徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

哈勃南天深空

指数 哈勃南天深空

哈伯南天深空(Hubble Deep Field South)是使用哈伯太空望遠鏡的第二代廣域和行星照相機在1998年9月和10月間的數百張單張影像疊加合成的。它遵循了哈伯深空對極端遙遠的星系在早期的演化獲得重大成就的模式,使用第二代廣域和行星照相機,配合太空望遠鏡影像攝譜儀(STIS)和近紅外線照相機和多目標分光儀(NICMOS)拍攝了深遠的光學影像。.

23 关系: 南半球各向同性太空望遠鏡影像攝譜儀宇宙宇宙論原則地球北半球哈勃空间望远镜哈勃超深空哈勃深空第二代廣域和行星照相機类星体角分辨率角秒近紅外線照相機和多目標分光儀赤纬赤经银河系恆星形成杜鵑座月球星系星系形成和演化

南半球

南半球(Southern Hemisphere)是指赤道以南的半个地球。 南半球主要包括的地區有亚洲印度尼西亞南部、非洲中部及南部、大洋洲絕大部分、南美洲大部分、南極洲全部。 在南半球,夏季为12月至2月,冬季为6月至8月,与北半球四季相反。 南半球的海洋有南太平洋、南大西洋、印度洋。 由于南半球的海洋面积更多地大于陆地面积,除了南极洲的极度寒冷外,南半球的气候相对北半球的气候要温和些。也因为如此,再加上气流多东西环流,南半球的污染要比北半球少很多。 在南半球,朝北向阳。.

新!!: 哈勃南天深空和南半球 · 查看更多 »

各向同性

各向同性(isotropy),是指物体的物理、化学性质不因方向而有所变化的特性,即在不同方向所测得的性能数值是相同的。如所有的气体、液体以及非晶体都显示各向同性,多晶体(如一块金属)表现的各向同性称为“准各向同性”。各向同性的物体称为均质体。 各向同性与各向异性相反。确切的定义,取决于其使用的领域。各向同性的辐射在各向上有等同的强度,并且一个各向同性的场对测试粒子有同样的作用,无论其初始方向。以波动的传播为例,波源于此种介质中,发出的振动,于各个方向,速度一致。也即,波的传播速度与方向无关。于此种介质中,波面与波线正交。.

新!!: 哈勃南天深空和各向同性 · 查看更多 »

太空望遠鏡影像攝譜儀

太空望遠鏡影像攝譜儀(STIS, Space Telescope Imaging Spectrograph)是安裝在哈伯太空望遠鏡上,從1997年運作至2004年的攝譜儀。它完成了許多重要的觀測,包括第一張大氣和系外行星 Osiris的頻譜圖。 太空望遠鏡影像攝譜儀是在1997年第二次維護任務時由李麥克和史蒂文・史密斯裝上,用來替換暗天體攝譜儀(FOS)和戈達德高解析攝譜儀(GHRS)。設計的工作時間是五年,但在2004年8月3日因為一個電子設備故障而停止工作之前,已經比預期多工作了兩年。為了讓它恢復工作,在2009年5月由STS-125執行的最後一次維護任務,由太空人進行修護的工作。.

新!!: 哈勃南天深空和太空望遠鏡影像攝譜儀 · 查看更多 »

宇宙

宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。.

新!!: 哈勃南天深空和宇宙 · 查看更多 »

宇宙論原則

宇宙論原則不是一種原理,但即使只是一種合理的假設或是通則,仍然嚴格的限制了許多合理的宇宙學的理論。他論斷了在大尺度觀測下的宇宙該呈現的面貌:.

新!!: 哈勃南天深空和宇宙論原則 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 哈勃南天深空和地球 · 查看更多 »

北半球

北半球(Northern Hemisphere),是指地球赤道以北的半球。 地球上大部份的陸地(亞洲大部份、歐洲全部、非洲北半部、北美洲全部、南美洲極北部)及人口都在北半球。在北半球,冬季通常是1月至3月,夏季通常是7月至9月,與南半球四季相反。 北半球的海洋有北太平洋、北大西洋及北冰洋。 在北半球,朝南向陽。.

新!!: 哈勃南天深空和北半球 · 查看更多 »

哈勃空间望远镜

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.

新!!: 哈勃南天深空和哈勃空间望远镜 · 查看更多 »

哈勃超深空

哈伯深領域(英文:Hubble Ultra Deep Field,HUDF)是一張外太空照片,顯示的是天爐座的一小部份。該照片由哈勃空间望远镜於2003年9月24日至2004年1月16日期間得到的數據累積而成的,相當於113天的曝光。它是截至2006年為止以可見光拍攝的最深遠的宇宙影象,顯示的是超過130億年前的情況。此中估計有10,000個星系。 哈勃超深空中所顯示的範圍為3平方角分,只有全天空12,700,000分之一的面積,位於赤經3h 32m 40.0s,赤緯-27°47' 29"(J2000)天爐座的一小片天區。而照片的左上角則指向天球的北方。選擇這個範圍的理由是因為附近(約為滿月十分之一大小的面積)沒有較光亮的星體。雖然通過紅外線,在地面望遠鏡也能觀測到照片中大部份的物體,但只有通过哈勃空间望远镜才能以可見光觀測這些遙遠的目標。 隨著哈勃空间望远镜在軌道運行共400圈,照片是由800次曝光合成,當中先進巡天照相機(Advanced Camera for Surveys)及近紅外線照相機和多目標分光儀(Near Infrared Camera and Multi-Object Spectrometer)分別累積共11.3天及4.5天的拍攝時間。照片中最暗的星體只有30等,即望远镜每分鐘只接收到一粒來自星體的光子。 根據大爆炸理論,宇宙的年齡有限;而因為遠處星系的光線需要較長時間才到達地球,哈勃超深空有助於人類了解宇宙形成初期星系形成及合併的情況。另外因為照片所呈現的星系都是較為年輕的,故亦發現其性質與地球附近較年老的星系有所不同,這些早期星系發出的光線多為紫外光。然而拍攝的光波波長,因相對論性都卜勒效應關係,照片實際上是拍攝光譜中紅外線部份。.

新!!: 哈勃南天深空和哈勃超深空 · 查看更多 »

哈勃深空

哈伯深空(Hubble Deep Field, HDF)是一張由哈伯太空望遠鏡所拍攝的小區域夜空影像。拍攝位置在大熊座,影像的範圍僅144弧秒,等於是100公尺外的一顆網球。由於拍攝目標太暗淡,整張影像由哈伯太空望遠鏡上的第二代廣域和行星照相機(WFPC2)进行342次曝光疊加而成,拍攝時間是连续10天,从1995年12月18日至12月28日。 HDF所包含的區域幾乎沒有銀河系内的恆星,因而,可見的3,000多個物體全部都是遙遠的星系,其中更包含了目前所知最早、以及最遙遠的星系。通过揭示这样大批非常年轻的星系,HDF已经成为了早期宇宙的研究中具有里程碑意义的图像,在2014年年底被引用于900多篇相关科学论文。 哈伯深空觀測三年之後,哈伯太空望遠鏡於南天的杜鵑座再度以同樣的方式拍攝了哈伯南天深空的影像。兩張影像的雷同之處,使天文學家更加堅定地相信宇宙的星系散佈並非是紊亂的,而有統一的構造。2004年,再度拍攝哈伯超深空(HUDF)影像,从几个月的曝光构建而来,這是人類以可見光觀察宇宙得到最遠的影像。该HUDF图像一直曾经是在可见光波段做的最灵敏天文图像,直到哈伯极深空(XDF)于2012年被发布。.

新!!: 哈勃南天深空和哈勃深空 · 查看更多 »

第二代廣域和行星照相機

二代廣域和行星照相機 (WFPC2)是安裝在哈伯太空望遠鏡上的儀器之一。他是在第一次的維修任務(1993年STS-61太空梭任務)替換掉原來的廣域和行星照相機(WF/PC)。他在1995年拍攝了哈伯深空景象,並在1996年拍攝了沙漏星雲和蛋星雲 。 裝在第二代廣域和行星照相機上的電子耦合放大器(CCD)在電磁頻譜上的工作範圍是120奈米至1,100奈米,涵蓋了可見光領域的380奈米至780奈米,所有近紫外線和小部分的極遠紫外線,還有大多數的近紅外線。CCD的靈敏度大致上是線性的,峰值大約在700奈米,之後就是CCD極端難操作的範圍。第二代廣域和行星照相機由相同的4片CCD組成四個探測器,每個都有800 X 800個畫素。其中的三個安排成L形,組成廣域照相機(WFC)。相鄰的是由第4片CCD構成的行星照相機(PC),視野較狹窄,可以將小區域看得更為仔細。WFC和PC的影像組合在一起,就會形成典型樓梯狀的階梯影像。當處理非科學性的JPEG檔案時,行星照相機的解析度會與廣域照相機相同,但天文文學家接收的檔案是未經處理過的科學圖像,在行星照相機的部分會有更細節更清晰的影像。 WFPC2有一整套的濾鏡,可以讓科學家在電磁頻譜中挑選特殊的波段進行觀測,有一個轉輪可以選擇將不同的濾鏡放置在光路上(在WFPC2開口與CCD之間)。這48個濾鏡的元素包括:.

新!!: 哈勃南天深空和第二代廣域和行星照相機 · 查看更多 »

类星体

類星體 (quasar,,也以QSO或quasi-stellar object為人所知)是極度明亮的活躍星系核(AGN,active galactic nucleus)。大多數星系的核心都有一個超大質量黑洞,它的質量從百萬至數十億太陽質量不等。在類星體和其它形式的活躍星系核,黑洞被氣態的吸積盤環繞著。當吸積盤中的氣體朝向黑洞墬落,能量就會以電磁輻射的形式釋放出來。這些輻射被觀測到可以跨越電波、紅外線、可見光、紫外線、X射線、和γ射線等電磁頻譜的波長。類星體輻射的功率非常巨大:最強大的類星體的光度超過1041 瓦特,是普通星系,例如銀河系,的數千倍。 "類星體"這個名詞源自於準恆星狀電波源(quasi-stellar radio source)的縮寫,因為在20世紀50年代發現這種天體時,被認定為未知物理源的電波發射源。當在可見光的照相圖中篩檢出來時,它們類似可見光的星狀微弱光點。 類星體的高解析影像,特別是哈伯太空望遠鏡,已經證明類星體是發生在星系的中心,一些類星體的宿主星系是強烈的交互作用星系或.

新!!: 哈勃南天深空和类星体 · 查看更多 »

角分辨率

利--,或瑞利--(Rayleigh criterion)表示了一個光學儀器的角分辨度(Angular resolution),最早由瑞利提出。 繞射限制了透鏡的分辨度。透鏡的口徑,可以視為單狹縫的2D版本。經過狹縫的光波干涉,形成所謂的愛里衍射圖樣。這引致圖像模糊。圓孔衍射的光強可寫成: I(\theta).

新!!: 哈勃南天深空和角分辨率 · 查看更多 »

角秒

角秒,又稱弧秒,是量度平面角的單位,即角分的六十分之一,符號為″。在不會引起混淆時,可簡稱作秒。「角秒」二字只限用於描述角度,不能於其他以「秒」作單位的情況使用(如時間)。.

新!!: 哈勃南天深空和角秒 · 查看更多 »

近紅外線照相機和多目標分光儀

近紅外線照相機和多目標分光儀(NICMOS, Near Infrared Camera and Multi-Object Spectrometer)是在1997至1999年和2002年迄今,仍在哈伯太空望遠鏡(HST)上使用於紅外線天文學的科學儀器。 NICMOS是由亞利桑那大學史都華天文台的NICMOS設計小組規劃和設計的儀器,由貝爾航太集團製造的影像和光譜儀,讓HST能觀察波長從0.8至2.4微米的紅外線,以獲得影像和無狹縫光譜。NICMOS擁有三個近紅外線的頻道來獲得高解析(~0.1弧秒)、日冕儀和偏振光的影像,和視野為11、19、和52弧秒平方的無狹縫光譜,每個光學頻道的都有襯以天藍色基底的256 X 256像素紅外線檢測器,以四個獨立的四分之一大小的 128 X128 像素輸出。 NICMOS是在1997年第二次維修任務時與太空望遠鏡影像攝譜儀(STIS)一起安裝的儀器,用來取代兩架早期的儀器。 當量測紅外線時,儀器本身必須冷卻並保持低溫,以避免儀器自身的熱發射出紅外線,NICMOS有一個裝填著固態氮的冰塊,以維持低溫的杜瓦瓶,使探測器冷卻至大約61K,光學濾光器維持約105K。在1997年安裝時杜瓦瓶內有104公斤(230磅)的固態氮,但是在1997年3月4日一次熱量短時間的上升,仍在儀器保固時間之內,使杜瓦瓶儲存的氮氣在預期的1999年1月之前就被耗盡。在2002年3B的維護任務中,哈伯重新安裝了以氖氣循環的冷卻系統,使NICMOS得以繼續工作,且迄今仍在運轉中。.

新!!: 哈勃南天深空和近紅外線照相機和多目標分光儀 · 查看更多 »

赤纬

赤纬(英文Declination;縮寫為Dec;符號為δ)是天文学中赤道座標系統中的两个坐标数据之一,另一个坐标数据是赤经。赤纬与地球上的纬度相似,是纬度在天球上的投影。赤纬的单位是度,更小的单位是“角分”和“角秒”,天赤道为0度,天北半球的赤纬度数为正数,天南半球的赤纬的度数为负数。天北极为+90°,天南极为-90°。值得注意的是正号也必须标明。 例如,织女星的确切赤纬(曆元2000.0)为+38°47'01"。 在观测者天顶的赤纬与該觀測地的纬度相同。.

新!!: 哈勃南天深空和赤纬 · 查看更多 »

赤经

赤經(英文Right ascension;縮寫為RA;符號為α)是天文學使用在天球赤道座標系統內的座標值之一,通过天球两极并与天赤道垂直,另一個座標值是赤緯。.

新!!: 哈勃南天深空和赤经 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: 哈勃南天深空和银河系 · 查看更多 »

恆星形成

恆星形成是分子雲的高密度區崩潰成為球形的電漿形成恒星的過程。作為天文物理的一個分支,恆星形成的研究包括作為前導的星際物質和巨分子雲,到恆星形成過程,早期型恆星和行星形成則是直接的成果。恆星形成的理論,不僅是一顆單獨恆星的形成,還必須統計聯星和初始质量函数。.

新!!: 哈勃南天深空和恆星形成 · 查看更多 »

杜鵑座

杜鵑座是南方的細小星座。它的拉丁名字為Tucana,是大嘴鳥的意思。在1595年至1597年之間由凱澤(Pieter Dirkszoon Keyser)及霍特曼(Frederick de Houtman)所定的。 杜鹃座不是一个显眼的星座,因为所有的恒星都是三等或更暗淡;其中最明亮的恒星杜鵑座α的视星等是2.86。杜鵑座β是一个有六颗成员星的恒星系统,而杜鵑座κ是一个四恒星系统。至今,五个恒星周围已被发现有系外行星。杜鹃座还有全天最亮的球状星团之一杜鹃座47,还有包含大部分小麦哲伦星云。.

新!!: 哈勃南天深空和杜鵑座 · 查看更多 »

月球

没有描述。

新!!: 哈勃南天深空和月球 · 查看更多 »

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

新!!: 哈勃南天深空和星系 · 查看更多 »

星系形成和演化

#重定向 星系的形成和演化.

新!!: 哈勃南天深空和星系形成和演化 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »