致的峰值光度。因為超新星的視星等隨著距離而改變,這種穩定的最大光度使它們的爆發可以做為標準燭光,用來測量宿主星系的距離。 在2015年5月,NASA報告克卜勒太空望遠鏡觀測新發現一顆Ia超新星,KSN 2011b,爆炸的完整過程:爆炸前、爆炸中和爆炸後。前超新星時段的詳細資訊可能可以讓科學家對暗能量有更好的瞭解。.

新!!: 海因斯2-428和Ia超新星 · 查看更多 »

J2000.0

J2000.0是在天文学上使用的曆元,前缀「J」代表这是一个儒略纪元法,而不是一个贝塞耳纪元。 它指的是儒略日期TT时2451545.0,或是TT时2000年1月1日12時,即相对于TAI的2000年1月1日,11:59:27.816或UTC时间2000年1月1日11:58:55.816。 因恒星赤经和赤纬会因岁差(與恒星的自行)改变,所以天文学家们经常指定某一特定的纪元作参考点。早期採用的纪元标准是B1950.0纪元。 在J2000时刻的天赤道與二分点用来定义天球参考坐标系,该参考坐标系也可写作J2000坐标或简单记为J2000,但更合适的,应该如下使用国际天球参考系統(ICRS)。.

新!!: 海因斯2-428和J2000.0 · 查看更多 »

標準燭光

標準燭光是天文學中已經知道光度的天體,而在宇宙學和星系天文學中獲得距離的幾種重要方法都是以標準燭光做基礎的。比較已知的光度(或是它的對應函數的數值,絕對星等)和他的觀測亮度(視星等),距離可以經由下面的公式計算而得: 此處的D是距離,kpc是千秒差距(103 秒差距), m是視星等,M是絕對星等(兩者均處於靜止的狀態下)。 (這與天體的距離模數是緊密相關的。) 標準燭光有下列這些類型:.

新!!: 海因斯2-428和標準燭光 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »