徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

點粒子

指数 點粒子

點粒子是物理裡頭常使用的一種粒子理想化的概念。 其主要的特色是維度為零,不佔有空間。 當情況在與物體的大小、形狀、結構無關時,點粒子是一個合適的描述。 舉例而言,只要離得夠遠,形狀任意的物體都會看似於一個點。 在討論重力時,物理學家習慣用一個「點質量」去描述一個具有質量但不具有結構的粒子。 類似的情況,在電磁作用中「點電荷」代表一個帶電荷的粒子。 有時由於特殊的組成性質,即使相距不遠,物體仍可視作為點粒子。 例如一個其交互作用遵守平方反比定律的球形物體,它的作用等同全部的物質集中在球心的點上。 在牛頓重力和古典電磁學中,在球面之外的場等同一個位於球心的具有相同質量/電荷的點粒子產生的場。 I. Newton, A. Motte, J. Machin (1729), p. 270–271 在量子力學裡,這個概念變得比較複雜。 由於海森堡的不確定性原理,一個不具有結構的粒子所佔據的空間仍不為零。 例如一個氫原子軌道上的電子,其所占據的空間約 10-30 m3 。 此外,這當中電子與夸克這類的不具結構基本粒子與質子這類具有結構的複合粒子(質子由三個夸克構成)也有所不同。 基本粒子有時也被稱作「點粒子」,但這與上面討論的概念不同。 (細節請見基本粒子).

9 关系: AdS/CFT对偶吻切軌道夸克保罗·狄拉克电子狄拉克δ函数阿尔伯特·爱因斯坦膜 (物理學)自旋

AdS/CFT对偶

在理論物理學中,AdS/CFT對偶(AdS/CFT correspondence)又稱馬爾達西那對偶(Maldacena duality)和規範/重力對偶(gauge/gravity duality),全稱為反德西特/共形場論對偶(Anti-de Sitter/Conformal Field Theory correspondence),是兩種物理理論間的假想聯繫。對偶的一邊是共形場論,是量子場論的一種,量子場論中還包括與描述基本粒子的楊-米爾斯理論相近的其他理論。而對偶的另一邊則是反德西特空間(AdS),是用於量子重力理論的空間。 此對偶代表着人類理解弦理論和量子重力的重大躍進。這是因為它為某些邊界條件的弦理論表述提供了非微擾表述。同時也因為它是全息原理最成功的展演,全息原理是量子重力的概念,最初由傑拉德·特·胡夫特提出,之後由李奧納特·蘇士侃改良及提倡。 它亦為強耦合量子場論提供了強大的研究工具。此對偶的有用之處主要是在於它是一種强弱對偶;量子場論中的場有着很強的相互作用,而重力場的相互作用則很弱,因此在數學上也比較容易對付。所以在核物理與凝聚態物理學的研究中可以利用這對偶,將該領域的難題轉譯成數學上較易於對付的弦理論難題。 AdS/CFT對偶最早由胡安·馬爾達西那於1997年末提出。而對偶的重要方面則由另外兩篇論文詳述,一篇是由、和亞歷山大·泊里雅科夫合著的,另一篇則是愛德華·威滕所撰寫。截至2015年,馬爾達西那的論文被超過10,000篇其他論文引用,名列高能物理領域引用次數的首位。.

新!!: 點粒子和AdS/CFT对偶 · 查看更多 »

吻切軌道

吻切軌道(osculating orbit)是太空中的天體在給定時間瞬間的克卜勒軌道(即橢圓或其他二次曲線)。這是在天文學,特別是天文動力學,當中心的天體不受到攝動時,這就是當前的軌道向量狀態(位置和速度)的軌道。 一個吻切軌道和該天體的位置能以六個標準的克卜勒的軌道要素(吻切要素)充分的描述,只要知道相對於中心天體的位置和速度,就很容易計算。在沒有攝動的情形下,吻切要素將保持不變。然而,真正的天體軌道都會經歷攝動,這會導致吻切要素的改變,而且有時會非常的快速。在一般性運動(因為它們主要是行星、月球和其他行星的衛星)的天體力學分析中通常會排除,可以由一組平均要素與長期和週期性的項目描述。在小行星的情況,已經展出一套新的自身軌道要素系統,使它們軌道最重要的形式能夠呈現。 "吻切"這個字源自拉丁文,意思就是吻,它是用於文章前後實質的關聯上。在時間上的任何一點,一個天體的吻切軌道是與它真實軌道相切的,天體就位於這個切點上--並且如果將攝動移除掉,會有著相同的曲率。 攝動導致吻切軌道的改變可以肇因於:.

新!!: 點粒子和吻切軌道 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

新!!: 點粒子和夸克 · 查看更多 »

保罗·狄拉克

保羅·埃德里安·莫里斯·狄拉克,OM,FRS(Paul Adrien Maurice Dirac,),英国理論物理學家,量子力學的奠基者之一,曾經主持劍橋大學的盧卡斯數學教授席位,並在佛羅里達州立大學度過他人生的最後十四個年頭。 狄拉克在物理學上有諸多開創性的貢獻。他統合了維爾納·海森堡的矩陣力學和埃爾溫·薛定谔的波動力學,發展出了量子力學的基本數學架構。他給出的狄拉克方程式可以描述费米子的物理行為,解釋了粒子的自旋,並且首先預測了反粒子的存在。而他在路徑積分和二次量子化也扮演了的先驅者的角色,為後來量子電動力學的發展奠定了重要的基礎。此外,他將拓扑的概念引入物理學,提出了磁單極的理論。 1933年,因為“發現了在原子理論裡很有用的新形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程),狄拉克和薛丁格共同获得了诺贝尔物理学奖,是當時史上最年輕獲獎的理論物理學家。.

新!!: 點粒子和保罗·狄拉克 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 點粒子和电子 · 查看更多 »

狄拉克δ函数

在科學和數學中,狄拉克函數或簡稱函數(譯名德爾塔函數、得耳他函數)是在實數線上定義的一個廣義函數或分佈。它在除零以外的點上都等於零,且其在整個定義域上的積分等於1。函數有時可看作是在原點處无限高、无限细,但是总面积为1的一個尖峰,在物理上代表了理想化的質點或点电荷的密度。 從純數學的觀點來看,狄拉克函數並非嚴格意義上的函數,因為任何在擴展實數線上定義的函數,如果在一個點以外的地方都等於零,其總積分必須為零。函數只有在出現在積分以內的時候才有實質的意義。根據這一點,函數一般可以當做普通函數一樣使用。它形式上所遵守的規則屬於的一部分,是物理學和工程學的標準工具。包括函數在內的運算微積分方法,在20世紀初受到數學家的質疑,直到1950年代洛朗·施瓦茨才發展出一套令人滿意的嚴謹理論。嚴謹地來說,函數必須定義為一個分佈,對應於支撐集為原點的概率測度。在許多應用中,均將視為由在原點處有尖峰的函數所組成的序列的極限(),而序列中的函數則可作為對函數的近似。 在訊號處理上,函數常稱為單位脈衝符號或單位脈衝函數。δ函數是對應於狄拉克函數的離散函數,其定義域為離散集,值域可以是0或者1。.

新!!: 點粒子和狄拉克δ函数 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 點粒子和阿尔伯特·爱因斯坦 · 查看更多 »

膜 (物理學)

弦論與相關的超重力理論中,膜(brane)為一物理實體,將點粒子的概念推廣至更高維度。舉例來說,點粒子可以視為零維的膜,而弦則可視為一維的膜;更高維的膜也可能存在。在p維度的情形,這些膜稱為p膜。膜的英文字brane源於另個英文字membrane,後者指的是二維膜。格雷格·穆爾 (2005) 膜是動力學物體,在時空中行進,所根據的是量子力學的規則。它們帶有質量與其他性質,例如電荷。一個p膜的行進在時空中掃出了(p+1)維度的體積,稱之為世界體積(worldvolume)。物理學家研究類似於電磁場的場物理,這些場存在於膜的世界體積。 弦論中,D膜為一類重要的膜,與開弦有關。當開弦在時空中行進,開弦的端點必須在D膜上。D膜的字母D表示一項數學條件,稱作狄利克雷邊界條件。D膜的研究導出重要的成果,比如AdS/CFT對偶,在量子場論的許多問題中具有重要角色。.

新!!: 點粒子和膜 (物理學) · 查看更多 »

自旋

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.

新!!: 點粒子和自旋 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »