我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

模态一阶逻辑

指数 模态一阶逻辑

模态一阶逻辑是指在经典一阶逻辑中加进模态概念。实质上这和由经典命题逻辑构成模态命题的情形相同。模态一阶逻辑也可以在模态命题逻辑中加进量词而构成。 category:模态逻辑.

目录

  1. 2 关系: 一阶逻辑量词

一阶逻辑

一阶逻辑是使用於数学、哲学、语言学及電腦科學中的一种形式系统。 過去一百多年,一階邏輯出現過許多種名稱,包括:一阶斷言演算、低階斷言演算、量化理論或斷言逻辑(一個較不精確的用詞)。一階邏輯和命題邏輯的不同之處在於,一階邏輯有使用量化變數。一個一階邏輯,若具有由一系列量化變數、一個以上有意義的斷言字母及包含了有意義的斷言字母的純公理所組成的特定論域,即是一個一階理論。 一階邏輯和其他高階邏輯不同之處在於,高階邏輯的斷言可以有斷言或函數當做引數,且允許斷言量詞或函數量詞的(同時或不同時)存在。在一階邏輯中,斷言通常和集合相關連。在有意義的高階邏輯中,斷言則會被解釋為集合的集合。 存在許多對一階邏輯是可靠(所有可證的敘述皆為真)且完備(所有為真的敘述皆可證)的演繹系統。雖然一階邏輯的邏輯歸結只是半可判定性的,但還是有許多用於一階邏輯上的自動定理證明。一階邏輯也符合一些使其能通過證明論分析的元邏輯定理,如勒文海姆–斯科倫定理及緊緻性定理。 一階邏輯是數學基礎中很重要的一部份,因為它是公理系統的標準形式邏輯。許多常見的公理系統,如一階皮亞諾公理和包含策梅洛-弗蘭克爾集合論的公理化集合論等,都可以形式化成一階理論。然而,一階定理並沒有能力去完整描述及範疇性地建構如自然數或實數之類無限的概念。這些結構的公理系統可以由如二階邏輯之類更強的邏輯來取得。.

查看 模态一阶逻辑和一阶逻辑

量词

量詞(measure word),學術名稱分類詞(classifier),是一种存在于某些语言中的词语或语素,用来区分由可数名词指代的不同事物。在存在分类词的语言中,分类词常常用于名词被计数或者特指的情况(例如和数词或连用的时候)。东亚语言一般必須使用分類詞,例如中文裡“三个人”的“个”,“两头牛”的“头”;而一些语言则不使用或很少使用分类词,例如英语中的“three people”就不需要使用任何分类词。 分类词不应与名词类别混淆。后者通常不是根据词的含义分类,而是根据诸如词法来分类。.

查看 模态一阶逻辑和量词