目录
复平面
数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.
查看 多圓盤和复平面
儒勒·昂利·庞加莱
儒勒·昂利·庞加莱(Jules Henri Poincaré,法語发音,又译作彭加勒、昂利·彭加勒,),通常称为昂利·庞加莱,法国最伟大的数学家之一,理论科学家和科学哲学家。庞加莱被公认是19世纪后和20世纪初的领袖数学家,是繼高斯之後对于数学及其应用具有全面知识的最后數學家。 他对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出的庞加莱猜想是数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人並为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。.
笛卡儿积
在数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,在集合论中表示为X × Y,是所有可能的有序对組成的集合,其中有序對的第一个对象是X的成员,第二个对象是Y的成员。 舉個實例,如果集合X是13个元素的点数集合,而集合Y是4个元素的花色集合,则这两个集合的笛卡儿积是有52个元素的标准扑克牌的集合。 笛卡儿积得名于笛卡儿,因為這概念是由他建立的解析几何引申出來.
查看 多圓盤和笛卡儿积
自同构
數學上,自同構是從一個到自身的同構,可以看為這對象的一個對稱,將這對象映射到自身而保持其全部結構的一個途徑。一個對象的所有自同構的集合是一個群,稱為自同構群,大致而言,是這對象的對稱群。.
查看 多圓盤和自同构
李群
數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.
查看 多圓盤和李群