目录
子環
設(R,+,·)為环,若S是R的一個非空子集,且(S,+,·)也是環,則稱(S,+,·)為(R,+,·)的子環(subring)。.
查看 梅森增益公式和子環
传递函数
在工程中,传递函数(也称系统函数、转移函数或网络函数,画出的曲线叫做传递曲线)是用来拟合或描述黑箱模型(系统)的输入与输出之间关系的数学表示。 通常它是零初始条件和零平衡点下,以空间或时间频率为变量表示的线性时不变系统(LTI)的输入与输出之间的关系。然而一些资料来源中用“传递函数”直接表示某些物理量输入输出的特性,(例如二端口网络中的输出电压作为输入电压的一个函数)而不使用变换到S平面上的结果。.
查看 梅森增益公式和传递函数
信号流图
信号流图(Signal-flow graph)最早是由克劳德·香农所發明 Reprinted in ,但因為美国麻省理工学院的于20世纪50年代初提出這個詞,因為也稱梅森圖(Mason graph) ,信号流图是特殊的,屬於,其中的節點表示系統的變數,而連接兩節點的邊表示二個變數之間的函數關係。信号流图的理論是以有向圖為基礎,不過是應用有向圖來表示系統,和有向圖的原理差異較大 i 。 信号流图最常用來表示物理系統和其控制器(網宇實體系統或控制系統)之間的關係,不過在許多電子電路、運算放大器電路、數位濾波器、狀態變數濾波器及類比濾波器的分析中也會用到信号流图。在許多文獻中,信号流图都可以轉換為一組線性方程或是線性微分方程,而各組變數之間的增益則用邊上的係數來表示,也有些信号流图會用特殊方式來表示非線性系統。而利用梅森增益公式可以找到輸入和輸出之間的關係。.
查看 梅森增益公式和信号流图
理想 (环论)
想(Ideal)是一个抽象代数中的概念。.
高斯消去法
数学上,高斯消去法(Gaussian Elimination),是线性代数中的一个算法,可用來為線性方程組求解,求出矩陣的秩,以及求出可逆方陣的逆矩陣。当用于一个矩陣时,高斯消去法會产生出一個行梯陣式。.
查看 梅森增益公式和高斯消去法
逆元素
數學中,逆元素(Inverse element)推廣了加法中的加法逆元和乘法中的倒數。直觀地說,它是一個可以取消另一給定元素運算的元素。.
查看 梅森增益公式和逆元素
TeX
(/tɛx/,音译“泰赫”,文本模式下写作TeX),是一个由美国计算机教授高德纳(Donald Ervin Knuth)编写的功能强大的排版软件。它在学术界十分流行,特别是数学、物理学和计算机科学界。被普遍认为是一个优秀的排版工具,特别是在处理复杂的数学公式时。利用诸如是LaTeX等终端软件,就能够排版出精美的文本以幫助人們辨認和尋找。 的MIME类型为application/x-tex。是自由软件。.
查看 梅森增益公式和TeX
有理函數
有理函數是可以表示為以下形式的函數: 有理數式是多項式除法的商,有時稱為代數分數。.
查看 梅森增益公式和有理函數
数字滤波器
数字滤波器是对数字信号进行滤波处理以得到期望的响应特性的离散时间系统。作为一种电子滤波器,数字滤波器与完全工作在模拟信号域的模拟滤波器不同。数字滤波器工作在数字信号域,它处理的对象是经由采样器件将模拟信号转换而得到的數位信号。 数字滤波器的工作方式与模拟滤波器也完全不同:后者完全依靠电阻器、电容器、晶体管等电子元件组成的物理网络实现滤波功能;而前者是通过数字运算器件对输入的数字信号进行运算和处理,从而实现设计要求的特性。 数字滤波器理论上可以实现任何可以用数学算法表示的滤波效果。数字滤波器的两个主要限制条件是它们的速度和成本。数字滤波器不可能比滤波器内部的数字电路的运算速度更快。但是随着集成电路成本的不断降低,数字滤波器变得越来越常见并且已经成为了如收音机、蜂窝电话、立体声接收机这样的日常用品的重要组成部分。 数字滤波器一般由寄存器、延时器、加法器和乘法器等基本数字电路实现。随着集成电路技术的发展,其性能不断提高而成本却不断降低,数字滤波器的应用领域也因此越来越广。按照数字滤波器的特性,它可以被分为线性与非线性、因果与非因果、无限脉冲响应(IIR)与有限脉冲响应(FIR)等等。其中,线性时不变的数字滤波器是最基本的类型;而由于数字系统可以对延时器加以利用,因此可以引入一定程度的非因果性,获得比传统的因果滤波器更灵活强大的特性;相对于IIR滤波器,FIR滤波器有着易于实现和系统绝对稳定的优势,因此得到广泛的应用;对于时变系统滤波器的研究则导致了以卡尔曼滤波为代表的自适应滤波理论.
查看 梅森增益公式和数字滤波器