我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

仿射几何学

指数 仿射几何学

在几何上,仿射几何是不涉及任何原点、长度或者角度概念的几何,但是有两点相减得到一个向量的概念。 它位于欧氏几何和射影几何之间。它是在域K上任意维仿射空间的几何。K为实数域的情况所包含的内容足够使人了解其大部分思想。.

目录

  1. 5 关系: 向量射影几何主齐性空间几何学欧几里得几何

  2. 仿射几何

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

查看 仿射几何学和向量

射影几何

在數學裡,投影幾何(projective geometry)研究在投影變換下不變的幾何性質。與初等幾何不同,投影幾何有不同的設定、投影空間及一套基本幾何概念。直覺上,在一特定維度上,投影空間比歐氏空間擁有「更多」的點,且允許透過幾何變換將這些額外的點(稱之為無窮遠點)轉換成傳統的點,反之亦然。 投影幾何中有意義的性質均與新的變換概念有關,此一變換比透過變換矩陣或平移(仿射變換)表示的變換更為基礎。對幾何學家來說,第一個問題是要找到一個足以描述這個新的想法的幾何語言。不可能在投影幾何內談論角,如同在歐氏幾何內談論一般,因為角並不是個在投影變換下不變的概念,如在透視圖中所清楚看到的一般。投影幾何的許多想法來源來自於對透視圖的理論研究。另一個與初等幾何不同之處在於,平行線可被認為會在無窮遠點上交會,一旦此一概念被轉換成投影幾何的詞彙之後。這個概念在直觀上,正如同在透視圖上會看到鐵軌在水平線上交會一般。有關投影幾何在二維上的基本說明,請見投影平面。 雖然這些想法很早以前便已存在,但投影幾何的發展主要還是到19世紀才開始。大量的研究使得投影幾何變成那時幾何的代表學科。當使用複數的坐標(齊次坐標)時,即為研究複投影空間之理論。一些更抽象的數學(包括不變量理論、代數幾何義大利學派,以及菲利克斯·克萊因那導致古典群誕生的愛爾蘭根綱領)都建立在投影幾何之上。此一學科亦吸引了許多學者,在綜合幾何的旗幟之下。另一個從投影幾何之公理化研究誕生的領域為有限幾何。 投影幾何的領域又可細分成許多的研究領域,其中的兩個例子為投影代數幾何(研究投影簇)及投影微分幾何(研究投影變換的微分不變量)。.

查看 仿射几何学和射影几何

主齐性空间

数学上,对于 群 G的主齐性空间,或者叫 G-旋子(英文:torsor),是一个集合 X, G在其上自由并可递地作用。也即,X是G的齐性空间,满足每个点的定点子群都是平凡群。 在其它范畴中有类似的定义,其中.

查看 仿射几何学和主齐性空间

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

查看 仿射几何学和几何学

欧几里得几何

欧几里得几何指按照欧几里得的《几何原本》构造的几何学。 欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。 数学上,欧几里得几何是指二维平面和三维空间中的几何,基于。数学家也用这一术语表示具有相似性质的高维几何。 其中公設五又稱之為平行公設(Parallel Axiom),敘述比較複雜,這個公設衍生出「三角形內角和等於一百八十度」的定理。在高斯(F., 1777年—1855年)的時代,公設五就備受質疑,俄羅斯數學家羅巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利數學家波約(Bolyai)闡明第五公設只是公理系統的一種可能選擇,並非必然的幾何真理,也就是「三角形內角和不一定等於一百八十度」,從而發現非歐幾里得的幾何學,即非歐幾何(non-Euclidean geometry)。.

查看 仿射几何学和欧几里得几何

另见

仿射几何

亦称为 仿射几何。