目录
太陽
#重定向 太阳.
查看 日震和太陽
密度
3 | symbols.
查看 日震和密度
地震
地震(Earthquake)震動,可由自然現象如地殼突然運動、火山活動及隕石撞擊引起,亦可由人為活動如地下核試驗造成。歷史曾記載的災害性地震主要由地殼突然運動所造成,地殼在板塊運動的過程中累積應力,當地殼無法繼續累積應力時破裂釋放出地震波,使地面發生震動,震動可能引發山泥傾瀉甚或火山活動。如果地震在海底發生,海床的移動甚至會引發海嘯。 地震可由地震儀透過對地震波的觀察來量測,地震規模表示地震所釋放出來的能量大小,地震烈度指地震在該地點造成的震動程度,地震的發生處稱為震源,其投影至地表的位置為震中。.
查看 日震和地震
地震波
地震波(seismic wave),意指在地球內部傳遞的波動。一般而言,地震波是由構造地震所產生,然而其它自然現象也能生成地震波,例如風。人為的活動也能造成地震波,例如爆炸。對於地球內部構造的瞭解,地震波扮演了一個不可缺的角色。.
查看 日震和地震波
磁場
在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.
查看 日震和磁場
隕石
隕石是小塊的固體碎片,它的來源是小行星或彗星,起源於外太空,對地球的表面及生物都有影響。在它撞擊到地表之前稱為流星。隕石的大小範圍從小型到極大不等。當流星體進入地球大氣層,由于摩擦、壓力以及大氣中氣體的化學作用,導致其温度升高并发光,因此形成了流星,包括火球,也稱為射星或墬星。火流星既是與地球碰撞的外星天體,也是異常明亮的流星,而像火球這樣的流星無論如何最終都會影響地球的表面。 更通俗的說法,在地球表面的任何一顆隕石都是來自外太空的一個天然物體。月球和火星上也有發現隕石。 被觀察到穿越大氣層或撞擊地球隕石稱為墬落隕石,其它的隕石都稱為發現隕石。截至2010年2月,只有大約1,086顆的墬落隕石的標本被收藏 ,但卻有38,660顆被確認的發現隕石.
查看 日震和隕石
運動
#重定向 体育运动.
查看 日震和運動
行星
行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.
查看 日震和行星
恒星
恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.
查看 日震和恒星
温度
温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.
查看 日震和温度
月震
月震是指在月球發生的地震,是由阿波羅宇航員發現的。月震比地球地震弱且次數較少。因為月球不像地球能迅速地減弱震動(可能由於缺少水),所以月震震動的時間通常比地震長。 阿波羅宇航員從1969年至1972年在月球安置地震儀,以收集月震數據。由阿波羅12、14、15和16放置的儀器一直運作良好,直到1977年關閉。 根據美國航空航天局的研究,月球有至少四种不同的月震.
查看 日震和月震
日震學
日震學(Helioseismology)是研究波振盪,特別是聲波壓力,在太陽上的傳播。不同於地球的地震波,太陽的波幾乎沒有剪力的成份 (S波)。太陽壓力波被認為是接近太陽表面的對流層中的湍流生成的。有些頻率被建設性的干涉放大,換言之,太陽振盪的環像是一個鐘,聲波傳輸到太陽更表面的光球層,這是從太陽中心的核融合輻射出的能量經由吸收生成可見光,離開太陽表面的區域。這些振盪幾乎在任何時間序列的的太陽影像上都能檢測得到,但觀測到最好的影像是測量都卜勒位移的光球吸收譜線。經由太陽振盪波的傳播的變化,揭露了太陽內部的結構,並讓天文物理學家發展出太陽內部剖面極為詳細的設定條件。 日震學可以排除太陽微中子問題是由於太陽內部模型不正確的可能性 日震學揭示的特性包括外側的對流層和內側的輻射層以不同的速度旋轉,這引發太陽發電機產生磁場效應的想法,和在太陽表面對流層下的數千公里有電漿"噴射氣流" (更明確的說,扭轉振盪) 。這些噴射氣流從赤道廣泛的散播,在高緯度地區分解成小旋風的風暴。扭轉振盪是太陽較差自轉時間的變化,它們的交錯影響旋轉快與慢的帶。這是我們在1980年就已經發現的,但到目前為止,還沒有理論能解釋並被普遍的接受,即使它們與太陽週期的密切關係很明顯,一樣有著11年的周期。 日震學也可以用來生成太陽背面的影像,包括從地球看不到的太陽黑子影像。簡單來說,太陽黑子會吸收日震波 。這種太陽黑子的吸收會在太陽黑子的對蹠點上造成震波虧損的影像。為方便太空氣象的預測,從2000年晚期,經由SOHO衛星就有部分太陽背面中央地區的日震影像圖不停的被產生,而從2001年起,全部的背面影像都被生成和進行資料分析。 日震学的名稱源自類似研究地震波以確定地球內部結構的地震学。日震学可以和星震學對照,后者是研究一般恆星振荡的学科。.
查看 日震和日震學