徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

指數映射 (李群)

指数 指數映射 (李群)

在微分幾何中,指數映射是微積分中定義的指數函數在任意黎曼流形上的推廣。李群上的指數映射是一類重要的情形。.

11 关系: 仿射联络微分流形微分方程微积分学群同態黎曼流形霍普夫-里诺定理李代數李群指数函数

域(field)可以指:.

新!!: 指數映射 (李群)和域 · 查看更多 »

仿射联络

仿射聯絡是微分幾何中定義在流形上的幾何概念,連接了鄰近幾點上的切空間,使得在流形上的切向量場可以求導。仿射聯絡的概念起源於19世紀的幾何學和張量微積分,但那時並沒有被完備的定義出來。直到1920年,(用於嘉当联络(Cartan connection)理論)及Hermann Weyl(做為廣義相對論的基礎理論)。這專門術語是沿用嘉当(Cartan)所使用的術語及根據從歐幾里德空間Rn中切空間的推廣。換句話說,仿射聯絡的概念是為了推廣歐幾里德空間,使得流形上每點都有一個光滑的(可無限求導)仿射空間。 任何維數為正數的流形都會有無窮個仿射聯絡。仿射聯絡能用來決定在向量場上求導,並滿足線性及萊布尼茲法則的方法,這表明了仿射聯絡有幾個可行的方法,像是協變導數或在向量叢上的聯絡。仿射聯絡也能用來決定在切向量沿著一條曲線平行移動的方式,或者用來決定標架叢的平行移動。仿射聯絡也可以用來決定流形上的測地線,推廣了歐幾里德空間中直線的概念。 在標架叢中的平行移動展現了仿射聯絡的一種形式,其他像是仿射群上的嘉当联络,或者在標架叢上的主丛也是如此。除此之外,若在流形上賦予黎曼度量,則可以在其上定義列维-奇维塔联络。 仿射聯絡有幾個重要的不變量,分別是撓率及曲率。撓率描述李括號藉仿射聯絡變換前後的差異。曲率則是用來衡量流形上的測地線與直線(在歐幾里德空間的意義下)的差異。 F de:Zusammenhang (Differentialgeometrie)#Linearer Zusammenhang.

新!!: 指數映射 (李群)和仿射联络 · 查看更多 »

微分流形

光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.

新!!: 指數映射 (李群)和微分流形 · 查看更多 »

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

新!!: 指數映射 (李群)和微分方程 · 查看更多 »

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

新!!: 指數映射 (李群)和微积分学 · 查看更多 »

群同態

在數學中,給定兩個群(G, *)和(H,·),從 (G, *)到 (H,·)的群同態是函數h: G → H使得對於所有G中的u和v下述等式成立 在這裡,等號左側的群運算*,是G中的運算;而右側的運算·是H中的運算。 從這個性質,可推導出h將G的單位元eG映射到H的單位元eH,并且它還在h(u-1).

新!!: 指數映射 (李群)和群同態 · 查看更多 »

黎曼流形

黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.

新!!: 指數映射 (李群)和黎曼流形 · 查看更多 »

霍普夫-里诺定理

数学中,霍普夫—里诺(Hopf–Rinow)定理是关于黎曼流形的测地完备性的一套等价命题,以海因茨·霍普夫和他的学生维利·里诺命名。定理如下: 设M是黎曼流形,则下列命题等价:.

新!!: 指數映射 (李群)和霍普夫-里诺定理 · 查看更多 »

李代數

数学上,李代数是一个代数结构,主要用于研究象李群和微分流形之类的几何对象。李代数因研究无穷小变换的概念而引入。“李代数”(以索菲斯·李命名)一词是由赫尔曼·外尔在1930年代引入的。在旧文献中,无穷小群指的就是李代数。.

新!!: 指數映射 (李群)和李代數 · 查看更多 »

李群

數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

新!!: 指數映射 (李群)和李群 · 查看更多 »

指数函数

指数函数(Exponential function)是形式為b^x的數學函数,其中b是底數(或稱基數,base),而x是指數(index / exponent)。 現今指數函數通常特指以\mbox為底數的指數函數(即\mbox^x),為数学中重要的函数,也可寫作\exp(x)。这里的\mbox是数学常数,也就是自然对数函数的底数,近似值为2.718281828,又称为欧拉数。 作为实数变量x的函数,y.

新!!: 指數映射 (李群)和指数函数 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »