目录
岩澤理論
數論中,岩澤理論是理想類群的伽羅瓦模理論,由日本數學家岩澤健吉於1950年代提出,是割圓域理論的一部分。1970年代初,貝利·馬祖爾(Barry Mazur)考慮了岩澤理論在阿貝爾簇上的推廣。到1990年代初,拉爾夫·格林伯格將岩澤理論應用到動形理論(法文:motifs、英文:motives)。.
位置空间与动量空间
位置空间与动量空间是物理学中一对联系紧密的矢量空间。 位置空间(或称实空间、坐标空间)是空间中所有物体的位置向量r的集合。这个空间通常是三维的。位置向量定义了空间中的一个点。如果位置向量随时间会发生变化的话,那么它就可以描绘出一个路径或一个面,如粒子的运动轨迹。 动量空间是空间中所有物体的动量向量的集合。这个空间通常也是三维的。一个物体的动量可以反映它的运动情况。无论在经典力学还是在量子力学中,动量都是非常重要的一个概念。然而,依据量子力学的德布罗意关系,p.
圓周率
圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.
查看 龐特里亞金對偶性和圓周率
列夫·庞特里亚金
列夫·庞特里亚金(Лев Семёнович Понтрягин,),苏联数学家。他生于莫斯科,并在14岁时因为爆炸中失明。1924年進入莫斯科國立大學,1928年畢業,1935獲得同校數學、物理博士學位。虽然双目失明,他在母亲塔季扬娜·安德烈耶夫娜(Татьяна Андреевна,Tatyana Andreevna)的帮助下成为数学家,是她为他阅读数学书籍。他在很多数学领域作出了巨大的贡献,包括代数拓扑与微分拓扑,1938年發表多項重要論文,獲得列宁奖(1962)、苏联国家奖(1975)等前蘇聯高等榮譽。.
傅里叶变换
傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.
傅里叶分析
傅里叶分析,是数学的一个分支领域。它研究如何将一个函数或者信号表达为基本波形的叠加。它研究并扩展傅里叶级数和傅里叶变换的概念。基本波形称为调和函数,调和分析因此得名。在过去两个世纪中,它已成为一个广泛的主题,并在诸多领域得到广泛应用,如信号处理、量子力学、神经科学等。 定义于Rn上的经典傅里叶变换仍然是一个十分活跃的研究领域,特别是在作用于更一般的对象(例如缓增广义函数)上的傅里叶变换。例如,如果在函数或者信号上加上一个分布f,我们可以试图用f的傅里叶变换来表达这些要求。Paley-Wiener定理就是这样的一个例子。Paley-Wiener定理直接蕴涵如果f是紧支撑的一个非零分布,(这包含紧支撑函数),则其傅里叶变换从不拥有紧支撑。这是在调和分析下的测不准原理的一个非常初等的形式。参看经典调和分析。 在希尔伯特空间,傅里叶级数的研究变得很方便,该空间将调和分析和泛函分析联系起来。.
倒易点阵
倒易点阵(reciprocal lattice),又称倒(易)晶格、倒(易)格子,是物理学中描述空间波函数的傅立叶变换后的周期性的一种方法。相对于正晶格所描述的实空间周期性,倒晶格描述的是动量空间,亦可认为是k空间的周期性。根据位置和动量所满足的庞特里亚金对偶性,布拉菲晶格的倒晶格仍然是一种布拉菲晶格,而倒晶格的倒晶格就会变回原始晶格(正晶格)。.
緊群
在數學中,緊群是其拓撲為緊緻的的拓撲群。緊群是帶有離散拓撲的有限群的自然推廣,并以顯著方式延續了一些性質。緊群的理論已被人们深入研究,與群作用和群表示論有關。 下面我們假定所有群都是豪斯多夫空間,因為這個覆蓋了所有有價值的情況。.
查看 龐特里亞金對偶性和緊群
表示论
表示論是數學中抽象代數的一支。旨在將抽象代数结构中的元素「表示」成向量空間上的線性變換,并研究这些代数结构上的模,藉以研究結構的性質。略言之,表示論將一代數對象表作較具體的矩陣,並使得原結構中的代数运算對應到矩陣加法和矩陣乘法。此法可施於群、結合代數及李代數等多種代數結構;其中肇源最早,用途也最廣的是群表示論。設G為群,其在域F(常取複數域F.
查看 龐特里亞金對偶性和表示论
賦值向量環
在數論中,賦值向量環或阿代爾環(法文:adèle,英譯多用原文)是由一個域 F 的所有完備化構成的拓撲環 \mathbb_F,原域 F 可以對角方式嵌入其中。 在現代代數數論中,賦值向量環是處理整體問題的基本語言。 法文原文 adèle 是 idèle additif 的縮寫,其中 idèle 意指理想元(élément idéal)。adèle 也是法文中常見的女性名字。.
黎曼-勒贝格定理
在数学分析中,黎曼-勒贝格定理(或黎曼-勒贝格引理、黎曼-勒贝格积分引理)是一个傅里叶分析方面的结果。这个定理有两种形式,分别是关于周期函数(傅里叶理论中关于傅里叶级数的方面)和关于在一般实数域\mathbb上定义的函数(傅里叶变换的方面)。在任一种形式下,定理都说明了可积函数在傅里叶变换后的结果在无穷远处趋于0。这个结果也可以适用于局部紧致的阿贝尔群。.
阿贝尔群
阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.
亦称为 龐特里亞金對偶定理。