目录
卡尔曼滤波
卡尔曼滤波(Kalman filter)是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含雜訊的测量中,估计动态系统的状态。卡尔曼滤波會根據各測量量在不同時間下的值,考慮各時間下的联合分布,再產生對未知變數的估計,因此會以只以單一測量量為基礎的估計方式要準。卡尔曼濾波得名自主要貢獻者之一的鲁道夫·卡尔曼。 卡尔曼滤波在技術領域有許多的應用。常見的有飛機及太空船的。卡尔曼滤波也廣為使用在時間序列的分析中,例如信号处理及计量经济学中。卡尔曼滤波也是機器人運動規劃及控制的重要主題之一,有時也包括在。卡尔曼滤波也用在中軸神經系統運動控制的建模中。因為從給與運動命令到收到感覺神經的回授之間有時間差,使用卡尔曼滤波有助於建立符合實際的系統,估計運動系統的目前狀態,並且更新命令。 卡尔曼滤波的演算法是二步驟的程序。在估計步驟中,卡尔曼滤波會產生有關目前狀態的估計,其中也包括不確定性。只要觀察到下一個量測(其中一定含有某種程度的誤差,包括隨機雜訊)。會透過加權平均來更新估計值,而確定性越高的量測加權比重也越高。演算法是迭代的,可以在中執行,只需要目前的輸入量測、以往的計算值以及其不確定性矩陣,不需要其他以往的資訊。 使用卡尔曼滤波不用假設誤差是正态分布,不過若所有的誤差都是正态分布,卡尔曼滤波可以得到正確的條件機率估計。 也發展了一些擴展或是廣義的卡尔曼滤波,例如運作在非線性糸統的及无损卡尔曼滤波(unscented Kalman filter)。底層的模型類似隐马尔可夫模型,不過的狀態空間是連續的,而且所有潛在變量及可觀測變數都是正态分布.
查看 平滑和卡尔曼滤波
巴特沃斯滤波器
巴特沃斯滤波器是一种的频率响应曲线很平坦的。它也被称作最大平坦滤波器。这种滤波器最先由英国工程师、物理学家在1930年发表的论文《滤波器放大器理论研究》中提出的。In Wireless Engineer (also called Experimental Wireless and the Wireless Engineer), vol.
查看 平滑和巴特沃斯滤波器
低通滤波器
低通滤波器(Low-pass filter)容许低频信号通过,但减弱(或减少)频率高于截止频率的信号的通过。对于不同滤波器而言,每个频率的信号的减弱程度不同。当使用在音频应用时,它有时被称为高频剪切滤波器,或高音消除滤波器。 高通滤波器则相反,而带通滤波器则是高通滤波器同低通滤波器的组合。 低通滤波器概念有许多不同的形式,其中包括电子线路(如音频设备中使用的hiss滤波器、平滑数据的数字算法、音障(acoustic barriers)、图像模糊处理等等)。低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数(moving average)所起的作用;这两个工具都通过剔除短期波动、保留长期发展趋势提供了信号的平滑形式。.
查看 平滑和低通滤波器
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 平滑和函数
图像处理
图像处理是指对图像进行分析、加工、和处理,使其满足视觉、心理或其他要求的技术。图像处理是信号处理在图像领域上的一个应用。目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。 图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。 传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。.
查看 平滑和图像处理
移動平均
移動平均(moving average,MA),又稱「移動平均線」簡稱均線,是技術分析中一種分析时间序列數據的工具。最常見的是利用股價、回報或交易量等變數計算出移動平均。 移動平均可撫平短期波動,反映出長期趨勢或周期。數學上,移動平均可視為一種卷积。.
查看 平滑和移動平均
线性映射
在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.
查看 平滑和线性映射
统计学
统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.
查看 平滑和统计学
道格拉斯-普克算法
道格拉斯-普克算法(Douglas–Peucker algorithm,亦称为拉默-道格拉斯-普克算法、迭代适应点算法、分裂与合并算法)是将曲线近似表示为一系列点,并减少点的数量的一种算法。该算法的原始类型分别由乌尔斯·拉默(Urs Ramer)于1972年以及大卫·道格拉斯(David Douglas)和托马斯·普克(Thomas Peucker)于1973年提出,并在之后的数十年中由其他学者予以完善。.
查看 平滑和道格拉斯-普克算法
计算机视觉
计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。 作为一門科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取「信息」的人工智能系统。这里所指的信息指香农定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 作为一个工程学科,计算机视觉寻求基于相关理论与模型来建立计算机视觉系统。这类系统的组成部分包括:.
查看 平滑和计算机视觉
数字滤波器
数字滤波器是对数字信号进行滤波处理以得到期望的响应特性的离散时间系统。作为一种电子滤波器,数字滤波器与完全工作在模拟信号域的模拟滤波器不同。数字滤波器工作在数字信号域,它处理的对象是经由采样器件将模拟信号转换而得到的數位信号。 数字滤波器的工作方式与模拟滤波器也完全不同:后者完全依靠电阻器、电容器、晶体管等电子元件组成的物理网络实现滤波功能;而前者是通过数字运算器件对输入的数字信号进行运算和处理,从而实现设计要求的特性。 数字滤波器理论上可以实现任何可以用数学算法表示的滤波效果。数字滤波器的两个主要限制条件是它们的速度和成本。数字滤波器不可能比滤波器内部的数字电路的运算速度更快。但是随着集成电路成本的不断降低,数字滤波器变得越来越常见并且已经成为了如收音机、蜂窝电话、立体声接收机这样的日常用品的重要组成部分。 数字滤波器一般由寄存器、延时器、加法器和乘法器等基本数字电路实现。随着集成电路技术的发展,其性能不断提高而成本却不断降低,数字滤波器的应用领域也因此越来越广。按照数字滤波器的特性,它可以被分为线性与非线性、因果与非因果、无限脉冲响应(IIR)与有限脉冲响应(FIR)等等。其中,线性时不变的数字滤波器是最基本的类型;而由于数字系统可以对延时器加以利用,因此可以引入一定程度的非因果性,获得比传统的因果滤波器更灵活强大的特性;相对于IIR滤波器,FIR滤波器有着易于实现和系统绝对稳定的优势,因此得到广泛的应用;对于时变系统滤波器的研究则导致了以卡尔曼滤波为代表的自适应滤波理论.
查看 平滑和数字滤波器