我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

電磁波譜

指数 電磁波譜

在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.

目录

  1. 138 关系: Astrosat加爾尼群原子原子分子与光物理学假色卡爾·史瓦西可见光右樞參宿四吸收光谱学多信道多点分发服务大爆炸天體光譜學天文學天文學辭彙太阳太阳光太陽天文學年表太陽常數太陽輻射外层空间奥古斯托·里吉射电天文学巴耳末系布拉克系三角座星系乔治·斯托克斯亚当·斯特兰奇亨利·莫塞莱伽馬射線天文學微波微波聽覺效應徑向速度土地 (經濟學)地球物理学地理学國際紫外線探測衛星分光光度法哈勃空间望远镜再電離冰雪圈元素分析光学仪器光學頻譜光电二极管光物理學C-型小行星火卫二火星的衛星... 扩展索引 (88 更多) »

Astrosat

Astrosat是印度的第一個多波段空间望远镜,於2015年9月28日由PSLV-XL火箭發射。.

查看 電磁波譜和Astrosat

加爾尼群

加爾尼群是木星的一群逆行不規則衛星,它們遵循與加爾尼相似的軌道和有著共同的來源。 它們的半長軸 (與木星的距離) 範圍在22.9至24.1Gm,它們的軌道傾角在164.9° 至165.5°,還有離心率在0.23至0.27之間 (除了一顆之外)。 核心的成員包括 (由大至小) Scott S.

查看 電磁波譜和加爾尼群

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

查看 電磁波譜和原子

原子分子与光物理学

原子分子与光物理學是研究物质之间,或光与物质的相互作用, 其研究尺度約一至數個原子,能量尺度約幾個電子伏特。 这三个物理学的领域研究通常是紧密关联的。 原子分子与光物理學使用经典物理学、半经典物理学、与量子物理学的研究方法。 通常情況下,此理論的應用包含原子发射或吸收光子、激发态原子和分子的电磁辐射和散射,光谱分析,激光和激微波的产生,以及对物质光学性质的研究。.

查看 電磁波譜和原子分子与光物理学

假色

假色是指在一幅影像中使用與全彩不同的顏色描述一項物體。.

查看 電磁波譜和假色

卡爾·史瓦西

卡尔·史瓦西(Karl Schwarzschild,),德国天文学家、物理学家,台长(1909-1914),普鲁士科学院院士(1912年当选),德裔美籍天体物理学家马丁·史瓦西的父亲。 史瓦西是理论天体物理学创始阶段的关键人物之一。他在摄影光度学、恆星大氣層理论、广义相对论以及旧量子论等领域都有建树。爱因斯坦场方程第一个也是最重要的精确解,预测黑洞存在的史瓦西解是以他的名字命名的。.

查看 電磁波譜和卡爾·史瓦西

可见光

可見光(Visible light)是電磁波譜中人眼可以看見(感受得到)的部分。這個範圍中電磁輻射被稱為可見光,或簡單地稱為光。人眼可以感受到的波長範圍一般是落在390到700nm。對應於這些波長的頻率範圍在430–790 THz。但有一些人能够感知到波长大约在380到780nm之间的电磁波。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。.

查看 電磁波譜和可见光

右樞

右樞(天龍座α)也稱為紫微右垣一,是在天龍座內的一顆恆星。雖然在北半球的天空中不是一顆耀眼的恆星,但在歷史由于曾身為北極星而十分重要。 雖然在拜耳命名法中稱為天龍座α星,但是視星等只有3.65等,比座中最亮的天龍座 γ星(2.23等)暗了許多,在有光污染的環境下經常會看不見。在天龍座中排序在第一,完全是因為他曾經是北極星的緣故。 在良好的觀星環境下,右樞很容易經由大熊座的北斗七星在群星中間找到。許多人都知道利用北斗七星勺口外側的天樞(大熊座α)和天璇(大熊座β)兩顆星可以找到現在的北極星,但是鮮有人知道內側的天璣(大熊座γ)和天權(大熊座δ)的連線指向右樞,就在天權前方7.5度之處。.

查看 電磁波譜和右樞

參宿四

参宿四(Betelgeuse),也就是拜耳命名法中著名的獵戶座α(α Orionis或α Ori),是全天第九亮星,也是獵戶座第二亮星,只比鄰近的参宿七(獵戶座β)暗淡一點。它有著明顯紅色的半規則變星,視星等在0.2至1.2等之間變化著,是變光幅度最大的一等星。這顆恆星標示著冬季大三角的頂點和冬季六邊形的中心。 在分類上,参宿四是一顆紅超巨星,並且是已知最大和最亮的恆星之一。如果它位於太陽系的中心,它的表面會超越小行星帶,並可能抵達並超越木星的軌道,完全地席捲掉水星、金星、地球和火星。但是,在上個世紀對参宿四的距離估計從180光年至1,300光年不等,因此對其直徑、光度和質量的估計是很難被證實的。目前認為参宿四的距離大約是640光年,平均的絕對星等是-6.05。 而事实上,有关参宿四的质量始终有争议,有的资料显示它的质量不过太阳的14至15倍,但也有的资料认为它的质量达到太阳的18至19倍甚至20倍的,而这种质量的不确定性,正是由于测量距离的不确定性造成的。 在1920年,参宿四是第一顆被測出角直徑的恆星(除太陽之外)。從此以後,研究人員不斷使用不同的技術參數和望遠鏡測量這顆巨星的大小,而且經常產生衝突的結果。目前估計這顆恆星的視直徑在0.043~0.056角秒,作為一個移動的目標,参宿四似乎周期性的改變它的形狀。由於周邊昏暗、光度變化(變星脈動理論)、和角直徑隨著波長改變,這顆恆星仍然充滿了令人費解的謎。参宿四有一些複雜的、不對稱的包層,引起巨大的質量流失,涉及從表面向外排出的龐大冠羽狀氣體,使事情變得更為複雜。甚至有證據指出在它的氣體包層內有伴星環繞著,可能加劇了這顆恆星古怪的行為。 天文學家認為参宿四的年齡只有1,000萬年,但是因為質量大而演化得很快。它被認為是來自獵戶座OB1星協的奔逃星,還包含在獵戶腰帶的参宿一、参宿二、和参宿三等0和B型晚期恆星的集團。以現行恆星演化的晚期階段,預料参宿四在未來的數百萬年將爆炸成為II型超新星,並變成一顆中子星。.

查看 電磁波譜和參宿四

吸收光谱学

吸收光谱学是指一门光谱学技术,它通过测量电磁辐射的吸收,形成频率或波长对与试样交互的函数。试样从辐射域吸收能量,如光子。吸收强度的变化与频率构成函数关系,这种变化就是吸收光谱。吸收光谱学也应用于整个电磁波谱。 吸收光谱学被用作分析化学的工具,它可以确定试样中是否存在某种特殊物质,以及在许多情况下量化该物质存在的数量。红外和紫外-可见光光谱学是分析应用中特别常见的。吸收光谱学也被用于分子和原子物理学、天文光谱学和遥感的研究。 测量吸收光谱的实验方法很多。最常见的方法是将产生的无线电波导向试样,并探测透射电波的强度。透射的能量可以用来计算吸收。辐射源、试样布置和探测技术的选择,很大程度上依赖于频率范围和实验目的。.

查看 電磁波譜和吸收光谱学

多信道多点分发服务

多信道多点分发服务(Multichannel Multipoint Distribution Service,缩写MMDS),旧称宽带无线电服务(Broadband Radio Service,缩写BRS),也称无线电缆(Wireless Cable),是一个无线电信技术,用于通用目的的寬頻网络,或作为有线电视节目接收的替代方案。 MMDS技术在苏丹、美国、加拿大、墨西哥、多明尼加、冰岛、爱尔兰、乌克兰、俄罗斯、斯洛伐克、玻利維亞、巴西、巴巴多斯、澳大利亚、葡萄牙、馬德拉、捷克、奈及利亞、巴基斯坦、巴拿马、斯里蘭卡、泰国、乌拉圭、印度、白俄罗斯、黎巴嫩、柬埔寨、哈萨克斯坦和吉尔吉斯斯坦有被使用。它常用于人口稀少而铺设电缆在经济上不可行的乡村地区。一些公司也可能在城市地区提供MMDS服务,值得注意的是,2016年爱尔兰淘汰了MMDS。.

查看 電磁波譜和多信道多点分发服务

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

查看 電磁波譜和大爆炸

天體光譜學

天體光譜學是天文學使用的光譜學技術。研究天體的電磁輻射光譜,包括可見光,是來自恆星和其它天體的輻射。光譜學可以用來推導出遠距離恆星和星系的許多性質,像是它們的化學組成,但也可以從都卜勒頻移測量它們的運動。.

查看 電磁波譜和天體光譜學

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

查看 電磁波譜和天文學

天文學辭彙

天文學辭彙是天文學上的一些術語。這項科學研究與關注的是在地球大氣層之外的天體和現象。天文學的領域有豐富的辭彙和大量的專業術語。.

查看 電磁波譜和天文學辭彙

太阳

太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.

查看 電磁波譜和太阳

太阳光

太陽光,廣義的定義是來自太陽所有頻譜的電磁輻射。在地球,陽光顯而易見是當太陽在地平线之上,經過地球大氣層過濾照射到地球表面的太陽輻射,則稱為日光。 當太陽輻射沒有被雲遮蔽,直接照射時通常被稱為陽光,是明亮的光線和輻射熱的組合。世界氣象組織定義「日照時間」是指一個地區直接接收到的陽光輻照度在每平方公尺120瓦特以上。 陽光照射的時間可以使用陽光錄影機、全天空輻射計或日射強度計來記錄。陽光需要8.3分鐘才能從太陽抵達地球。 直接照射的陽光亮度效能約有每瓦特93流明的輻射通量,其中包括紅外線、可見光和紫外線。明亮的陽光對地球表面上提供的照度大約是每平方米100,000流明或 100,000勒克司。陽光是光合作用的關鍵因素,對於地球上的生命至關重要。.

查看 電磁波譜和太阳光

太陽天文學年表

這是太陽的天文學年表,記錄人類有關太陽的發現。.

查看 電磁波譜和太陽天文學年表

太陽常數

太陽常數是太陽電磁輻射的通量,也就是距離太陽一天文單位處(約為地球離日平均距離),單位面積受到垂直入射的平均太陽輻射強度。太陽常數包括所有形式的太陽輻射,不是只有可見光。由人造衛星測出的最小值約1.361 kW/m²,最大值約為1.362 kW/m²,差了1%。太陽常數並不是科學技術數據委員會頒布的真正不變的物理常數,而只是一個變動值的平均,在過去400年間變動小於0.2%。http://lasp.colorado.edu/home/sorce/data/tsi-data/ Total Solar Irradiance Data,.

查看 電磁波譜和太陽常數

太陽輻射

太陽輻射(Solar radiation)指太陽從核融合所產生的能量,經由電磁波傳遞到各地的輻射能。太陽輻射的光學頻譜接近溫度5800K的黑體輻射。大約有一半的頻譜是電磁波譜中的可見光,而另一半有紅外線與紫外線等頻譜。如果紫外線沒有被大氣層或是其他的保護裝置吸收,它會影響人體皮膚的色素的變化。 測量上通常都用全天日射計與銀盤日射計(Silver-disk pyrheliometer)等儀器來測量太陽輻射。.

查看 電磁波譜和太陽輻射

外层空间

-- --(outer space),於中國大陸稱外層空間,指的是地球大氣層及其他天體之外的虛空區域。 與真空有所不同的是,外太空含有密度很低的物質,以等離子態的氫為主。其中還有電磁輻射、磁場等。理論上,外層空間可能還包含暗物質和暗能量。 外太空與地球大气层並沒有明確的界線,因為大氣隨著海拔增加而逐漸變薄。假設大氣層温度固定,大氣壓會由海平面的大約1013毫巴,隨著高度增加而呈指數化減少至零為止。 国际航空联合会定義在100公里的高度為卡門線,為現行大氣層和太空的界線定義。美國認定到達海拔80公里的人為太空人,在太空船重返地球的過程中,120公里是空氣阻力開始發生作用的界線。.

查看 電磁波譜和外层空间

奥古斯托·里吉

奥古斯托·里吉 (Augusto Righi,),意大利物理学家,电磁学研究的先驱。磁滞现象發現者。.

查看 電磁波譜和奥古斯托·里吉

射电天文学

無線電天文學是天文學的一個分支,通過電磁波頻譜以無線電頻率研究天體。無線電天文學的技術與光學相似,但是無線電望遠鏡因為觀察的波長較長,所以更為巨大。這個領域的起源肇因於發現多數的天體不僅輻射出可見光,也發射出無線電波。 从天体而来的无线电波的初步探测是在1930年代当卡尔·央斯基观察到从银河到来的辐射。随后观察已经确定了一些不同的无线电发射源。这些包括恒星和星系,以及全新的天体种类,如電波星系,类星体,脉冲星和微波激射器。宇宙微波背景辐射的发现被视为通过射电天文学而被做出大爆炸理论的证据。.

查看 電磁波譜和射电天文学

巴耳末系

巴耳末系或巴耳末線是原子物理學中氫原子六個發射譜線系列之一的名稱。 巴耳末系的計算可以使用約翰·巴耳末在1885年發現的巴耳末公式- 一個經驗式。 來自氫原子所發射的光譜線在可見光有4個波長:410奈米、434奈米、486奈米和656奈米。它們是吸收光子能量的電子進入受激態後,返回主量子數n等於2的量子狀態時釋放出的譜線。.

查看 電磁波譜和巴耳末系

布拉克系

布拉克系是物理學上氫原子的電子從主量子數n大於等於5躍遷至 n.

查看 電磁波譜和布拉克系

三角座星系

三角座星系是位於三角座,距離地球大約300萬光年的一個螺旋星系。它被編入梅西爾 33或NGC 598。三角座星系繼仙女座星系和銀河系之後,是本星系群第三大的星系。它是長久以來以肉眼可以看見的最遙遠天體。 這個星系是本星系群中最小的螺旋星系,並且因為與仙女座星系的有交互作用、速度,與在夜空中互相靠近而被認為是仙女座星系的一個衛星星系。.

查看 電磁波譜和三角座星系

乔治·斯托克斯

乔治·加布里埃尔·斯托克斯爵士,第一代從男爵,FRS(Sir George Gabriel Stokes, 1st Baronet,),愛爾蘭數學家和物理學家,就讀和任教於劍橋大學,主要貢獻在流體動力學(如纳维-斯托克斯方程)、光學和數學物理學(如斯托克斯公式)。他曾任皇家學會秘書和會長。.

查看 電磁波譜和乔治·斯托克斯

亚当·斯特兰奇

亚当·斯特兰奇(Adam Strange)是一个由DC漫画出版的虚构超级英雄。该人物由作家加德纳·福克斯与艺术家迈克·塞科斯基共同创作,首次面世于《陈列橱 #17》(1958年11月)。.

查看 電磁波譜和亚当·斯特兰奇

亨利·莫塞莱

亨利·格溫·傑弗里·莫塞莱(Henry Gwyn Jeffreys Moseley,),英国物理学家和化学家。莫塞莱对物理学和化学做出的最重大的贡献就是打破先前物理学理论的成见,发现了原子序数这一概念。莫塞莱定律通过对元素周期表中的元素的正确排列,修正了化学中的众多基础概念。 当玻尔为重构氢原子结构而创立了玻尔模型的同时,莫塞莱定律也首次通过实验验证了该模型,极大地推动了物理学的发展。这一理论完善了欧内斯特·卢瑟福和安东尼斯·范登布勒克的模型,后者设想元素周期表中的元素序数等于原子核中的有效核电荷数量。至今为止,莫塞莱定律仍得到物理学界的普遍认可。 第一次世界大战爆发后,莫塞莱毅然离开了牛津大学的研究室,成为英军的皇家工兵的一名志愿兵。1915年4月,他作为负责电话通讯的军官,受命前往土耳其的加里波利半岛。同年8月10日,他在加里波利之战中被敌军开枪击中死亡,年仅27岁。当时多位人士都感慨,如果莫塞莱能够幸存到1916年,他将极有可能获得诺贝尔物理学奖。.

查看 電磁波譜和亨利·莫塞莱

伽馬射線天文學

伽馬射線天文學是指以伽馬射線研究宇宙的天文學分支。伽馬射線是可穿透整個宇宙的電磁波中最高能量的波段,也是電磁波譜中波長最短的部分。 伽馬射線可由太空中的超新星、正電子湮滅、黑洞形成、甚至是放射衰變產生。例如超新星SN 1987A就發射了來自超新星爆炸的放射性產物鈷56釋放的伽馬射線。大多數天體釋放的伽馬射線一般認為並非來自放射衰變,而是和X射线天文学一樣來自加速的電子、電子和正電子作用(但因為能量較高而產生伽馬射線)。.

查看 電磁波譜和伽馬射線天文學

微波

微波(Microwave,Mikrowellen)是指波长介于红外线和無線電波之间的电磁波。微波的頻率范围大约在 300MHz至300GHz之間。所對應的波長為1公尺至1mm之间。微波频率比无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性。微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。 微波在雷达科技、ADS射线武器、微波炉、等离子发生器、无线网络系统(如手机网络、蓝牙、卫星电视及無線區域網路技术等)、传感器系统上均有广泛的应用。 在技术领域协定使用的四个频率分别为800MHz、2.45GHz、5.8GHz和13GHz。微波炉使用2.45GHz,此频率亦被作为ISM頻段(工業、科學及醫學用波段),使用在航空通讯领域。.

查看 電磁波譜和微波

微波聽覺效應

微波聽覺效應,又稱弗雷效應,是指由脈沖或調變微波作用於人腦時,會產生出可聽喀嚓聲(或經過調變處理的完整字詞)的現象。由於喀嚓聲是直接在人腦中生成,因此不需要任何電子接收裝置。這個效應最早的報告,是出自二戰期間在雷達詢答器附近工作的人員。這種效應導致的聲音附近的其他人是聽不見的。後來發現微波聽覺效應是由電磁波譜中,波長較短的無線電波所引起的。在冷戰期間,美國神經學家艾倫·H·弗雷(Allen H.

查看 電磁波譜和微波聽覺效應

徑向速度

视向速度是物體朝向視線方向的速度。一個物體的光線在徑向速度上會受多普勒效应的支配,退行的物體光波長將增加(紅移),而接近的物體光波長將減少(藍移)。 恆星的徑向速度,能夠經由高解析的光譜精確的測量,並且和在實驗室內測出的已知譜線波長做比較。在習慣上,正的徑向速度表示物體在退行,如果是負值,物體則是在接近。 在許多聯星中,軌道運動通常都會造成每秒數公里的徑向速度改變量。這些恆星譜線的變化肇因於都卜勒效應,因此她們被稱為光譜聯星。研究徑向速度可以估計恆星的質量和一些軌道要素,像是離心率、半長軸。同樣的方法也被用在發現環繞恆星的行星上,在這種方法下測量的運動可以確定行星的軌道週期,而位移量的大小可以用來計算行星的質量。.

查看 電磁波譜和徑向速度

土地 (經濟學)

在經濟學中,土地(land)概括了所有自然資源,包括地理位置、土壤、礦產、森林、漁業資源、水資源、空氣品質、地球靜止軌道、電磁波譜、太陽等。土地是一種生產要素,是所有商品與資本財生產的基本要件。土地的供給,在本質上是固定的;擁有自然資源帶來的收益,稱為地租(Rent)。土地經濟學以土地為研究主題。 Category:经济学 Category:自然資源 Category:生產要素.

查看 電磁波譜和土地 (經濟學)

地球物理学

地球物理学(Geophysics)是透過定量物理方法研究地球的自然科學学科。通常使用地震波、重力、电磁、地熱和放射能等方法。狹義的地球物理學專指地質學上的應用,包括地球的形狀; 重力場和磁場; 內部結構和組成; 動力學和板塊構造; 岩漿的產生; 火山活動和岩石形成等。不過現代地球物理學組織使用更廣泛的定義,包括了冰和水在內的水循環; 海洋和大氣的流體動力學; 電離層和磁層中的電磁特性與日地關係; 以及月球和其他行星相關的類似問題。 雖然地球物理學在19世紀才被認為是一門獨立的學科,但起源可以追溯到古代。最早人類開始以天然磁石製作成指南針。公元132年張衡建立了第一台檢驗地震的儀器。艾薩克·牛頓將他的力學理論應用於潮汐和歲差,並開發了儀器來測量地球的形狀、密度和重力場,以及水循環的流程。 20世紀以來,發展出使用遠距離探測固體地球和海洋的地球物理學方法,地球物理學對於板塊構造理論的發展影響相當大。 地球物理學有許多對於社會需求的應用,如礦產資源、自然災害預防和環境保護 。地球物理勘測數據則用於分析潛藏的油氣和礦脈; 地下水層定位;尋找考古遺跡;確定冰川和土壤的厚度;評估的場址等等。.

查看 電磁波譜和地球物理学

地理学

地理學是關於地球及其特徵、居民和現象的學問。它是研究地球表層各圈層相互作用關係,及其空間差異與變化過程的學科體系。 地理學家在傳統上被視為和地圖學家同一類,認為兩者都研究地名與數字。雖然很多地理學家都經歷過地名學及地圖學的訓練,但兩者都不是他們的關注重點。地理學家研究眾多現象、過程、特徵以及人類和自然環境的相互關係在空間及時間上的分佈。因為空間及時間影響了多種主題例如經濟、健康、氣候、植物及動物,所以地理學是一個高度跨學科性的學科。 地理學作為一個學科可以粗略分為兩個領域:自然地理學及人文地理學。自然地理學調查自然環境及如何造成地形及氣候、水、土壤、植被、生命的各種現象及她們的相互關係。人文地理學專注於人類建造的環境和空間是如何被人類製造、看待及管理以及人類如何影響其占用的空間。因為以上兩者的原因,使用不同的方法令第三領域出現,為環境地理學。環境地理學在自然地理學與人文地理學的研究成果上,評價人類與自然的相互關係,並提出人類征服自然、改造自然以適應自身永續發展的安全狀態和技術(包括生產技術和製度技術)條件。.

查看 電磁波譜和地理学

國際紫外線探測衛星

國際紫外線探測衛星(International Ultraviolet Explorer,縮寫:IUE),或翻譯為國際紫外線探測器,是以紫外線為主要觀測波段的太空望遠鏡。該太空望遠鏡是美國國家航空暨太空總署、歐洲太空總署和英國自然科學及工程研究委員會(SERC)的合作計畫。該計畫最早在1964年由一群英國科學家提出,並於1978年1月26日以 NASA 的三角洲系列運載火箭發射。該任務的預定執行時間為3年,但最後它延續了幾乎滿18年,直到1996年儀器被關機為止。被關機的原因是因為預算因素,而關機時它的望遠鏡運作仍跟最初狀態相去不遠。 IUE 是第一個天文學家在美國和歐洲的地面站進行實時觀測的太空望遠鏡。天文學家使用 IUE 對自太陽系至类星体等不同距離的天體觀測了超過10萬4千次。來自該衛星的重要科學成果包含首次對恆星風的大尺度研究、星際塵埃吸收光量的準確方式,以及對超新星SN 1987A的觀測顯示它和先前所知的恆星演化模型不同。當該任務結束時被認為是比先前的其他天文衛星任務更加成功。.

查看 電磁波譜和國際紫外線探測衛星

分光光度法

分光光度法(Spectrophotometry)是一门对光谱进行量化研究的分析方法。主要涉及的电磁波谱范围是可见光、近紫外线与近红外线。这种方法不同于电磁波谱与时间分辨光谱。 将含有各种波长的混合光分散为各种单色光,使每种单色光依次通过某一浓度溶液,测定溶液对每种光波的吸光度,绘出吸收光谱。由于物质的吸收光区域和强度与结构密切相关,根据特有的吸收光谱可作分子结构分析。此外,利用特定波长的单色光分别透过标准溶液与待测溶液,比较其吸光度,可作定量分析。 分光技術中包括了分光光度計(spectrophotometer)是一種分析光的強度的物理實驗室設備,可以量測不同波長光的強度,分析波長與光強度的關係。亦可以量測特定物質的吸光度或透光度。目前有許多種分光儀。如:指針型、數字型。.

查看 電磁波譜和分光光度法

哈勃空间望远镜

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.

查看 電磁波譜和哈勃空间望远镜

再電離

再電離是在大爆炸宇宙學的黑暗期之後,宇宙中物質再電離的過程,並且是宇宙中氣體的兩次主要相變中的第二次。當主要的重子物質成為氫的型式,再電離通常指的是氫氣體的電離。宇宙原生的氦也經歷過相同的相變,但在宇宙歷史上是不同的點,並且通常會稱為氦再電離。.

查看 電磁波譜和再電離

冰雪圈

冰雪圈(cryosphere),這個名詞來自於希臘文中的κρύος(cryos),指"寒冷"、"霜"或是"冰";以及σφαῖρα(sphaira),指"球體"。冰雪圈是用來描述在地表上,水以固態形式出現的區域,包括了:海冰、湖冰、河冰、積雪、冰河、冰帽、冰蓋和凍土。 因此,冰雪圈與水圈有很大的重疊。 冰凍圈是全球氣候系統的組成部分,通過對地表能量、水分通量、雲、降水、水文、大氣和海洋循環的影響,產生重要的聯繫和回饋。 這些回饋過程使得冰凍圈對全球氣候和全球变化中的反應起著重要作用。冰消學(deglaciation)描述冰雪圈特徵的衰退。冰雪學(cryology)則是對冰雪圈的研究。.

查看 電磁波譜和冰雪圈

元素分析

元素分析(Elemental analysis,缩写:EA)是一种或一系列确定样品元素组成的化学步骤,是分析化学研究中常用的方法。元素分析可以仅为定性分析,也可以是定量分析。元素分析中最常见的方法是燃烧法,即充分燃烧样品使其中元素转化为与其相对应的氧化物后,定性或定量测定样品中的元素组成,在有机化学中尤其常用。 对于有机化学家,元素分析或“EA”几乎总是指CHNX分析 - 样品的碳(C),氢(H),氮(N),和杂原子(X)(卤素,硫)的质量成分的测定。 该信息对于帮助确定未知化合物的结构以及帮助确定合成化合物的结构和纯度是非常重要的。在今天,有机化学光谱技术(如核磁共振(NMR),1H和13C)中,质谱法和色谱法已经取代元素分析作为结构测定的主要技术,尽管它仍然提供非常有用的补充信息。它也是确定样品纯度的最快和最便宜的方法。 安托万·拉瓦锡(Antoine Lavoisier)被认为是元素分析的发明者,作为评估化合物化学成分的量化实验工具。在当时元素分析是基于在选择性吸附燃烧气体之前和之后的比吸附剂材料的重量测定。今天,基于燃烧气体热导率或红外光谱学检测的全自动系统或其他光谱方法被使用。 其它方法有质谱法、重量分析法、电磁波谱法、中子活化分析法等。元素分析在制药工程、采矿工程等领域有广泛的应用。.

查看 電磁波譜和元素分析

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

查看 電磁波譜和光

光学仪器

光學儀器可以是處理光波以增強圖像的觀賞;或是分析光波(或光子),已確定若干或某一種特徵與屬性。.

查看 電磁波譜和光学仪器

光學頻譜

光学频谱,简称光谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中的一部分可见光谱是电磁波谱中人眼可见的唯一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人類大脑視覺所能区别的所有颜色,譬如褐色和粉红色,其原因是粉红色并不是由单色组成,而是由多种色彩组成的。参见颜色。.

查看 電磁波譜和光學頻譜

光电二极管

光电二极管(photodiode)是一种能够将光根据使用方式,转换成电流或者电压信号的光探测器。 常见的传统太阳能电池就是通过大面积的光电二极管来产生电能。 光电二极管与常规的半导体二极管基本相似,只是光电二极管可以直接暴露在光源附近或通过透明小窗、光导纤维封装,来允许光到达这种器件的光敏感区域来检测光信号。许多用来设计光电二极管的二极管使用了一个PIN结,而不是一般的PN结,来增加器件对信号的响应速度。光电二极管常常被设计为工作在反向偏置状态。.

查看 電磁波譜和光电二极管

光物理學

光物理學(optical physics)研究電磁輻射的生成與性質、電磁輻射與物質之間的相互作用,特別是其控制與操縱。它與一般光學、光學工程不同的方面是在於它比較專注於發現與應用新光學現象;但在光物理學、應用光學、光工程學之間,並沒有太大的區別,因為光工程學所發展出來的元件、應用光學找到的實際用途,都是光物理學的基礎研究所必需的前提,而這基礎研究又導致發展出新元件與新用途。研究員時常會同時參與基礎研究與應用發展的各種計畫,例如,做實驗發現了電磁感應透明現象,他又與莱娜·豪合作對於慢光(slow light)技術的發展貢獻良多。 從微波到X射線,橫跨整個電磁波譜,對於每一個頻率,研究者嘗試發展出具有更優良性質的發光源。線性與非線性光學過程、光譜學都囊括在光物理學內。研究者會對於各種線性或非線性光學過程做詳細分析。激光與激光光譜學的研究成果已徹底地拓寬了光學的工作範圍。量子光學、飛秒光學也是光物理學的重要研究領域。孤獨原子對於強勁與超短時電磁場的非線性響應、原子-腔相互作用、電磁場的量子性質,這些高階論題近期也是光物理學的重點項目。其它重要領域包括納米光學測量所使用的嶄新光學技術、衍射光學、低相干干涉測量術(low-coherence interferometry)、光學相干斷層掃描、近場顯微鏡(near-field microscopy)等等。光物理學的研究成果,時常會促成通訊業、製藥業、製造業和甚至娛樂業的驚人進展。.

查看 電磁波譜和光物理學

C-型小行星

C-型小行星是含碳的小行星,它們是最普通的小行星,約佔已知小行星的75% ,並且在2.7天文單位之外的小行星帶所佔的比例更高,並且以這種小行星為主。C-型小行星在實際上的比例可能還要更高,因為除了D-型之外,C-型小行星更深入主帶外緣,並且比其他類型的小行星更為暗淡。.

查看 電磁波譜和C-型小行星

火卫二

火衛二又稱為「得摩斯」(英文名稱:Deimos,1.;2.; Δείμος;或是o DAY-moce or DEE-moce),是火星最小的一顆衛星,平均半徑為,逃逸速度為5.6 m/s (20 km/h)。它是火星較小和較外側的已知衛星,另一顆是火衛一 (福波斯),火衛二與火星的距離是,以30.3小時的週期環繞火星,軌道速度為每秒1.35公里。它的系統名稱是。.

查看 電磁波譜和火卫二

火星的衛星

火星目前已知擁有2顆衛星,分別是火衛一與火衛二,都是火星從小行星帶中捕獲的天體。這2顆衛星都是在1877年由美國天文學家阿薩夫·霍爾所發現的,後來分別以希臘神話神祇福波斯及得摩斯,它們都是戰神阿瑞斯之子。除了上述兩顆衛星外,火星可能還有直徑小於50-100米的衛星,以及一個位於火衛一與火衛二之間的行星環。但是,上述天體還沒有被發現。.

查看 電磁波譜和火星的衛星

灰度图像

在計算機領域中,灰度(Gray scale)數字圖像是每個像素只有一個採樣顏色的圖像。這類圖像通常顯示為從最暗黑色到最亮的白色的灰度,儘管理論上這個採樣可以是任何顏色的不同深淺,甚至可以是不同亮度上的不同顏色。灰度圖像與黑白圖像不同,在計算機圖像領域中黑白圖像只有黑白兩種顏色,灰度圖像在黑色與白色之間還有許多級的顏色深度。但是,在數字圖像領域之外,「黑白圖像」也表示「灰度圖像」,例如灰度的照片通常叫做「黑白照片」。在一些關於數字圖像的文章中單色圖像等同於灰度圖像,在另外一些文章中又等同於黑白圖像。 灰度圖像經常是在單個電磁波頻譜如可見光內測量每個像素的亮度得到的。 用於顯示的灰度圖像通常用每個採樣像素8 bits的非線性尺度來保存,這樣可以有256種灰度(8bits就是2的8次方.

查看 電磁波譜和灰度图像

現代物理學

近代物理學(Modern physics)所涉及的物理學領域包括量子力學與相對論,與牛頓力學為核心的古典物理學相異。近代物理研究的對象有時小於原子或分子尺寸,用來描述微觀世界的物理現象。愛因斯坦創立的相對論經常被視為近代物理學的範疇。.

查看 電磁波譜和現代物理學

碰撞激發

撞激發是一種傳遞能量的過程,經由碰撞反應物種核的夥伴轉換成為內能。.

查看 電磁波譜和碰撞激發

神经编码

经编码(neural coding)是一个和神经科学相关的领域,研究外界刺激与特定的神经元或者神经元组合之间的电生理学关系,以及这些神经元组合电活动之间的关系。 感觉信息与其它信息,都是由脑中的生物神经网络来承载与呈现,基于这个理论,人们认为神经元既可以编码数码信号,也可以编码模拟信号。.

查看 電磁波譜和神经编码

科学大纲

以下大綱是科學的主題概述: 科学(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

查看 電磁波譜和科学大纲

空间望远镜列表

这是一个空间望远镜列表。这里列表是按电磁波谱的主要频段分类的,即自高频至低频分为伽玛射线区、X射线区、紫外线区、可见光区、红外线区、微波区和无线电区。有些望远镜工作在上述中的多个频段,它们会在每一个频段中都被列出。对于采集粒子(如宇宙射线原子核、电子等)的空间望远镜,以及探测引力波的空间望远镜(主要是LISA)也在这个表中列出。对于探测任务仅局限于太阳系,包括太阳、地球以及太阳系中其他行星的探测器则被排除在外,关于这些探测器请参见太阳系探测器列表。 当望远镜处在地心轨道上时,关于它的高度的两个参数会以千米为单位给出,分别为初始轨道的近地点和远地点,即望远镜与地球质心(准确说是望远镜与地球构成的两体系统的质心)距离的最大值和最小值。类似的,如果望远镜处在日心轨道上,这两个参数也会相应地给出,但此时的单位是天文单位(AU)。.

查看 電磁波譜和空间望远镜列表

第二代廣域和行星照相機

二代廣域和行星照相機 (WFPC2)是安裝在哈伯太空望遠鏡上的儀器之一。他是在第一次的維修任務(1993年STS-61太空梭任務)替換掉原來的廣域和行星照相機(WF/PC)。他在1995年拍攝了哈伯深空景象,並在1996年拍攝了沙漏星雲和蛋星雲 。 裝在第二代廣域和行星照相機上的電子耦合放大器(CCD)在電磁頻譜上的工作範圍是120奈米至1,100奈米,涵蓋了可見光領域的380奈米至780奈米,所有近紫外線和小部分的極遠紫外線,還有大多數的近紅外線。CCD的靈敏度大致上是線性的,峰值大約在700奈米,之後就是CCD極端難操作的範圍。第二代廣域和行星照相機由相同的4片CCD組成四個探測器,每個都有800 X 800個畫素。其中的三個安排成L形,組成廣域照相機(WFC)。相鄰的是由第4片CCD構成的行星照相機(PC),視野較狹窄,可以將小區域看得更為仔細。WFC和PC的影像組合在一起,就會形成典型樓梯狀的階梯影像。當處理非科學性的JPEG檔案時,行星照相機的解析度會與廣域照相機相同,但天文文學家接收的檔案是未經處理過的科學圖像,在行星照相機的部分會有更細節更清晰的影像。 WFPC2有一整套的濾鏡,可以讓科學家在電磁頻譜中挑選特殊的波段進行觀測,有一個轉輪可以選擇將不同的濾鏡放置在光路上(在WFPC2開口與CCD之間)。這48個濾鏡的元素包括:.

查看 電磁波譜和第二代廣域和行星照相機

类星体

類星體 (quasar,,也以QSO或quasi-stellar object為人所知)是極度明亮的活躍星系核(AGN,active galactic nucleus)。大多數星系的核心都有一個超大質量黑洞,它的質量從百萬至數十億太陽質量不等。在類星體和其它形式的活躍星系核,黑洞被氣態的吸積盤環繞著。當吸積盤中的氣體朝向黑洞墬落,能量就會以電磁輻射的形式釋放出來。這些輻射被觀測到可以跨越電波、紅外線、可見光、紫外線、X射線、和γ射線等電磁頻譜的波長。類星體輻射的功率非常巨大:最強大的類星體的光度超過1041 瓦特,是普通星系,例如銀河系,的數千倍。 "類星體"這個名詞源自於準恆星狀電波源(quasi-stellar radio source)的縮寫,因為在20世紀50年代發現這種天體時,被認定為未知物理源的電波發射源。當在可見光的照相圖中篩檢出來時,它們類似可見光的星狀微弱光點。 類星體的高解析影像,特別是哈伯太空望遠鏡,已經證明類星體是發生在星系的中心,一些類星體的宿主星系是強烈的交互作用星系或.

查看 電磁波譜和类星体

粒子輻射

粒子輻射是輻射的能量,意思是快速移動的次原子粒子。如果粒子朝著同的方向運動,就類似一束光,所以粒子輻射也被稱為粒子束。 由於波粒二象性,所有運動的粒子也都有波動性。高能量的粒子較易呈現粒子性,而低能量的粒子較容易呈現波動性。.

查看 電磁波譜和粒子輻射

紅移

在物理學领域,紅移(Redshift)是指電磁輻射由於某种原因導致波长增加、頻率降低的现象,在可見光波段,表现为光谱的谱线朝紅端移動了一段距离。相反的,電磁輻射的波長变短、频率升高的现象则被稱為藍移。紅移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步加深,任何电磁辐射的波長增加都可以称为紅移。对於波长较短的γ射線、X-射線和紫外線等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对於波长较长的紅外線、微波和無線電波等波段,尽管波长增加實際上是遠離红光波段,这种现象还是被称为“红移”。 當光源移動遠離觀測者时,观测者观察到的电磁波谱會發生紅移,这类似于聲波因为都卜勒效應造成的頻率變化。這樣的紅移现象在日常生活中有很多應用,例如都卜勒雷達、雷達槍,在天體光譜學裏,人们使用都卜勒紅移測量天體的物理行為 。 另一種紅移稱為宇宙學紅移,其機制為。這機制說明了在遙遠的星系、類星體,星系間的氣體雲的光谱中觀察到的红移现象,其紅移增加的比例與距離成正比。這種關係为宇宙膨脹的观点提供了有力的支持,比如大霹靂宇宙模型。 另一種形式的紅移是引力紅移,其為一種相對論性效應,當電磁輻射傳播遠離引力場時會觀測到這種效應;反過來說,當電磁輻射傳播接近引力場時會觀測到引力藍移,其波長變短、频率升高。 红移的大小由“红移值”衡量,红移值用Z表示,定义为: 这裡\lambda_0\,是谱线原先的波长,\lambda\,是观测到的波长,f_0\,是谱线原先的频率,f\,是观测到的频率。.

查看 電磁波譜和紅移

紅邊

在電磁波譜中,紅邊是植被的反射率在近紅外線波段接近與紅光交界處快速變化的區域。植被中的叶绿素會吸收大部分的可見光,但對於波長700 nm以上電磁波是幾乎透明的。因此,植被的細胞結構是反射電磁波的主要部分,這是因為每個細胞的反射機制類似小型的。因此植物在680到730 nm電磁波反射率可從5%快速變化為50%。 這個現象可以用來解釋在中植物葉片相當明亮的原因,並且被應用在植物生長狀態的植被指數上(例如常態化差值植生指標,NDVI)。在遥感中紅邊波段可用來監測植物活性,並且被建議作為偵測遙遠行星中是否有生物之用。 目前地球資源衛星中有德國的 和美國的 、 、歐洲太空總署的哨兵2号有紅邊波段。.

查看 電磁波譜和紅邊

红外线望远镜

红外线望远镜(Infrared telescope)是用红外光检测天体的望远镜。红外线是存在于電磁波譜中的几个类型的辐射之一。.

查看 電磁波譜和红外线望远镜

罗伯特·威廉·本生

罗伯特·威廉·本生(Robert Wilhelm Bunsen,),德国化学家。輻射元素銫(1860年)和銣(1861年)的發現者,本生灯以他命名,此外他研究了热体的电磁波谱。本生开发了多种气体分析方法,是光化学的先驱,并在有机砷化学领域做了早期工作。.

查看 電磁波譜和罗伯特·威廉·本生

疏散星团

疏散星團,也稱為銀河星團,是由同一個巨分子雲中的數百顆至數千顆恆星形成的集團。在銀河系中發現的疏散星團已經超過1,100個,並且被認為還存在更多。它們環繞著銀河中心運轉時,只靠著微弱的引力吸引維繫在一起,並且很容易因為與其它集團或氣體雲的近距離接觸而瓦解。疏散星團的壽命通常只有幾億年,但少數質量特別大的可以存活數十億年。相較之下,質量更大的球狀星團,擁有更多的恆星,成員彼此間的引力極為強大,可以存活的時間也更長。只有在星系的螺旋臂和不規則星系能發現疏散星團,它們只存在於恆星形成活躍區。 年輕的疏散星團可能仍然在它們形成的分子雲中,照亮它們在分子雲內創造出來的H II區。隨著時間推移,來自星團的輻射壓會將分子雲吹散。通常情況下,在輻射壓將氣體驅散之前,大約有10%質量的氣體能凝聚形成恆星。 疏散星團是研究恆星演化的關鍵天體。因為集團中的恆星成員年齡和化學成分都相仿,它們的特性(像是距離、年齡、金屬量和消光)也比單獨的恆星容易測量。有些疏散星團,像是昴宿星團、畢宿星團或英仙α星團,都可以用裸眼直接看見。還有一些,例如雙星團,則幾乎不用儀器也可以察覺它們的存在,而使用雙筒望遠鏡或光學望遠鏡還可以看見更多,野鴨星團,M11,就是個例子。.

查看 電磁波譜和疏散星团

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

查看 電磁波譜和电磁辐射

物理学史

物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。.

查看 電磁波譜和物理学史

發射光譜

射光譜是當一個元素被激發(加熱)時,在相對於電磁輻射的每一個頻率中,某些頻率的輻射強度增加的現象。 當化學元素中的電子被激發時,它會躍遷至能量較高的軌道上,而當這個電子離開激態,返回低能量的軌道時,能量會被再輻射出來,分離出來的發射譜線就是所提到的波長。注意,輻射的譜線頻率會比原來的頻率寬一些,這是譜線致寬的效應。 這個項目雖然經常提到可見光的發射光譜,但實際上它存在於整個的電磁頻譜,從低能量的無線電波到高能量的γ射線都有。 發射光譜可以用來確定材料的組成,因為在週期表上的每一種化學元素都有各自不同的發射光譜。例如,分析接收到的光譜可以確認恆星的組成。 當光線通過冷且稀薄的氣體物質會產生吸收光譜,在氣體中的原子會吸收特定的頻率,當他們再輻射出來時不會遵循原來被吸收光子的方向前行進,在原先的光譜上形成暗線(光線被吸收)。由被激發的原子輻射出來的光,不會朝向觀測者,因此這條譜線會從原來的連續光譜中消失。.

查看 電磁波譜和發射光譜

發射星雲

射星雲是能輻射出各種不同色光的电离氣體雲(也就是所謂的電漿),造成电离的原因通常是來自鄰近恆星輻射出來的高能量光子。這些不同的發射星雲有些類型是H II區,也就是年輕恆星誕生的場所,大質量恆星的光子是造成电离的來源;而行星狀星雲是垂死的恆星拋出來的外殼被曝露的高熱核心加熱而被电离的。.

查看 電磁波譜和發射星雲

白矮星、中子星和超新星年表

白矮星、中子星和超新星年表 請注意,這份清單主要是知識的發展,但也有一些是超新星的發現。後者單獨的清單,請參閱超新星列表一文。所有的日期都是指這顆超新星在地球上觀測到,或是有足夠強大的望遠鏡可以觀測到其存在的時間。.

查看 電磁波譜和白矮星、中子星和超新星年表

D-型小行星

D-型小行星有非常低的反照率和無特徵的淺紅色電磁頻譜 。它被認為成分中富含有機矽酸鹽、碳、和無水矽酸鹽,在其內部可能還有水冰 。發現的D-型小行星主要分布在小行星帶的外側和更外面的區域;例如阿達拉 (Atala)、阿基里斯 (Achilles)、霍克得 (Hektor)和希達高 (Hidalgo)。 尼斯模型認為D-型小行星是被捕獲的古柏帶天體。 在1992年,Larry A.

查看 電磁波譜和D-型小行星

E-型小行星

E-型小行星是表面被認為有頑火輝石和無粒隕石的小行星,它們在主帶中被稱為匈牙利族小行星中佔了很大部分的比率,但是在進入主帶的其他區卻很快的變得極為罕見。但是它們有些在遠離主帶內側的邊緣,像是神女星(安吉利娜)。它們被認為都是來自差異性極低的小行星地函。 它們有高反照率(0.3或更大),與較普通的M-型小行星有明顯的區別。它們的光譜沒有特徵只是平坦的紅化。或許是因為它們是來自母體的邊緣,而不是來自核心,E-型小行星都很小,只有3顆的直徑超過50公里,而且其他的都在25公里以下。頑火無球隕石(頑火輝石無粒隕石隕石體)相信是來自E-型小行星。這一類型的小行星在SMASS分類中可能會歸併在X-型小行星。.

查看 電磁波譜和E-型小行星

EGS-zs8-1

EGS-zs8-1是在北天的牧夫座方向上發現的一個高紅移的萊曼斷裂星系。在2015年5月,EGS-zs8-1是已知的所有星系中光譜紅移最高的,意味著它是觀測到最遙遠和最古老的星系。但在2015年7月,EGS-zs8-1最遙遠和最古老的地位被EGSY-2008532660超越。.

查看 電磁波譜和EGS-zs8-1

EM

EM、Em、em可以指:.

查看 電磁波譜和EM

蟹状星云脉冲星

蟹状星云脉冲星(PSR B0531+21)是一颗相当年轻的中子星。它是超新星SN 1054的遗迹——蟹状星云中心的天体。那颗超新星当时在地球上的许多国家都有观测记录。该脉冲星于1968年发现,成为首颗已确认与超新星遗迹有关的脉冲星。 这颗光学脉冲星直径大约25千米,自转周期为33毫秒,即每秒自转30次。中子星上泄出的与光速可相比的风产生同步辐射,这使得星云不断发射出从无线电波到γ射线的电磁波。星云内部最活跃的特点是脉冲星的赤道风猛烈冲击稀疏的其他区域,形成激波阵面。这种激波的形状和位置瞬息万变,赤道风一阵阵地形成然后渐渐减弱并消失,这是因为它们进入了远离脉冲星的星云内部。由于脉冲风带走大量能量,脉冲星的自转周期每天减慢38纳秒。.

查看 電磁波譜和蟹状星云脉冲星

蟹狀星雲

蟹状星云(M1,NGC 1952或金牛座 A)是位于金牛座ζ星(天關)东北面的一个超新星残骸和脉冲风星云。蟹状星云距地球约6,500光年(2,000秒差距),直径达11光年(3.4秒差距),并以每秒约1,500公里的速度膨胀。它是银河系英仙臂的一部分。 该星云由约翰·贝维斯于1731年发现,它对应于中国、阿拉伯和日本天文学家於公元1054年记录的一次超新星爆发(编号SN 1054,中国称天关客星)。1969年天文学家发现星云的中心是一颗脉冲星,它的直径约28–30公里,每秒自转30.2次,并发射出从γ射线到无线电波的宽频率范围电磁波。它也是首顆被确认为历史上超新星爆发遗迹的天体。 蟹状星云的X射线和γ射线辐射能量超过30 keV,最高可达10 TeV,而且非常稳定,因此天文学家将蟹状星云看成是宇宙中最稳定的高能辐射源之一,并将其作为一种标准来测量宇宙其他輻射源的能量。此星云是一个很好的辐射源,通过其他天体的掩星可以研究它與其他的天體。20世纪50和60年代时,天文学家曾借助穿过日冕的蟹状星云辐射对太阳日冕进行密度和成分测定。2003年,土卫六阻挡了蟹状星云的X射线辐射,天文学家借此机会测量土卫六的大气层的厚度。.

查看 電磁波譜和蟹狀星雲

荷包蛋星系

荷包蛋星系,又名NGC 7742,是一個位於飛馬座的螺旋星系,屬於第二型西佛星系(Seyfert galaxy),距離地球大約7,500萬光年。 由於在星系的光譜中,其中間核心特別光亮,形成一個類似荷包蛋的形狀,這是該星系擁有高度離子化原子的證據。 天文學家已經在荷包蛋星系發現2顆II型超新星:SN 1993R及SN 2014cy。.

查看 電磁波譜和荷包蛋星系

顯微鏡座AU

顯微鏡座AU (AU Mic)是一顆紅矮星,距離地球10秒差距(32光年)遠 – 大約是與太陽最近恆星距離的8倍。顯微鏡座AU是一顆年輕的恆星,只有1,200萬歲,不到太陽年齡的1%,質量祇有太陽的一半,光度則只有十分之一。它是位於顯微鏡座的一顆變星,所以這顆恆星是依據變星命名規則命名的。顯微鏡 AU是繪架座β移動星群的成員之一,它也可能受到顯微鏡座AT的約束,而是一對聯星 。如同繪架座β一樣,顯微鏡座AU有一個已知是岩屑盤的星周盤。.

查看 電磁波譜和顯微鏡座AU

频谱

頻譜是指一個時域的信號在頻域下的表示方式,可以針對信號進行傅立葉變換而得,所得的結果會是以分別以振幅及相位為縱軸,頻率為橫軸的兩張圖,不過有時也會省略相位的資訊,只有不同頻率下對應振幅的資料。有時也以「振幅頻譜」表示振幅隨頻率變化的情形,「相位頻譜」表示相位隨頻率變化的情形 。 簡單來說,頻譜可以表示一個訊號是由哪些頻率的弦波所組成,也可以看出各頻率弦波的大小及相位等資訊。.

查看 電磁波譜和频谱

频谱分析仪

频谱分析仪是在其频率范围内测量输入信号的频谱(幅值-频率关系)的儀器。它的主要作用是测量信号的功率谱。频谱分析仪的输入信号是电信号。但是若配合合适的传感器,也可以测量声波、光波等其他信号的频谱。也有专门的光谱分析仪,能够用之类的光学技术直接测量光波的频谱。 通过分析电子信号,可以在频谱中观察到其主要频率,功率,失真,谐波,带宽,和其它频谱分量。这些,在时域波形中是不容易被探测到的。这些参数在描述无线发射器等电子设备的特性时是有用的。 频谱分析仪显示的是在水平轴上的频率和垂直轴上的幅度。不经意地看,一台频谱分析仪像是一个示波器。事实上,一些实验室仪器在功能上既可以作为示波器,又可以作为频谱分析仪。.

查看 電磁波譜和频谱分析仪

飛馬座IK

飛馬座IK(亦作HR 8210)是位於飛馬座的聯星系統,距離太陽系約150光年。由于视星等仅为6.078等,只有理想状况下才能用肉眼勉强看到。 該聯星系統的主星(飛馬座IK A)是一顆主序星,光譜分類屬A型,其光度波動不大。在分類上,它屬矮造父變星,光度變化每天會重複22.9次。而伴星(飛馬座IK B)則為一顆已脫離主序星階段,並已停止以核聚變產生能量的大質量白矮星。兩顆恆星平均距離3,100萬公里(0.21 AU),比水星和太陽之間的距離還要短。 飛馬座IK B是已知最有可能演變為超新星的恆星。人們估計,當主星演化成紅巨星時,其半徑足以令伴星從主星的氣態外層吸積物質。當伴星累積的質量接近錢德拉塞卡極限(太陽質量的1.38倍)時,便有機會演化成Ia超新星。.

查看 電磁波譜和飛馬座IK

观测天文学

觀測天文學(Observational astronomy)是天文學的一個分支,常用於取得數據以與天文物理學的理論比對,或以測量所得的物理量解釋模型的涵義。在實務上,通過望遠鏡或其他天文儀器的使用來觀測目標。 做為一門科學,天文學有些困難之處,由於距離的遙遠,要直接驗證宇宙的特性是不可能的。然而,有為數眾多的恆星可以被觀察到,已經能夠讓天文學家獲取一些事實的真相。這些觀測到的資訊所繪製成的各種圖表,與紀錄足以顯示一般的趨向。變星就是很貼切的具體例證,能藉由變星的特性,測量出遙遠天體的距離。這一種類的距離指標,足以測量鄰近的距離,包括附近的星系,進而對其他現象進行測量。.

查看 電磁波譜和观测天文学

詹姆斯·卡彭特

詹姆斯·卡彭特(James Carpenter,)是英国格林尼治皇家天文台的一名天文学家。19世纪60年代,他在皇家天文学家乔治·比德尔·艾里的指导下,首次进行了对恒星电磁波谱的观察分析。1861年-1862年他成功地观察了土星环的暗面,成为当时三位观察到该特征的天文学家之一,另外二位是威廉·弗雷(William Wray)和奥托·斯特鲁维。 1871年,他与工程师詹姆斯·内史密斯(James Nasmyth)合撰了一本标题为《月球,被看作是一颗星球、一个世界和一颗卫星》的图书。书中附有有趣的月表插图-以不同角度拍摄的月表石膏模型照片,这些月表图像比从望远镜中拍摄到的照片还要逼真。这二位作者都支持月球陨石坑起源于火山的观点,但后来该理论被证明是错误的。 月球上的卡彭特环形山就是以他和埃德温·弗朗西斯·卡彭特的名字共同命名的。.

查看 電磁波譜和詹姆斯·卡彭特

高光譜影像

衛星Landsat-7號拍攝的波蘭格但斯克湾维斯图拉潟湖高光譜影像 NDVI分布圖 高光譜影像(hyperspectral imaging)是收集及處理整個跨電磁波譜的資訊。不像是人類的眼睛,只能接觸到可見光。而高光譜的接觸機制、比如蝦蛄的眼睛它的光譜能夠接觸到紅外線延伸到紫外線的范圍。高光譜的能力能夠使蝦蛄分辨出不同的珊瑚、獵物,或則獵食者,而這些正是人類所缺少.

查看 電磁波譜和高光譜影像

譜線

譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。.

查看 電磁波譜和譜線

语音频率

语音频率(voice frequency,缩写VF)或语音频带(voice band)是指音频范围内传输语音的部分。 在技术中,可用的语音频带范围约为300Hz至3400Hz。因此,300至3000Hz之间的電磁波譜特低頻频带也被称为语音频率,其表示基带处的声能的电磁能量。为单个语音频率传输信道分配的带宽通常为4kHz,这包括,以允许8kHz的采样率作为数字公共交换电话网(PSTN)所用的脈衝編碼調變系统的基础。根据奈奎斯特-香农采样定理,采样频率(8kHz)必须至少是在离散时间(4kHz)采样之前进行适当滤波的语音频率最高部分的两倍,从而有效重建语音信号。.

查看 電磁波譜和语音频率

貓眼星雲

貓眼星雲(Cat's Eye Nebula,NGC 6543,科德韋爾6)是位於天龍座的一个行星狀星雲。它是已知的星雲中結構最複雜的之一,哈勃太空望遠鏡的高解析度觀測圖像揭示出其中獨特的扭結、噴柱、氣泡以及纖維狀的弧形結構。它的中心是一顆明亮、熾熱的恆星,約1000年前這顆恆星失去了它的外層結構,從而產生了貓眼星雲。 貓眼星雲於1786年2月15日由威廉·赫歇爾首先發現。1864年,英國業餘天文學家威廉·赫金斯對貓眼星雲作了光譜分析,使之成為首個通過光譜分析技術進行研究的行星狀星雲。赫金斯的研究結果首次表明行星狀星雲由高溫氣體而非恆星組成。目前,貓眼星雲已被人們在從遠紅外到X 射線的整個電磁波段進行過觀測。 現代研究引出了數個關於貓眼星雲的謎團。它的複雜結構有可能部分地是由一對中心聯星拋射的物質造成的,但迄今尚未有直接證據表明其中心恆星擁有伴星。此外,通過兩種方法測量的化學物質豐度的結果出現重大差異,其原因目前仍不能肯定。哈勃望遠鏡的觀測揭示出在「貓眼」的周圍有幾個由中心恆星在遠古時代拋射出的球形外殼構成的昏暗的光環,這些拋射的確切機制現在尚不明確。.

查看 電磁波譜和貓眼星雲

質光比

質光比,通常的符號是\Upsilon。這是天文物理和物理宇宙學共同對佔有體積(通常是星系或星系團)的總質量和其光度之間的商數。這個比率經常使用太陽質量和太陽亮度的比值(\Upsilon_\odot.

查看 電磁波譜和質光比

超人

超人(Superman) 是一名出現於DC漫畫的虛構超級英雄角色,同時普遍也被認為是美國的文化偶像Daniels (1998), p. 11.

查看 電磁波譜和超人

黑体辐射

黑体辐射指处于热力学平衡态的黑体发出的电磁辐射。黑体辐射的电磁波谱只取决于黑体的温度。 另一方面,所謂黑體輻射其實就是光和物質達到平衡所表現出的現象。物質達到平衡,所以可以用一個溫度來描述物質的狀態,而光和物質的交互作用很強,如此光和光之間也可以用一個溫度來描述(光和光之間本身不會有交互作用,但光和物質的交互作用很強)。而描述這關係的便是普朗克分佈(Planck distribution)。黑体辐射能量按波长的分布仅与温度有关。 黑体不仅仅能全部吸收外来的电磁辐射,且散射电磁辐射的能力比同温度下的任何其它物体强。 对于黑体的研究,使自然现象中的量子效应被發现。 黑体作为一个理想化的物体,在现实中是不存在的,因此现实中物体的辐射也与理论上的黑体辐射有所出入。但是,可以观察一些非常类似黑体的物质发出的辐射,例如一顆恆星或一個只有單一開口的空腔所发出的辐射。舉個例來說,人們觀測到宇宙背景輻射,對應到一個約3K的黑體輻射,這暗示宇宙早期光是和物質達到平衡的。而隨著時間演化,溫度慢慢降了下來,但方程式依然存在。(頻率和溫度的效應抵銷).

查看 電磁波譜和黑体辐射

黑洞物理學年表

黑洞的物理學年表.

查看 電磁波譜和黑洞物理學年表

辐射

物理學上的輻射指的是能量以波或是次原子粒子移動的型態,在真空或介質中傳送。包含.

查看 電磁波譜和辐射

鈦輝無粒隕石

鈦輝無粒隕石(Angrites)是一群罕見的無粒隕石,其組成的礦物多數是輝石與一些橄欖石、鈣長石和隕硫鐵。這個群的名稱來自安格拉杜斯雷斯隕石(Angra dos Reis meteorite)。 鈦輝無粒隕石是玄武岩類的岩石,通常有直徑可以達到的多孔狀結構的孔隙。 它們是最古老的火成岩岩石,大約在45億5000萬年形成結晶。.

查看 電磁波譜和鈦輝無粒隕石

赫兹

赫兹(符号:Hz)是频率的国际单位制单位,表示内周期性事件发生的次数。赫兹是以首个用实验验证电磁波存在的科学家海因里希·赫兹命名的,常用于描述正弦波、乐音、无线电通讯以及计算机时钟频率等。.

查看 電磁波譜和赫兹

赫比格-哈羅天體

赫比格-哈羅天體(Herbig-Haro object或HH天體)是宇宙中由新生恆星所形成、狀似星雲的天體。新誕生的恆星以秒速將近數百公里的高速不斷噴出氣體,這些氣體會與恆星周圍的氣體雲和灰塵雲激烈碰撞、產生光芒。赫比格-哈羅天體普遍存在於恆星生成區,在單一新生恆星的極軸附近常可見到排成一列的多個赫比格-哈羅天體。 赫比格-哈羅天體是相當短暫的天文現象,不會持續超過數千年。在氣體持續發散至星際物質中時,赫比格-哈羅天體也就漸漸模糊不可見。哈伯太空望遠鏡觀察了數個複雜的HH天體,其中有些正在消逝,另外一些因為與星際物質的碰撞漸趨激烈而越來越明亮。 HH天體最早在19世紀由美國天文學家舍本·衛斯里·伯納姆(Sherburne Wesley Burnham)所觀測,但當時被紀錄為一發射星雲。直到1940年代,美國天文學家喬治·赫比格與墨西哥天文學家吉列爾莫·哈羅才開始分別對HH天體展開研究,並確認了HH天體是恆星演化的過程。如今赫比格-哈羅天體即是為紀念兩人的貢獻而命名。.

查看 電磁波譜和赫比格-哈羅天體

蓝移

蓝移也称蓝位移,与红移相对。在光化学中,蓝移也非正式地指浅色效应。 藍移是一個移動的發射源在向觀測者接近時,所發射的電磁波(例如光波)頻率會向電磁頻譜的藍色端移動(也就是波長縮短)的現象。 這種波長改變的現象在相互間有移動現象的參考座標系中就是一般所說的都卜勒位移或是都卜勒效應。 當一般將星光的紅移被視為是宇宙膨脹的證據時,天文学中同样有很多蓝移现象,例如:.

查看 電磁波譜和蓝移

蓝白细尾鹩莺

蓝白细尾鹩莺(学名:Malurus leucopterus)是雀形目鸟类的一个物种,属于细尾鹩莺科中的细尾鹩莺属。它们生活在澳大利亚中心的干燥地带;从昆士兰州中心与南澳大利亚州到西澳大利亚州都有分布。如同其它细尾鹩莺一样,此物种也有显著的两性异形,在繁殖期,一个群居集体中的一只或更多雄性会长出色彩明亮的羽毛。雌性全身为沙褐色,尾部羽毛浅蓝 ;雌性体型比雄性小,繁殖期时雄性身体的羽毛为亮蓝色,喙为黑色,翅膀为蓝色。较年轻的性成熟雄性外形几乎与雌性相同,通常这些雄性正在繁殖。一队蓝白细尾鹩莺在春夏两季会拥有一只较大的、色彩明亮的雄性,这只鸟由许多不显眼的同样是雄性的棕色小鸟陪伴着。得到承认的亚种共有三个;除开大陆上的亚种之外,一个亚种是在德克哈托格岛上找到的,而另一个栖息于西澳大利亚州海岸外的巴罗岛上。这些岛屿上的雄性在繁殖期羽毛是黑色而不是蓝色。 蓝白细尾鹩莺主要以昆虫为食,以小型水果和叶芽为补充食物,它们生活在石南荒原和干旱的灌木丛林中,因为这些地方的灌木提供了掩蔽。如同其它细尾鹩莺一样,此物种也进行合作繁殖,小群的鸟整年都会进行维持领土、保护领土的工作。家庭由社会体制上一夫一妻制的配对构成,几只輔助者鸟帮着养育小鸟。这些輔助者是已经性成熟的后代,它们在羽毛丰满后还会继续留在家庭中一年或更长时间。虽然没有基因的证实,但蓝白细尾鹩莺很可能会是性乱的,并会帮着抚养其它配对的子女。作为求偶表演的一部分,雄性鹩莺会从花上采下花瓣,并将这些花瓣向雌性展示。.

查看 電磁波譜和蓝白细尾鹩莺

自由空間

在經典物理裏,自由空間(free space)是電磁理論的一種概念,指的是一種理論的完美真空,不含有任何物質的真空。有時候,自由空間又稱為自由空間真空,或經典真空。自由空間可以恰當地被視為一種參考介質 許多國際單位制的單位,像安培或公尺,其定義都是建立於以自由空間為參考介質的測量值。由於實驗室所使用的參考介質並不是自由空間,實驗室得到的測量值必須經過修正,才能成為以自由空間為參考介質的測量值。.

查看 電磁波譜和自由空間

長蛇座TW

長蛇座TW是一顆位於長蛇座 (海蛇) 內,距離地球約176光年的橙色矮星。這顆恆星是最靠近太陽系的金牛T星,它的質量與太陽相近,但年齡只有500萬至1000萬歲。觀察哈伯太空望遠鏡拍攝的影像,這顆恆星看似有著正面朝向我們的塵埃和氣體吸積的原行星盤。還有大約20個低質量的恆星有著與長蛇座TW相似的年齡和空間運動,組成長蛇座TW星協或TWA,這是最靠近太陽和最新近的“化石”恆星形成區域之一。.

查看 電磁波譜和長蛇座TW

電是靜止或移動的電荷所產生的物理現象。在大自然裏,電的機制給出了很多眾所熟知的效應,例如閃電、摩擦起電、靜電感應、電磁感應等等。 很久以前,就有許多術士致力於研究電的現象,但所得到的結果乏善可陳。直到十七和十八世紀,才出現了一些在科學方面重要的發展和突破,不過在那時,電的實際用途並不多。十九世紀末,由於電機工程學的進步,電才進入了工業和家庭裡。從那時開始,日新月異、突飛猛進的快速發展帶給了工業和社會巨大的改變。作為能源的一種供給方式,電有許多優點,這意味著電的用途幾乎是無可限量。例如,交通、取暖、照明、電訊、計算等等,都必須以電為主要能源。進入二十一世紀,現代工業社會的骨幹仍是電能。.

查看 電磁波譜和電

電波波頻譜

#重定向 電磁波譜.

查看 電磁波譜和電波波頻譜

耿恩-彼得森槽

耿恩-彼得森槽(Gunn-Peterson trough)是類星體的光譜在天體光譜中的一個特徵,它是由星系際物質 (IGM)的中性氫造成的。槽的特徵是受到來自類星體波長小於萊曼α的電磁發射在紅移壓抑的發射線。詹姆斯·冈恩和布魯斯·彼德森在1965年就預測了這種效應。.

查看 電磁波譜和耿恩-彼得森槽

耀变体

耀变体是一种密度极高的高变能量源,被假定为是处于寄主星系中央的超大质量黑洞。耀变体是目前已观测到的宇宙中最剧烈的天体活动现象之一,并已成为星系天文学的一个重要话题。 耀变体是众多活跃星系中的一种,也被称为活跃星系核(AGN)。不过,被称为耀变体的星体并非都完全相同,其仍可分为两种:第一种是高变类星体,也被称为光学剧变类星体(为类星体中的一类);第二种为蝎虎座BL型天体。另外还有少量耀变体可能属于“过渡耀变体”类型,即兼具光学剧变类星体和蝎虎座BL型天体的某些特征。耀变体(blazar)这个词由天文学家埃德·施皮格尔于1978年创造,用以指称上述两类天体的集合。 耀变体是一种相对论性喷流(在大概方向上)指向地球的活跃星系核。因此,对其进行观测的我们通常处于喷流的“下游”。这也说明了这两种耀变体的高变性和高密度的特征。许多耀变体甚至在喷流的数个秒差距内出现超光速运动现象,这可能是由相对论性冲击波造成的。 此外,如引力透镜效应等替代模型则可解释少量与耀变体一般特征不符的观测结果。.

查看 電磁波譜和耀变体

耀星

耀星是一種變星,它可以不可預知的在數分鐘內戲劇性的急遽增光,有時在幾分鐘內的改變會大於幾個星等以上,並持續幾分鐘到幾小時後又慢慢復原。它被認為與太陽閃焰類似,是由於在恆星大氣層內的磁重聯。亮度的增加跨越了整個光譜,從X射線到無線電波。第一批耀星(天鵝座V1396和顯微鏡座AT) 是在1924年發現的;然而,最著名的耀星是在1948年發現的鯨魚座UV 。如今,相似的耀星在變星目錄上,像是變星總表都被分類為鯨魚座UV型變星(使用上縮寫為UV)。耀斑可以隔幾天就發生 ,或是頻率非常低,像巴納德星。 雖然最近的研究表明質量更小的棕矮星也可能發生閃焰,但大多數的耀星都是暗淡的紅矮星。質量更大的獵犬座RS型變星(RS CVn)已知也是耀星,但據了解這些閃焰是由聯星系統中的伴星造成的磁場糾纏誘發的。此外,也觀察到9顆類似太陽的恆星曾經歷閃焰的事件。曾經有建議指出在類似RS CVn變星誘發閃焰的機制,是有看不見的,大小類似木星的行星,在一個緊密的軌道上繞著恆星運轉。目前在太陽系附近已發現近100顆耀星。.

查看 電磁波譜和耀星

耀斑

閃焰是在太陽的盤面或邊緣觀測到的突發的閃光現象,它會釋放出高達6 × 1025焦耳的巨大能量(大約是太陽每秒鐘釋放總能量的六倍,或相當於160,000,000,000百萬噸TNT,超過舒梅克-李維九號彗星撞木星能量的25,000倍)。它們通常,但並非總是,伴隨著發生日冕大量拋射的事件。閃焰會從太陽日冕拋射出電子、離子、和原子的雲進入太空。通常,在事件發生後的一兩天,這些雲就可能會到達地球。這個名詞也適用在發生類似現象的恆星,但通常會使用「恆星閃焰」來稱呼。 閃焰會影響到太陽所有的大氣層(光球、色球和日冕)。當電漿物質被加熱至數千萬K的溫度時,電子、質子和更重的離子都會被加速至接近光速。它們產生電磁頻譜中所有波長的電磁輻射,從無線電波到伽瑪射線,然而絕大部分的能量都在視覺範圍之外,因此絕大碩的閃焰都是肉眼看不見的,必須要用特別的儀器觀測不同的頻率。閃焰發生在圍繞著太陽黑子的活動區,強烈的磁場從那兒穿透光球聯接日冕和太陽內部的磁場。 閃焰會突然(時間的尺度在幾分鐘至幾十分鐘)釋放儲藏在日冕中的磁場能量;日冕大量拋射(CME)也可以釋放出相等的能量,但是這兩者之間的關係尚不明確。 閃焰發射的X射線和紫外線輻射會影響地球的電離層,擾亂遠距離的無線電通訊。在分米波長的電波輻射會直接干擾雷達和使用這些波長的儀器和設備的操作。 對太陽閃焰的首度觀測是理查·卡靈頓和理查·霍奇森在1859年獨立完成的"", Monthly Notices of the Royal Astronomical Society, v20, pp13+, 1859,在黑子群當中看見一個小範圍的明亮區域。觀察望遠鏡或衛星觀測到的恆星光度變化曲線,可以推斷其他恆星是否產生恆星閃焰。 太陽閃焰發的頻率隨著平均11年的活動週期,從太陽位於活躍期的一天數個,到寧靜期的一星期不到一個,有很大的變化(參見太陽週期)。大的閃焰出現的頻率遠低於小的閃焰。 根據NASA的觀測,在2012年7月23日,一個有著巨大和潛在破壞力的太陽超級風暴(閃焰、日冕大量拋射、和)與地球擦身而過。估計在2012年至2022年之間,有12%的機率會發生類似的事件.

查看 電磁波譜和耀斑

GD 362

GD 362是一顆距離地球約150光年的白矮星,位於武仙座。.

查看 電磁波譜和GD 362

H-α

H-α,在天文學和物理學上是氫的一條具體可見的紅色發射譜線,波長為6562.8 Å。依據原子的波耳模型,電子是存在於量子化能階的軌道上繞著原子的原子核。這些能階以主量子數 n.

查看 電磁波譜和H-α

HXMM01

HXMM01,更為人所知的名稱是1HERMES S250 J022016.5−060143,是一個 星驟增星系,位置在鯨魚座的西北部使用Fourmilab 虛擬望遠鏡推斷的赤經和赤緯。它在2013年被加利福尼亞大學歐文分校的一個團隊發現,實際上HXMM01只是兩個碰撞中的母星系中恆星仍在誕生的最亮、光度最高,和富含在次毫米波段上最明亮氣體的合併星系的部份。當合併全部完成後,HXMM01將迅速演化成質量大約是銀河系四倍的巨大橢圓星系。在2013年,已經觀察出每年在HXMM01大約有2,000M☉的恆星誕生,這是一般典型星系恆星誕生速率的10倍典型星系是指質量和演化階段像HXMM01這樣的星系,而不是在整個宇宙中或是相較於像銀河系這樣的星系。;更遠超過銀河系的每年0.68至1.45 M☉。.

查看 電磁波譜和HXMM01

IPTF14hls

iPTF14hls是在過去三年(迄2017年)中連續噴發的一顆異常超新星,而且它曾於1954年.

查看 電磁波譜和IPTF14hls

NGC 1672

NGC 1672是位於劍魚座的一個棒旋星系。它最初被認為是劍魚座星系團的成員,然而,稍後就被排除了。NGC 1672有個巨大的棒,估計長達20,000秒差距。從它的核心、棒、和螺旋臂內側的一部分都有強烈的無線電發射。核心是西佛2和,並且被星暴區域吞沒。最強的極化發射來自它的東北方塵埃帶的上游,磁場線相對於棒有著大角度並且平滑的轉到中心。.

查看 電磁波譜和NGC 1672

P-型小行星

P-型小行星有著低反照率和極少紅化特徵的電磁頻譜,其組成份中有著豐富的矽酸鹽、碳和無水的矽酸鹽,在它們的內部可能有水結成的冰。P-型小行星都在主帶的外層和之外。.

查看 電磁波譜和P-型小行星

T-型小行星

T-型小行星是在主帶內側極為罕見的一種類型,其亮度較暗且成分不明,沒有特徵的光譜有中度的紅化,還有中度的吸收特性在0.85微米處突然截止。到目前為止,尚未發現與此型有直接關聯的隕石。他門被認為是無水的,並且相信與P-型或D-型有關聯,但也可能是C-型的高度變化型。見神星是此類型的一個例子。.

查看 電磁波譜和T-型小行星

V-型小行星

V-型小行星或灶神星型是與灶神星,此型中體積最大的小行星(因而得名),有著相似光譜的小行星。 大部分成員的軌道元素類似於灶神星,不是足以成為灶神星族的成員,就是有著相似的離心率和軌道傾角,但是半長軸在2.18天文單位和3:1柯克伍德空隙的2.50天文單位。這表示大部分或全部的成員都來自灶神星外殼被撞擊的碎片,也可能是歷史上某個時刻一次很大的單一撞擊事件造成的。在灶神星南半球的巨大撞擊坑是此一撞擊事件的主要候選場所。 V-型小行星與也是由岩石、鐵和普通球粒隕石組成,與類似但更普通的S-型比較是中等的亮度。這種較為罕見的小行星類型,包含的輝石比S-型更多。 電磁頻譜在0.75 μm有很強的吸收特性longward,另一個特徵出現在大約1 μm,和很紅的0.7μm shortwards。可見光波長光譜為V-型的小行星 (包括灶神星本身) 的光譜都類似於玄武岩無球粒隕石HED隕石。 J-型曾經被認為是在1 μm 有著特別強吸收帶的小行星,類似於古銅無球隕石 ,可能是從灶神星地殼深處衍生的。.

查看 電磁波譜和V-型小行星

X-型小行星

X-群小行星是幾種光譜非常類似,但是仍有不同成分的族群。.

查看 電磁波譜和X-型小行星

X射線爆發源

X射線爆發源是一種會呈現週期性快速增加光度(通常是10或更高因次),且其峰值出現在電磁頻譜之X射線的X射線聯星。這種天文物理的系統是由吸積的緻密天體(通常是中子星,偶爾是黑洞)和一顆捐助者的主序星組成。捐助者的物質會落到中子星的表面並累積在那兒一陣子,直到氫融合成氦,並產生X射線。 擔任捐助者的主序星在分類上既可以是高質量恆星(超過10太陽質量())也可以是低質量恆星(少於1 ),構成的聯星系統縮寫為分別為HMXB和LMXB。X射線爆發源的觀測不同於來自其它X射線瞬變源(像是X射線脈衝星和軟X射線暫現源),表現出急遽的上升時間(1-10秒),然後是軟化的光譜(低溫的黑體特性)。個別爆發能量的特徵是全通量1039–40爾格。相對於穩定吸積的中子星常態光度是1037爾格。.

查看 電磁波譜和X射線爆發源

X波段

根据IEEE 521-2002标准,X波段是指频率在8-12 GHz的无线电波波段,在電磁波譜中屬於微波。而在某些场合中,X波段的频率范围则为7-11.2 GHz。通俗而言,X波段中的X即英语中的“extended”,表示“扩展的”调幅广播。 X波段通常的下行频率為7.25-7.75 GHz,上行频率為7.9-8.4 GHz,也常被称为7/8 GHz波段(8/7 GHz X-band)。而NASA和欧洲空间局的深空站通用的X波段通信频率范围则为上行7145-7235 MHz,下行8400-8500 MHz。 根据国际电信联盟无线电规则第8条,X频段在空间应用方面有空间研究、广播卫星、固定通讯业务卫星、地球探测卫星、气象卫星等用途。雨衰减对X频段的信号传输有一定的影响。.

查看 電磁波譜和X波段

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

查看 電磁波譜和恒星

恆星磁場

恆星磁場是恆星內部有傳導力的電漿運動產生的磁場。這種運動是經由對流產生的,是一種包含物質有形運動的能量傳輸。地區性的磁場會對電漿產生作用力,在密度沒有可以比較的增益下,有效的增加壓力。因此被磁化的地區相對於其它的電漿上升,直到抵達恆星的光球。這將在恆星的表面創造出星斑和冕圈的相關現象。.

查看 電磁波譜和恆星磁場

植物生長燈

植物生長燈是人造光源,通常是電光源,旨在通過發射適合於光合作用的電磁波譜來刺激植物生長。植物燈用於沒有天然發光或需要補光的應用中。例如:在冬天,當可能的日光時間可能不足以達到所需的植物生長時,燈被用來延長植物接收光的時間。如果植物沒有得到足夠的光,它們將徒長。 生長的燈光或者試圖提供類似於太陽的光譜,或提供更適合所栽培植物需要的光譜。模擬來自增長燈的不同顏色,溫度和光譜輸出的室外條件,以及改變燈的流明輸出(強度)。根據所栽培植物的種類,栽培階段(如發芽/營養期或開花期/結果期)以及植物所需的光週期,光譜的特定範圍,發光效率和色溫都是可取的 具體植物和時間段。 1868年,俄羅斯植物學家Andrei Famintsyn,是第一個將人造光用於植物生長和研究的人。.

查看 電磁波譜和植物生長燈

毫秒脈衝星

毫秒脈衝星(MSP),曾經被稱為"反覆脈衝星",是自轉週期在1-10毫秒範圍內的脈衝星,他目前僅能在微波或X射線的電磁波頻譜的波段上被觀察到。 毫秒脈衝星的起源依然有些神秘,主導的理論認為它們原本是週期較長的脈衝星,經由吸積的延長或回覆。基於這個理由,低質量X射線雙星系特別受到關注,它們被認為是正在回覆過程中的脈衝星。 像這一類散發出X射線的脈衝星被認為是正在被加速的階段,活躍性正在增加中。它們可能是正在吸收由伴星的洛希瓣溢出的角動量,使自轉的速度增加至每秒鐘數百轉,而被加速的中子星。已經被加速了的毫秒脈衝星,散發出的電磁波頻譜是在長波長的部分。 許多毫秒脈衝星是在球狀星團內被發現的,因為在這些系統內極端高的恆星密度有利於創造能引起雙星之間質量交換的環境,讓自轉的中子星經由交互作用提高週期成為毫秒脈衝星。目前在球狀星團內發現的毫秒脈衝星大約有130顆,單單在Terzan 5中就有33顆,然後是杜鵑座47有22顆,M28和M15各有8顆。.

查看 電磁波譜和毫秒脈衝星

水坑 (无线电)

水坑指在电磁波谱从1,420到1,666兆赫兹之间极度沉寂的波段,所对应的波长分别为21至18厘米。该术语是由伯纳德·奥利弗在1971年提出的。 羟基谱线的最强辐射位于18厘米处,而氢线的最强辐射位于21厘米处,水正是由这两种基团组成的。在当前,水仍被认为是先进到能够发射无线电信号的高等外星生命所必需的。伯纳德·奥利弗的理论认为水坑是一种与外星文明通信的很好的、显著的波段。.

查看 電磁波譜和水坑 (无线电)

河外背景光

河外背景光(extragalactic background light,EBL)是由於恆星形成過程加上活躍星系核(AGNs)的活動累積在宇宙中形成的瀰漫性輻射。這種輻射涵蓋的波長範圍在0.1~1000微米(這些是紫外線、光學、和紅外電磁頻譜的範圍)。河外背景光被定義為涵蓋整體電磁頻譜的瀰漫河外背景輻射(DEBRA,diffuse extragalactic background radiation)的一部分,繼宇宙微波背景輻射之後,河外背景光是第二高的彌漫背景能量,因而成為了解宇宙能量平衡必要的條件。 對河外背景光的了解也是研究非常高能(VHE, 30 GeV-30 TeV)天文學的基礎。來自宇宙距離的VHE光子會被成對產生的河外背景光的光子稀釋。因此,在研究VHE來源的內在屬性上,有必要知道河外背景光的光譜能量分布(SED,spectral energy distribution)。.

查看 電磁波譜和河外背景光

波段

波段是無線電通訊頻率中的一小段電磁波譜,通常以通道(channel)的方式來運用,或將相同類型、屬性的無線應用集中配置在某一處,舉例來說如:.

查看 電磁波譜和波段

活动星系核

活动星系核(Active Galactic Nucleus,縮寫為AGN)是一个星系中央區有比普通的星系的强烈很多的光度,至少部分波段或甚至可能全部波段裡都發出很强的電磁波譜。被观察到的发射覆盖從無線電波,微波,红外线,可见光,紫外线,X射线,到伽瑪射線。光度大约在1036-1041J/s之間。容纳活动星系核的宿主星系為活躍星系。活躍星系核是這些星系明亮的核心部分,尺度通常在1光年上下,只占整個活躍星系的很小一部分。活动星系核(AGN)是在宇宙中的电磁辐射的最明亮的持久性的来源,并且因此可以被用作发现远方天体的方法;其演化的宇宙时间函数也设置了宇宙模型的制约条件。 另外,亦有研究顯示活躍星系核的能量可能源自星系碰撞。 1960年代類星體發現以來,又相繼發現了許多具有類似特徵的天體,都是系外星系,統稱為活躍星系核。 共同观测特征主要有:.

查看 電磁波譜和活动星系核

消光

消光(Extinction)是天文學中觀測者用來描述被觀測的天體發射的光線被路途中的物質(氣體和塵埃)吸收和散射的狀態。對地面的觀測者而言,消光來自於星際物質(ISM)和地球大氣層,他也可能來自於被觀測天體周圍的星周塵。大氣層的消光在一些波段(X射線、紫外線和紅外線)上非常強烈,必須進入太空才能觀測。在可見光的波段上,藍色遠比紅色被稀釋的強烈,結果是天體會比預期的偏紅,星際消光也會使天體紅化 (不要與紅移混淆)。.

查看 電磁波譜和消光

游離輻射

游離輻射(ionizing radiation)是指波長短、頻率高、能量高的射線(粒子或波的双重形式)。輻射可分為游離輻射和非游離輻射,游離輻射可以從原子或分子裡面電離過程(Ionization)中作用出至少一個電子。反之,非游離輻射則不行。游離能力,決定於射線(粒子或波)所帶的能量,而不是射線的數量。如果射線沒有帶有足夠游離能量的話,大量的射線並不能夠導致游離。.

查看 電磁波譜和游離輻射

減色法

一個減色法模型解釋了塗料,染料,墨水和天然色素的混合物產生的顏色,每個顏色會減去(即吸收)某些波長的光並向其他反射。表面所顯示的顏色取決於它反映在電磁波譜的顏色。.

查看 電磁波譜和減色法

激发态

发是在任意能级上能量的提升。在物理学中有对于这种能级有专门定义:往往与一个原子被激发至激发态有关。 在量子力学中,一个系统(例如一个原子,分子或原子核)的激发态是该系统中任意一个比基态具有更高能量的量子态(也就是说它具有比系统所能具有的最低能量要高的能量)。 一般来说,处于激发态的系统都是不稳定的,只能维持很短的时间:一个量子(例如一个光子或是一个声子)在发生自发辐射或受激辐射后,只在能量被提升的瞬间存在,随即返回具有较低能量的状态(一个较低的激发态或基态)。这种能量上的衰减一般被称为“衰变”(decay),它是“激发”的逆过程。 持续时间较长的激发态被叫做亚稳态(metastable)。同质异能素(nuclear isomers)与单线态氧(singlet oxygen)就是其中的两个例子。.

查看 電磁波譜和激发态

木卫六

木卫六又稱為「希瑪利亞」(Himalia),是木星的一颗自然卫星。屬於不規則衛星,也是其中最大的一顆不規則衛星,1904年12月3日,它在利克天文台被查尔斯·狄龙·珀赖因发现。 1975年,国际天文协会将它授名为Himalia(希玛利亚)。在希腊神话中,希玛利亚是一个女神。她与宙斯有三个儿子。.

查看 電磁波譜和木卫六

木星的磁層

木星的磁層是太陽風在木星的磁場創造出來的空腔(太陽風的低密度空間),在朝向太陽的方向上延伸超過700萬公里,背向太陽的方向上則幾乎達到土星的軌道。木星的磁層是太陽系的行星磁層中最強大,也是體積最大的連續結構體(僅次于日球)。比起地球的磁層,木星的磁層更寬且更扁平,而且強了數個數量級,它的磁矩大約是地球的18,000倍。早在1950年代末期,無線電波的觀測就首先推測出木星磁場的存在,先鋒10號在1973年更直接測量到木星的磁場。 木星內部的磁場是由液態金屬氫構成的外核電流產生的。木星衛星,埃歐上的火山噴發,產生大量的二氧化硫氣體進入太空,在木星的附近形成巨大的氣體環,木星的磁場迫使這個環以與木星自轉相同的方向與相同的角速度旋轉。這些環攜帶了與電漿在一起的磁場,在過程中它被拉成煎餅狀的結構,稱為磁盤。結果是,木星的磁層是由埃歐的電漿和它自身的旋轉決定了形狀,而不像地球的磁層形狀是由太陽風造成的。磁層中強大的電流在木星的極區形成永駐的極光和強烈多變的無線電波,圍繞著木星的極軸,這意味著木星可以被視為非常微弱的電波脈衝星。木星的極光幾乎包括所有的電磁波頻譜,像是紅外線、可見光、紫外線和軟X射線。 木星的磁層有捕獲粒子並使粒子加速的作用,產生類似地球的范艾倫輻射帶,但強大了千萬倍輻射帶。高能粒子與木星巨大的衛星表面的交互作用,對它們的物理和化學性質有顯著的影響。這些相同的粒子也影響木星稀薄的行星環內的粒子。輻射帶的存在很明顯地會危害探測器和在太空旅行的人類。.

查看 電磁波譜和木星的磁層

望远镜

望遠鏡是一種可以透過遙控方式收集電磁波(例如可見光)以協助觀察遠方物體的工具。已知能實用的第一架望遠鏡是在17世紀初期在荷蘭使用玻璃透鏡發明的。這項發明現在被應用在陸地和天文學。 在第一架望遠鏡被製造出來幾十年內,用鏡子收集和聚焦光線的反射望遠鏡就被製造出來。在20世紀,許多新型式的望遠鏡被發明,包括1930年代的電波望遠鏡和1960年代的紅外線望遠鏡。望遠鏡這個名詞現在是泛指能夠偵測不同區域的電磁頻譜的各種儀器,在某些情況下還包括其他類型的探測儀器。 英文的「telescope」(來自希臘的τῆλε,tele "far"和 σκοπεῖν,skopein "to look or see";τηλεσκόπος,teleskopos "far-seeing")。這個字是希臘數學家乔瓦尼·德米西亚尼在1611年於伽利略出席的意大利猞猁之眼国家科学院的一場餐會中,推銷他的儀器時提出的。在《星際信使》這本書中,伽利略使用的字是"perspicillum"。.

查看 電磁波譜和望远镜

星際雲

星際雲是對存在於銀河系或其他星系內以電漿或宇宙塵的型態累積成的雲氣的通用名稱。星際雲是高密度的星際介質,它的密度比平均密度要大的多。依據雲氣的密度、大小和溫度,在其中的氫可以是中性的(H I區)、電離的(H II區,也就是電漿)或分子(分子雲)。中性和電離的雲有時也被稱為發散雲,而分子雲有時也稱為密度雲。.

查看 電磁波譜和星際雲

海斯塔克天文台

海斯塔克天文台是隸屬於麻省理工學院的一所天文的觀測所,它座落於麻塞諸塞州波士頓西北方大約的威斯福特(美國)。海斯塔克天文台最初是麻省理工學院的林肯實驗室為美國空軍建立的微波研究機構,於1960年開始建造,天 線於1964年開始運作。在1970年,這些設施被轉移給麻省理工學院,然後成立了東北電波天文台公司(Northeast Radio Observatory Corporation ,NEROC),與其他的大學共同操作海斯塔克天文台。 ,總共有九個機構參加了NEROC。 海斯塔克天文台的位置也是研究大氣科學中心的磨盤山觀測所所在地。林肯實驗室繼續使用這個場所,並稱之為林肯太空監視綜合站(Lincoln Space Surveillance Complex,LSSC) 。麻省理工學院地球、大氣和行星科學中心的喬治華萊士物理天文台位在海斯塔克天文台圓頂的南方翰威斯福特圓頂的東方。屬性上是波士頓業餘望遠鏡製造者在麻省理工學院的會所也在此處。 在水星上的海斯塔克鍊串就是依據海斯塔克天文臺命名的。.

查看 電磁波譜和海斯塔克天文台

斯特藩-玻尔兹曼定律

斯特藩-玻尔兹曼定律(Stefan-Boltzmann law),又称斯特藩定律,是热力学中的一个著名定律,其内容为: 一个黑体表面单位面积在单位时间内辐射出的总能量(称为物体的辐射度或能量通量密度)j*与黑体本身的热力学温度T(又称绝对温度)的四次方成正比,即: 其中辐射度j*具有功率密度的量纲(能量/(时间·距离2)),国际单位制标准单位为焦耳/(秒·平方米),即瓦特/平方米。绝对温度T的标准单位是开尔文,\epsilon为黑体的辐射系数;若为绝对黑体,则\epsilon.

查看 電磁波譜和斯特藩-玻尔兹曼定律

无线电

無線電,又稱无线电波、射頻電波、電波,或射頻,是指在自由空間(包括空氣和真空)傳播的電磁波,在電磁波譜上,其波長長於紅外線光(IR)。頻率範圍為300 GHz以下 ,其對應的波長範圍為1公釐以上。就像其他電磁波一樣,無線電波以光速前進。經由閃電或天文物體,可以產生自然的無線電波。由人工產生的無線電波,被應用在無線通訊、廣播、雷達、通訊衛星、導航系統、電腦網路等應用上。 無線電發射機,藉由交流電,經過振盪器,變成高頻率交流電,產生電磁場,而經由電磁場可產生無線電波。無線電波像磁鐵,有同性相斥、異性相吸的現象。同類電子會互相排斥,因此當無線電波射出時,會將前方電波往前推,當連續電波一直射出來時,電波就會在空氣中傳播。 無線電技術是通過無線電波傳播信號的技術,其原理在於,導體中電流強弱的改變會產生無線電波。利用這一現象,通過調製可將信息加載於無線電波之上。當電波通過空間傳播到達收信端,電波引起的電磁場變化又會在導體中產生電流。通過解調將訊息從電流變化中提取出來,就達到了資訊傳遞的目的。 麥克斯韋最早在他遞交給英國皇家學會的論文《電磁場的動力理論》中闡明了電磁波傳播的理論基礎。他的這些工作完成於1861年至1865年之間。 海因里希·魯道夫·赫茲在1886年至1888年間首先通過試驗驗證了麥克斯韋爾的理論。他證明了無線電輻射具有波的所有特性,並發現電磁場方程可以用偏微分方程表達,通常稱為波動方程。 1906年聖誕前夜,范信達在美國麻薩諸塞州採用外差法實現了歷史上首次無線電廣播。范信達廣播了他自己用小提琴演奏「平安夜」和朗誦《聖經》片段。位於英格蘭切爾姆斯福德的馬可尼研究中心在1922年開播世界上第一個定期播出的無線電廣播娛樂節目。.

查看 電磁波譜和无线电

无线电波

无线电波(Radio waves),有时也称无线电、射频等,是一种电磁波,其波长在電磁波譜中比红外线长。无线电波的頻率在300 GHz到3 kHz之间,但也有定义将任何1 GHz或3 GHz以上的电波划为微波。当频率在300 GHz时,无线电波对应的波长为;在3 kHz时,波长为。和其他电磁波一样,无线电波也以光速行进。自然界中的无线电波主要是由闪电或者宇宙天体形成。 Wave Category:Waves Category:Electromagnetic spectrum.

查看 電磁波譜和无线电波

日照計

日照計是一種被設計指向太陽專門測量太陽光度的光度計。最近的日照計是合併一個太陽追蹤組件,配合適當的光學系統、電磁波頻譜的過濾設備、光電探測器和數據收集系統的自動化儀器。測定的量稱為直接太陽輻射率。 當日照計被安置在地球大氣層,所測量的輻射率與太陽的輻射率(地球大氣層外的輻射率)是不相等的,因為大氣層的吸收和散射會使太陽輻射量減少。因此測量得到的輻射量是太陽經由大氣發散之後的組合結果,這些數量之間的關聯可以參考比爾定律。 大氣層的效應可以利用蘭利推測與以消除,因此利用這種方法可以從地基的測量推算出在地球大氣層之外的輻射率。 一旦知道地球大氣層之外的輻射率,就可以利用日照計研究大氣層,特別是在確定大氣層的光深度上。同樣的,如果訊號在兩個或多個的光譜間隔時間上被測量,就可以選擇大氣層中不同成分的氣體進行研究,例如水蒸氣、臭氧等等。.

查看 電磁波譜和日照計

攝影星等

攝影星等是以傳統的乾版或底片拍攝得到的星等。 在光度計出現之前,要精確的測量天體的亮度,是用照相機來制定它的視星等。這些影像,使用正色的攝影膠片或乾版,在藍色端的視頻譜比人眼或現代的光度計敏銳。結果是,藍色星的攝影星等會有比現在視星等低的星等(也就是較亮),因為它們在相片上的亮度比現代的光度計明亮。相反的,紅色的星有著比視星等較高的攝影星等(也就是較暗淡),因為它們顯得比較暗淡。例如,紅色的超新星人馬座KW的攝影星等介於11.0〜13.2,但是視星等在8.5〜11.0。也常見在星圖上列出藍色星等(B),像是劍魚座S和天箭座WZ。 視攝影星等的符號是mpg,絕對攝影星等的符號是Mpg。 攝影星等現在被認為是過時的。.

查看 電磁波譜和攝影星等

21公分線

21厘米線,又被稱為氫線,21厘米輻射(hydrogen line, 21 centimeter line or HI line)是指由中性氫原子因為能階變化而產生的電磁波譜線。頻率是1420.40575177 MHz,相當於在太空中波長 21.10611405413 公分。在電磁波譜上的位置是微波。 這個波長的輻射經常在射电天文學上被應用,尤其無線電波可以穿過對可見光是不透明的星際雲等巨大星際介質區域。 21公分波來自於1s基態氫原子的兩個超精細結構之間。兩個超精細結構能階的能量不同,而量子的頻率則是由普朗克關係式決定。.

查看 電磁波譜和21公分線

亦称为 电磁波频谱。

灰度图像現代物理學碰撞激發神经编码科学大纲空间望远镜列表第二代廣域和行星照相機类星体粒子輻射紅移紅邊红外线望远镜罗伯特·威廉·本生疏散星团电磁辐射物理学史發射光譜發射星雲白矮星、中子星和超新星年表D-型小行星E-型小行星EGS-zs8-1EM蟹状星云脉冲星蟹狀星雲荷包蛋星系顯微鏡座AU频谱频谱分析仪飛馬座IK观测天文学詹姆斯·卡彭特高光譜影像譜線语音频率貓眼星雲質光比超人黑体辐射黑洞物理學年表辐射鈦輝無粒隕石赫兹赫比格-哈羅天體蓝移蓝白细尾鹩莺自由空間長蛇座TW電波波頻譜耿恩-彼得森槽耀变体耀星耀斑GD 362H-αHXMM01IPTF14hlsNGC 1672P-型小行星T-型小行星V-型小行星X-型小行星X射線爆發源X波段恒星恆星磁場植物生長燈毫秒脈衝星水坑 (无线电)河外背景光波段活动星系核消光游離輻射減色法激发态木卫六木星的磁層望远镜星際雲海斯塔克天文台斯特藩-玻尔兹曼定律无线电无线电波日照計攝影星等21公分線