目录
1 关系: 欧拉-雅可比伪素数。
欧拉-雅可比伪素数
欧拉-雅可比伪素数(Euler–Jacobi pseudoprime)是伪素数的一种。对于奇合数n以及与其互素的自然数a,如果 成立(其中\left(\frac\right)为雅可比符号),则称n为关于a的欧拉-雅可比伪素数,或简称为欧拉伪素数。 欧拉-雅可比伪素数是欧拉伪素数的推广,所有欧拉-雅可比伪素数同时也是费马伪素数与欧拉伪素数。由于上式对所有素数都成立,因而可以用其进行概率素性检验,其可靠性是费马素性检验的两倍多。此外,与绝对费马伪素数(卡迈克尔数)与绝对欧拉伪素数不同的是,不存在绝对欧拉-雅可比伪素数,即不存在关于所有与n互素的a都是欧拉-雅可比伪素数的n。可以证明,对于n,至少存在n/2个小于n的a,n不是欧拉-雅可比伪素数。 关于2的最小欧拉-雅可比伪素数是561。而在小于25·109的数中,共有11347个关于2的欧拉-雅可比伪素数(参见))。.