目录
半径
在一个圆中,从圆心到圆周上任何一点所连成的线段称为这个圆的半径,同时,这个线段的长度(也就是圆心到圆上任意一个点的距离)也被称为半径;在数学裡常以r来表示作为长度的半径。.
查看 沉降系数和半径
可加性
可加性是指对于某种变换来说,特定的“加法”和该变换的顺序可颠倒而不影响结果,这样一种性质。 例如对于两个实数 x 和 y,我们可以先执行加法 x+y、后把结果乘以二;也可以先各自乘以二然后再相加,两边结果是一样的。那么我们说变换“乘以二”具有可加性。.
查看 沉降系数和可加性
秒
是國際單位制中時間的基本單位 ,符號是s。有時也會借用英文缩写標示為sec。秒在英文裡的原始詞義是計算小時的六十分之一(分鐘)後,再計算六十分之一。在西元1000至1960年之間,秒的定義是平均太陽日的1/86,400(在一些天文及法律的定義中仍然適用)。在1960至1967年之間,定義為1960年地球自轉一周時間的1/86,400 ,現在則是用原子的特性來定義。秒也可以用機械鐘、電子鐘或原子鐘來計時。 國際單位制詞頭經常與秒結合以做更細微的劃分,例如ms(毫秒,千分之一秒)、µs(微秒,百萬分之一秒)和ns(奈秒,十億分之一秒)。雖然國際單位制詞頭雖然也可以用於擴增時間,例如ks(千秒)、Ms(百萬秒)和Gs(十億秒),但實際上很少這樣子使用,大家都還是習慣用60進位的分、時和24進位的日做為秒的擴充。 秒不但是國際單位制中時間的基本單位,也是公分-克-秒制、米-公斤-秒制、米-公噸-秒制及英制單位下的時間基本單位。.
查看 沉降系数和秒
米每秒
米每秒是速度(矢量)和速率(标量)的单位,属于国际单位制导出单位,可写作㎧(U+33A7 (13223)),m/s、m·s−1或mps。天文学上常以单位更大的千米每秒为单位,1 km/s.
查看 沉降系数和米每秒
细菌
細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.
查看 沉降系数和细菌
終端速度
在流體動力學中,當物體在流體中運動時,在流體向物體運動反方向所施的力下,物體的運動速度因而不變,這時物體所移動的速度就是終端速度。 當向下的重力(Fg)相等於向上的阻力(Fd)時,自由落體中的物體會達到終端速度。此時物體的淨力為零,因此物體的速度保持不變。 當物體加速的時候(一般是因為重力而向下加速),施向物體的抗力也在增加,使得加速度慢下來。在某一個速度下,所產生的抗力會相等於物體的重量(mg)。這時候物體停止加速,並持續以不變的速度下落,這個速度就是終端速度(也叫沉降速度)。終端速度直接隨着重量與阻力的比值而變。更大的抗力代表較低的終端速度,而更大的重量則代表較高的終端速度。若一向下移動物體的速度大於終端速度(比方說它受一向下的力影響,或它掉進了較薄的大氣層區域,或它的形狀改變),它的速度會慢下來,直至達到終端速度為止。.
查看 沉降系数和終端速度
角速度
角速度(Angular velocity)是在物理学中定义为角位移的变化率,描述物体轉動時,在单位时间内转过多少角度以及转动方向的向量,(更准确地说,是贗向量),通常用希腊字母Ω或ω来表示。 在国际单位制中,单位是弧度每秒(rad/s)。在日常生活,通常量度單位時間內的轉動週數,即是每分鐘轉速(rpm),電腦硬盤和汽車引擎轉數就是以rpm來量度,物理學則以rev/min表示每分鐘轉動週數。 角速度的方向垂直于转动平面,可通过右手定则来确定,物體以逆時針方向轉動其角速度為正值,物體以順時針方向轉動其角速度為負值。 角速度量值的大小稱作角速率,通常也是用ω來表示。.
查看 沉降系数和角速度
黏度
黏度(Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在常温(20℃)及常压下,空气的黏度为0.018mPa·s(10^-5),汽油为0.65mPa·s,水为1 mPa·s,血液(37℃)为4~15mPa·s,橄榄油为102 mPa·s,蓖麻油为103 mPa·s,蜂蜜为104mPa·s,焦油为106 mPa·s,沥青为108 mPa·s,等等。最普通的液体黏度大致在1~1000 m Pa·s,气体的黏度大致在1~10μPa·s。糊状物、凝胶、乳液和其他复杂的液体就不好说了。一些像黄油或人造黄油的脂肪很黏,更像软的固体,而不是流动液体。 黏滯力是流體受到剪應力變形或拉伸應力時所產生的阻力。在日常生活方面,黏滯像是「黏稠度」或「流體內的摩擦力」。因此,水是「稀薄」的,具有較低的黏滯力,而蜂蜜是「濃稠」的,具有較高的黏滯力。簡單地說,黏滯力越低(黏滯係數低)的流體,流動性越佳。 黏滯力是粘性液體內部的一種流動阻力,並可能被認為是流體自身的摩擦。黏滯力主要來自分子間相互的吸引力。例如,高粘度酸性熔岩產生的火山通常為高而陡峭的錐狀火山,因為其熔岩濃稠,在其冷卻之前無法流至遠距離因而不斷向上累加;而黏滯力低的鎂鐵質熔岩將建立一個大規模、淺傾的斜盾狀火山。所有真正的流體(除超流體)有一定的抗壓力,因此有粘性。 沒有阻力對抗剪切應力的流體被稱為理想流體或無粘流體。 黏度\mu定義為流體承受剪應力時,剪應力與剪應變梯度(剪應變隨位置的變化率)的比值,数学表述为: 式中:\tau为剪应力,u为速度场在x方向的分量,y为与x垂直的方向坐标。 黏度較高的物質,比較不容易流動;而黏度較低的物質,比較容易流動。例如油的黏度較高,因此不容易流動;而水黏度較低,不但容易流動,倒水時還會出現水花,倒油時就不會出現類似的現象。.
查看 沉降系数和黏度
转子
转子是指电动机和发电机的基本构造中,绕固定中心转动的部分。 除直线电机这种特殊的形式以外,转子通常具有中心对称的结构(单相电机)或者三个绕组互为120度的结构(三相电机),以适应高速旋转的需要。同步电动机和同步发电机的转子转速与电网的频率相同,异步电动机的转子转速低于电网的频率,异步发电机的转子转速高于电网的频率。.
查看 沉降系数和转子
重力加速度
重力加速度是一個物體仅受重力作用的情況下所具有的加速度。重力加速度會隨高度增加而下降。 假設一個質量為m的質點與一質量為M的均勻球體的距離為r時,質量所受的重力大小為: 其中G為重力常數。 根据牛頓第二定律 可得重力加速度為 和质量没关系.
查看 沉降系数和重力加速度
離心機
離心機是一種機械,可藉由電動機或其他機械的帶動而高速轉動,產生數千倍於重力的離心力,以加快液體中顆粒的沉降速度,把樣品中不同沉降系數和密度質量的物質分離。離心力的大與小,轉動速度、旋轉半徑岱以及物質的融質量而決定。離心機廣泛運用於化學工程、石油、食品加工、制藥、選礦工程、炭、水處理、核能工業和船舶等部門。 .
查看 沉降系数和離心機
速度
速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.
查看 沉降系数和速度
核糖体
核糖体,旧称“核糖核蛋白体”或“核蛋白体”,是细胞中的一种细胞器因为在某些场合“细胞器”一词也会被用于专指具有磷脂双分子层膜结构的亚细胞结构,而核糖体虽然已是一种公认的细胞器,却是没有被膜包裹、完全裸露的大分子,所以核糖体有时会被严格地定义为“无膜细胞器”(non-membranous organelles)。,由一大一小两个-zh-tw:次單元;zh-cn:亚基-结合形成,主要成分是相互缠绕的RNA(称为“核糖体RNA”,ribosomal RNA,简称“rRNA”)和蛋白质(称为“核糖体蛋白质”,ribosomal protein,简称“RP”)。核糖体是细胞内蛋白质合成的场所,能读取信使RNA核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基酸的序列信息以合成蛋白质。在原核生物及真核生物(地球上的两种具有细胞结构的主要生命形式,前者可细分为古菌、真细菌两类)的细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体(线粒体和叶绿体中的核糖体与细胞质核糖体不相同)。 核糖体在细胞中负责完成“中心法则”裡由RNA到蛋白质这一过程,此过程在生物学中被称为“翻译”。在进行翻译前,核糖体小次單元会先与从细胞核中转录得到的信使RNA(messenger RNA,简称“mRNA”)结合,再结合核糖体大次單元构成完整的核糖体之后,便可以利用细胞质基质中的转运RNA(transfer RNA,简称“tRNA”)运送的氨基酸分子合成多肽。当核糖体完成对一条mRNA单链的翻译后,大小--会再次分离。 英语中的“核糖体”(ribosome)一词是由“核糖核酸”(“ribo”)和希腊语词根“soma”(意为“体”)组合而成的。.
查看 沉降系数和核糖体
水
水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.
查看 沉降系数和水
沉降
沉降又稱沉積、沉澱,是懸浮液的粒子下沉積聚的過程。原因可以是地心吸力、離心力或電磁力。在地理學,沉降通常是侵蝕作用的相反,亦即沉積物遷移的最終結果;過程包括躍移。 不同大小的東西都可以沉降,由流水中的大石頭,塵土或花粉的懸浮液,至單個分子,例如蛋白質和肽的細胞懸浮液都可以。 在地理學,此名詞通常用來描述沉積物的堆積作用,而最後會形成沉積岩;在其他化學及環境學領域等則用來描述小粒子和分子的運動。在生物工業則是指將細胞分離自介質的過程。.
查看 沉降系数和沉降
斯维德伯格
斯维德伯格(svedberg,符号为S,有时为Sv,不要将此Sv与表示国际单位制单位西弗以及非国际单位制单位斯维尔德鲁普的Sv相混淆)是一个用于表示沉降系数的非国际单位制物理单位。它表示在特别是离心过程的沉降过程中粒子类型的行为特征。斯维德伯格是一个度量时间的技术性单位 ,且准确定义为10-13秒(100飞秒)。 该单位根据瑞典化学家特奥多尔·斯韦德贝里(1884年-1971年)的名字而命名,他是1926年诺贝尔化学奖得主,因其在胶体化学上的研究并且他发明了。 较大的微粒倾向于沉降地更快并因此具有较高的斯维德伯格值。然而沉降系数S并不可以相加。沉降速率并不仅仅取决于一个微粒的质量或体积,并且当两个微粒结合在一起时就会不可避免地损失表面积。因此当分别测量时,它们的斯维德伯格值加起来并不会与结合状态粒子的相等。 斯维德伯格是用于区分核糖体的最重要的单位,核糖体在研究种系发生学时较为重要。.
查看 沉降系数和斯维德伯格
斯托克斯定律
球形物体在流体中运动所受到的阻力,等于该球形物体的半径、速度、流体的黏度与6π的乘积。这个定律叫做斯托克斯定律。 如果物体在流体中因自身的重量而下落,则其最终速度为: Category:流体力学 Category:物理定律.
查看 沉降系数和斯托克斯定律