目录
25 关系: 寄存器,中央处理器,在线存储,唯讀記憶體,光学,光盘驱动器,CD,CPU缓存,硬盘,磁,磁带,磁带机,磁光碟,磁芯記憶體,磁泡存储器,DVD,随机存取存储器,软盘,闪存盘,電,電腦記憶體,電腦數據存貯器,I/O,揮發性記憶體,打孔卡。
- 媒體技術
- 發聲技術
- 記錄
- 資訊儲存
寄存器
寄存器(Register),是中央處理器內的其中組成部份。寄存器是有限存貯容量的高速存貯部件,它們可用來暫存指令、數據和位址。在中央處理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序計數器。在中央處理器的算術及邏輯部件中,包含的寄存器有累加器。 在電腦架構裡,處理器中的暫存器是少量且速度快的電腦記憶體,藉由提供快速共同地存取數值來加速電腦程式的執行:典型地說就是在已知時間點所作的之計算中間的數值。 暫存器是記憶體階層中的最頂端,也是系統操作資料的最快速途徑。暫存器通常都是以他們可以保存的位元數量來估量,舉例來說,一個8位元暫存器或32位元暫存器。暫存器現在都以暫存器陣列的方式來實作,但是他們也可能使用單獨的正反器、高速的核心記憶體、薄膜記憶體以及在數種機器上的其他方式來實作出來。 這個名詞通常都用來意指由一個指令之輸出或輸入可以直接索引到的暫存器群組。更適當的是稱他們為「架構暫存器」。例如,x86指令集定義八個32位元暫存器的集合,但一個實作x86指令集的CPU可以包含比八個更多的暫存器。.
查看 儲存裝置和寄存器
中央处理器
中央处理器 (Central Processing Unit,缩写:CPU),是计算机的主要设备之一,功能主要是解释计算机指令以及处理计算机软件中的数据。计算机的可编程性主要是指对中央处理器的编程。中央处理器、内部存储器和输入/输出设备是现代电脑的三大核心部件。1970年代以前,中央处理器由多个独立单元构成,后来发展出由集成电路制造的中央处理器,這些高度收縮的元件就是所謂的微处理器,其中分出的中央处理器最為复杂的电路可以做成单一微小功能强大的单元。 中央处理器廣義上指一系列可以执行复杂的计算机程序的逻辑机器。这个空泛的定义很容易地将在“CPU”这个名称被普遍使用之前的早期计算机也包括在内。无论如何,至少从1960年代早期开始,这个名称及其缩写已开始在电子计算机产业中得到广泛应用。尽管与早期相比,“中央处理器”在物理形态、设计制造和具体任务的执行上有了极大的发展,但是其基本的操作原理一直没有改变。 早期的中央处理器通常是为大型及特定应用的计算机而定制。但是,这种昂贵的为特定应用定制CPU的方法很大程度上已经让位于开发便宜、标准化、适用于一个或多个目的的处理器类。这个标准化趋势始于由单个晶体管组成的大型机和微机年代,随着集成电路的出现而加速。IC使得更为复杂的中央处理器可以在很小的空间中设计和制造(在微米的數量级)。中央处理器的标准化和小型化都使得这一类数字设备和電子零件在现代生活中的出现频率远远超过有限应用专用的计算机。现代微处理器出现在包括从汽车到手机到儿童玩具在内的各种物品中。.
查看 儲存裝置和中央处理器
在线存储
#重定向 网络硬盘.
查看 儲存裝置和在线存储
唯讀記憶體
唯讀記憶體(Read-Only Memory,ROM)是一種半導體記憶體,其特性是一旦儲存資料就無法再將之改變或刪除,且內容不會因為電源關閉而消失。在電子或電腦系統中,通常用以儲存不需經常變更的程式或資料,例如早期的家用電腦如Apple II的監督程式 、BASIC語言直譯器、與硬體點陣字型,個人電腦IBM PC/XT/AT的BIOS(基本输入输出系統)與IBM PC/XT的BASIC直譯器,與其他各種微電腦系統中的韌體(Firmware),均儲存在ROM內。.
查看 儲存裝置和唯讀記憶體
光学
光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.
查看 儲存裝置和光学
光盘驱动器
光碟機又稱--或光驅,是電腦、電子遊戲機用來讀写光盘內容的機器。.
查看 儲存裝置和光盘驱动器
CD
--,又稱--(Compact Disc,縮寫:CD),是一種用以儲存數位資料的-zh-hans:光学盘片; zh-hant:光學碟片;-,原被開發用作儲存數位音樂。CD在1982年面世,至今仍然是商業錄音的標準儲存媒體。 在CD尚未發明之前,音響系統都是屬於--,音樂的來源大多是30公分直徑的密紋唱片、收音機以及錄音機等,CD發明之前就沒有數位音響。.
查看 儲存裝置和CD
CPU缓存
在计算机系统中,CPU高速缓存(CPU Cache,在本文中简称缓存)是用于减少处理器访问内存所需平均时间的部件。在金字塔式存储体系中它位于自顶向下的第二层,仅次于CPU寄存器。其容量远小于内存,但速度却可以接近处理器的频率。 当处理器发出内存访问请求时,会先查看缓存内是否有请求数据。如果存在(命中),则不经访问内存直接返回该数据;如果不存在(失效),则要先把内存中的相应数据载入缓存,再将其返回处理器。 缓存之所以有效,主要是因为程序运行时对内存的访问呈现局部性(Locality)特征。这种局部性既包括空间局部性(Spatial Locality),也包括时间局部性(Temporal Locality)。有效利用这种局部性,缓存可以达到极高的命中率。 在处理器看来,缓存是一个透明部件。因此,程序员通常无法直接干预对缓存的操作。但是,确实可以根据缓存的特点对程序代码实施特定优化,从而更好地利用缓存。.
查看 儲存裝置和CPU缓存
硬盘
(Hard Disk Drive,简称HDD)是电脑上使用坚硬的旋转盘片为基础的非挥发性存储设备,它在平整的磁性表面存储和检索数字数据,信息通过离磁性表面很近的磁头,由电磁流来改变极性方式被电磁流写到磁盘上,信息可以通过相反的方式读取,例如读头经过紀錄資料的上方時磁场导致线圈中电气訊號的改变。硬盘的讀寫是採用隨機存取的方式,因此可以以任意順序讀取硬盘中的資料。硬盘包括一至數片高速轉動的磁盘以及放在执行器懸臂上的磁头。 早期的硬盘儲存介质是可替换的,不过今日典型的硬盘采用的是固定的儲存介质,碟片与磁头被封装在机身裡(除了一個有过滤的气孔,用来平衡工作时产生的热量导致的气压差)。 硬盘是由IBM在1956年開始使用,在1960年代初成為通用式電腦中主要的,隨著技術的進步,硬盘也成為服务器及個人電腦的主要組件。.
查看 儲存裝置和硬盘
磁
磁是一种物理现象,磁学是研究磁现象的一个物理学分支,磁性是物質響應磁場作用的性质。磁性表现在順磁性物質或铁磁性物質(如铁钉)會趨向於朝著磁場較強的區域移動,即被磁場吸引;反磁性物質則會趨向於朝著磁場較弱的區域移動,即被磁場排斥;還有一些物質(如自旋玻璃、反鐵磁性等)會與磁場有更複雜的關係。 依照溫度、壓強等參數的不同,物質會顯示出不同的磁性。表现出磁性的物质通称为磁体,原来不具有磁性的物质获得磁性的过程称为磁化,反之称为退磁。磁鐵本身會產生磁場,但本质上磁场是由电荷运动產生,如磁铁内部未配對电子的自旋,会产生磁场,当这些磁场的方向一致时,宏观上就表现为磁性。.
查看 儲存裝置和磁
磁带
磁带(Magnetic tape)是一种非易失性存储介质,由带有可磁化覆料的塑料带状物组成(通常封装为卷起)。由於磁帶是循序存取的裝置,尤为适合傳統的存储和備份以及顺序讀寫大量資料的使用场景。 磁带的类型多种多样,可储存的内容也多种多样。例如,储存視訊的錄影帶,储存音訊的录音带〔包括reel-to-reel tape、紧凑音频盒带(Compact audio cassette)、数字音频带(DAT)、数字线性带(DLT)、8轨软片(8-track cartridges)等等各式各样的磁带〕。用于计算机的磁带在1980年代等早期计算机时代曾被广泛应用,但因為速度較慢,且體積較大等缺點,现在在主要僅用作商業備份等用途。 在中文地区的日常使用中,“磁带”或“录音带”通常指卡式录音带,因为它的应用非常广泛,在2000年代之前常見。 在臺灣,reel-to-reel tape被稱為盤式录音带,Compact audio cassette被稱為卡式录音带,8轨软片(8-track cartridges)被稱為匣式录音带。.
查看 儲存裝置和磁带
磁带机
磁带机(Tape Drive)通常由磁带驱动器和磁带构成,是一种经济、可靠、容量大、速度快的电脑储存备份设备。 一般指单驱动器产品。采用高纠错能力编码技术和写后即读通道技术,可以大大提高数据备份的可靠性。根据装带方式的不同,一般分为手动装带磁带机和自动装带磁带机,即自动加载磁带机。 自动加载磁带机实际上是将磁带和磁带机有机结合组成的。自动加载磁带机是一个位于单机中的磁带驱动器和自动磁带更换装置,它可以从装有多盘磁带的磁带匣中拾取磁带并放入驱动器中,或执行相反的过程。它可以备份100GB-200GB或者更多的数据。自动加载磁带机能够支持例行备份过程,自动为每日的备份工作装载新的磁带。一个拥有工作组服务器的小公司可以使用自动加载磁带机来自动完成备份工作。 目前提供磁带机的厂商很多,IT厂商中HP(惠普)、IBM、Exabyte(安百特)等均有磁带机产品,另外专业的存储厂商如StorageTek、ADIC、Spectra Logic等公司均以磁带机、磁带库等为主推产品。 儘管磁帶機已經退出消費級市場,但是由於經濟、容量大、備份恢復速度不亞於硬碟機而在企業級市場仍有使用。至2015年,IBM製造的磁帶容量已經高達10TB(TS1150磁帶,使用標準磁帶機),(Linear Tape-Open)的LTO-7已經擁有最大6TB的存儲容量,支援現代的高級加密/解密標準,用於伺服器資料備份,同時期的硬碟機最大容量也只有4TB(至2016年方有6TB容量的硬碟機出現,但是售價高昂)。 Category:電腦硬件的歷史 Category:磁器件 Category:基于带的电脑贮存.
查看 儲存裝置和磁带机
磁光碟
磁光碟(magneto-optical disc, MO disc),它的讀取方式是基于克爾效应(Kerr Effect)。磁光碟由对温度敏感的磁性材料制成。Sony推出的用于音乐的MiniDisc,实际上就是一种小型化的磁光碟。 3.5" MO常見的容量.
查看 儲存裝置和磁光碟
磁芯記憶體
磁芯記憶體(Magnetic Core Memory)是一種早期的電腦記憶體。磁芯記憶體是利用磁性材料製成之記憶體,其原理為:將磁環(磁芯)帶磁性或不帶磁性之狀態,用以代表1或0之位元,一長串1或0之組合就代表要儲存之資訊。 磁芯記憶體是一種隨機存取記憶體(Random Access Memory),在電腦中可擔任主記憶體的角色。比起真空管而言,磁芯記憶體省電、也沒有真空管的壽命問題。當電腦進入半導體時代後,仍然有一段相當的時間,磁芯記憶體持續擔任主記憶體的角色。又由於磁芯記憶體是非揮發性記憶體(Non-volatile Memory),它的一個特色是:即使當機或電源中斷,只要沒有發生錯誤的寫入訊號,則仍然可保有其內容。 對磁芯記憶體有重要貢獻的一位是王安博士,他也是王安電腦的創辦人。他發明了讀後即寫(write-after-read cycle),解決了磁芯體應用上的一大重要問題,即讀取同時就會擦除記憶而無法保有資料的難題,後來並取得了相關的專利。 雖然現今使用半導體記憶體已經很久,但有時仍然沿用傳統的名稱,還把記憶體稱為Core,其中一個明顯的例子就是Core Dump:在程式崩溃而異常中斷時,將主記憶體內容保存起來,以作偵錯之用。.
查看 儲存裝置和磁芯記憶體
磁泡存储器
磁泡存储器(Bubble memory)是一种非易失性存储器。它使用了一种较薄的磁性材料制成的胶片来维持小型的磁化区域,这些区域被称作是“磁泡”(bubbles)或者“磁域”(domains),每一个这种区域存储一个位元的数据。磁泡存储器在1970年代出现,但是在1980年代硬盘价格急剧下降的情况下未能获得商业上的成功。.
查看 儲存裝置和磁泡存储器
DVD
#重定向 數碼多功能影音光碟.
查看 儲存裝置和DVD
随机存取存储器
随机存取存储器(Random Access Memory,缩写:RAM),也叫主存,是与CPU直接交换数据的内部存储器。它可以隨時读写(重新整理時除外,見下文),而且速度很快,通常作为操作系统或其他正在运行中的程式的临时資料存储媒介。 主記憶體(Main memory)即電腦內部最主要的記憶體,用來載入各式各樣的程式與資料以供CPU直接執行與運用。由於DRAM的性價比很高,且擴展性也不錯,是現今一般電腦主記憶體的最主要部分。2014年生產電腦所用的主記憶體主要是DDR3 SDRAM,而2016年開始DDR4 SDRAM逐漸普及化,筆電廠商如華碩及宏碁開始在筆電以DDR4記憶體取代DDR3L。.
查看 儲存裝置和随机存取存储器
软盘
在台灣常稱作磁片,是个人电脑設備中,取代磁帶的可移动儲存媒體。第一个软盘是由IBM於1971年開發出的,直徑8吋。隨著硬體技術的發展與使用的需要,又衍生出5.25吋的软盘,並广泛使用在Apple II、IBM PC及其他相容電腦上。蘋果1984年在Mac機開始採用3.5吋軟碟,此時容量还不到1MB,後來,由日本索尼的3.5吋軟碟片容量有1.44MB所取代,這種軟碟片80至90年代盛行,直至2000年代以前,3.5吋軟碟機仍是電腦普及設備之一,之後漸被淘汰。.
查看 儲存裝置和软盘
闪存盘
闪存盘(----、--、--、--、--、--、--、--、--、--、随存、大姆哥、快閃記憶體),發明者尚有争議。它是一種使用USB接口連接计算機,并通常通過闪存來进行數据存储的小型便携存储设备。一般U盘體積極小、重量輕、可重複寫入,面世後迅速普及並取代傳統的軟碟及軟碟機。有時讀卡器也會被歸類為隨身碟,但這類設備的記憶晶片並不是內建的,而是可以抽換的記憶卡。 相較於其他可攜式儲存裝置(尤其是軟碟),U盘有許多優點:較不佔空間、能儲存較多資料、讀寫速度較快、不會因刮傷或發霉而無法使用。這類的USB存储设备使用USB大量儲存裝置標準,在近代的作業系統如Windows、OS X、Linux與Unix中皆有內建支援。 U盘通常使用塑膠或金屬外殼,內部含有一張小的印刷電路板,讓U盘尺寸小到像鑰匙圈飾物一樣能夠放到口袋中,或是串在頸繩上。只有USB連接頭突出於保護殼外,且通常被一個小蓋子蓋住。大多數的U盘使用標準的Type-A USB接頭,這使得它們可以直接插入個人電腦上的USB接口中。 要存取U盘的資料,就必須把U盘連接到電腦;無論是直接連接到電腦內建的USB控制器或是一個USB集線器都可以。只有當被插入USB埠時,U盘才會啟動,而所需的電力也由USB連接埠供給DC+5V。.
查看 儲存裝置和闪存盘
電
電是靜止或移動的電荷所產生的物理現象。在大自然裏,電的機制給出了很多眾所熟知的效應,例如閃電、摩擦起電、靜電感應、電磁感應等等。 很久以前,就有許多術士致力於研究電的現象,但所得到的結果乏善可陳。直到十七和十八世紀,才出現了一些在科學方面重要的發展和突破,不過在那時,電的實際用途並不多。十九世紀末,由於電機工程學的進步,電才進入了工業和家庭裡。從那時開始,日新月異、突飛猛進的快速發展帶給了工業和社會巨大的改變。作為能源的一種供給方式,電有許多優點,這意味著電的用途幾乎是無可限量。例如,交通、取暖、照明、電訊、計算等等,都必須以電為主要能源。進入二十一世紀,現代工業社會的骨幹仍是電能。.
查看 儲存裝置和電
電腦記憶體
電腦記憶體(Computer memory)是一種利用半導體技術制成的儲存資料的電子裝置。其電子電路中的資料以二進位方式儲存,記憶體的每一個儲存單元稱做記憶元。 電腦記憶體可分为内部存储器(简称内存或主存)和外部存储器,其中内存是CPU能直接寻址的存储空间,由半导体器件制成。内存的特点是存取速率快。内存是电脑中的主要部件,它是相对于外存而言的。我们平常使用的程序,如Windows操作系统、打字软件、游戏软件等,一般都是安装在硬盘等外存上的,但仅此是不能使用其功能的,必须把它们调入内存中运行,才能真正使用其功能,我们平时输入一段文字,或玩一个游戏,其实都是在内存中进行的。就好比在一个书房里,存放书籍的书架和书柜相当于电脑的外存,而我们工作的办公桌就是内存。通常我们把要永久保存的、大量的数据存储在外存上,而把一些临时的或少量的数据和程序放在内存上,当然内存的好坏会直接影响电脑的运行速度。.
查看 儲存裝置和電腦記憶體
電腦數據存貯器
電腦數據存貯器,也稱儲存器或記憶體。 在今日,記憶體通常指的是半導體儲存器隨機存取記憶體,特別是動態隨機存取記憶體 (Dynamic-RAM).記憶體是速度快但只能暫時儲存資料的裝置.儲存器是儲存裝置但他們跟中央處理器沒有直接的連結,(第二級儲存裝置或第三級儲存裝置)—例如硬碟,光碟,或是其他裝置,傳輸速度比RAM慢.
查看 儲存裝置和電腦數據存貯器
I/O
I/O(Input/Output),即输入/输出,通常指数据在内部存储器和外部存储器或其他周边设备之间的输入和输出。 輸入/出(英文:Input/Output,簡寫為 I/O)是信息處理系統(例如計算機)與外部世界(可能是人類或另一信息處理系統)之間的通信。輸入是系統接收的信號或數據,輸出則是從其發送的信號或數據。該術語也可以用作行動的一部分;到“執行I/O”是執行輸入或輸出的操作。 輸入/出設備是硬件中由人(或其他系統)使用與計算機進行通信的部件。例如,鍵盤或鼠標是計算機的輸入設備,而監視器和打印機是輸出設備。計算機之間的通信設備(如電信數據機和網卡)通常執行輸入和輸出操作。 將設備指定為輸入或輸出取決於視角。鼠標和鍵盤擷取人類用戶的肢体動作,並將其轉換為計算機可解的輸入信號; 這些設備的輸出是計算機的輸入。同樣,打印機和監視器則用於將計算機處理的過程和結果輸出,並將這些信號轉換為人類用戶能理解的呈現。從用戶的角度來看,閱讀或查看這些呈現的過程則是接受輸入;人機互動主要是在研究了解機器與人類之間這種過程的交互介面。 在現代計算機體系結構中 CPU 可以使用單獨的指令直接讀取或寫入,被認為是計算機的核心。而 CPU 和主存儲器的組合,任何信息傳入或傳出 CPU /內存組合,例如通過從磁盤驅動器讀取數據,就會被認為是 I/O;CPU 及其電路版提供用於低階編程的存儲器映射 I/O,例如在設備驅動程序的實現中,或者提供對 I/O通道的訪問。一個 I/O算法設計是利用內存,而且高效地進行與輔助存儲設備交換數據時,如一個磁盤驅動器。.
查看 儲存裝置和I/O
揮發性記憶體
揮發性記憶體(Volatile memory)是指當電流中斷後,所儲存的資料便會消失的電腦記憶體。不同於非揮發性記憶體 ,后者的電源供應中斷後,記憶體所儲存的資料也不會消失,只要重新供電後,就能夠讀取內存資料。.
查看 儲存裝置和揮發性記憶體
打孔卡
打孔卡又稱穿孔卡、霍列瑞斯式卡(Herman Hollerith)或IBM卡,是一塊紙板,在預先知道的位置利用打洞與不打洞來表示數位訊息。現在幾乎是一個過時的存储器,但其設計轉變成現今常用於考試及彩券投注等用途的光學劃記符號辨識卡片。.
查看 儲存裝置和打孔卡
另见
媒體技術
發聲技術
記錄
資訊儲存
亦称为 主存,数据存储设备。