徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

電磁波

指数 電磁波

#重定向 电磁辐射.

200 关系: 城鎮戰基站原子反射鏡去耦电容厘米-克-秒制偏振假面騎士鎧武半条命 (游戏)千赫反物质古斯塔夫·赫兹可觀測宇宙右手定則吸收限合金獵犬墨西哥地震预警系统多極展開大眾電信大雄的宇宙漂流記大氣折射天鵝座X-1天文攝影太瀚科技太陽輻射外星人妹妹們字符编码宇宙安培定律對蹠點射频识别中子希格斯机制布拉格定律世界之最列表干涉 (物理学)平面波事件視界望遠鏡以太传热弧矢增二十二伽馬射線天文學引力波天文学位移電流彩雲影像平滑化微細胞基地臺心律調節器地震光地震預測...化學國防大學理工學院校友列表喬治·費茲傑羅傳統古柏帶天體哆啦A夢七小子共轭体系光学光學史光學場光學介質光環 (光象)光电效应光速固体国家地震烈度速报与预警工程国际单位制四維矢量四維頻率倒頻譜CHAOS;HEADCode Geass機動兵器列表皇家特工:間諜密令短波廣播短波熱療玲音玻尔模型理论物理学磁場磁矢势移动电话辐射对健康的危害科学大纲空穴竹炭等離子顯示屏紫外線B光照治療紫外线約翰·洛克 (迷失)經典物理術語線性正則變換红外线纵波真空真空磁导率真空电容率电偶极矩电子电容率电磁场电荷守恒定律电流無線通訊異物偵測物理學分支物理學重要著作列表特高頻相干性遙控模型衰減係數颜色食品輻照馬克士威方程組驚爆危機用語列表高壓電高能天文學高斯磁定律論物理力線警察搜查隊魔法科高中的劣等生變電所鮮食費城實驗質光比超力戰隊王連者黎納-維謝勢黑体 (物理学)黑体辐射辐射迴旋管远红外线烘烤炉能量均分定理阿曼德·斐索阋神星薛定谔方程铁磁流体蓝移重力波 (相對論)重子不對稱性自由空間自由空間阻抗致癌物質腔量子电动力学雷达散射截面電學電磁極化子電磁波譜電磁波方程式透地雷達耿恩-彼得森槽F-117夜鷹戰鬥攻擊機Fate/EXTRAGRB 970508GW170817I (消歧義)ICL地震预警技术系统ΓLINESTS-114接地常數推遲勢推遲時間東京晴空塔橢圓偏振技術次毫米波陣列望遠鏡死光氢氧根离子吸收沃尔夫数学奖沃爾夫岡·克洛爾波動角度波粒二象性波长波浪洛伦兹变换游離輻射湮滅輻射湯馬士·戈爾德 (天文學家)漸逝波潮濕本構關係戰慄時空系列流星之洛克人海因里希·赫兹海洋能新鐵金剛之金眼睛新视野号方波无线网络无线电时间倒流放射能感觉系统愛丁頓獎章散射曙光少女21公分線300729全台大停電 扩展索引 (150 更多) »

城鎮戰

城鎮戰又称為巷战(urban warfare),是指以人口聚居的城市或城鎮,甚至是更大的都會區來作為主要戰鬥場所的現代化戰爭方式。在18世紀以前,由於軍隊多以包圍城鎮外的作戰方式進行,通常就直接把當時對城鎮的攻擊行動稱作攻城戰。但隨著火藥的發明以及火炮開始投入了戰場,使得城牆已失去過去能有效防禦的功效。到了今日,城鎮戰多被視為一種特殊的軍事行動,原因在於今日城鎮戰得面對更加複雜的城市地形與建築,以及更多的一般平民。城鎮戰往往使得進攻方得付出較為昂貴的代價來占領該座城鎮;而對於防守方來說,則往往在作戰中擁有了一定的優勢(如基地地點、補給來源等),這種情況特別是在攻守兩方軍事實力懸殊時會更加的明顯。 一般軍事人員在遭遇城鎮戰時,大多時候會因房屋的配置無法立刻得到己方軍隊或裝甲車輛的掩護,而對方軍事人員和一般民眾又可能十分難以分別。除了可能遭遇穿著平民服裝的敵方士兵外,還包括有民兵、黑社會等這些單純想保衛自己家園,而提起自己的武器(也有可能是政府提供)襲擊入侵軍隊的民眾們。在許多資料交流和長程武器大範圍使用的現代戰爭中,城鎮戰卻不同於大部分典型且位在寬闊處的軍事行動,它反而讓敵我雙方的距離快速拉近,雙方皆只能在極短的距離接觸交火。城鎮戰被歸屬於複雜的三維空間戰鬥模式,軍隊時常因為建築物、強化過的掩蔽物等,只能擁有有限的視野以及火力發揮空間。而熟悉戰場的敵軍卻可能在掩蔽物甚至是地下基礎設施(如地鐵或下水道)中躲藏, 並以放置陷阱、爆裂物或者是安排狙擊手的方式,消減對方的實力。.

新!!: 電磁波和城鎮戰 · 查看更多 »

基站

基站(Base Station,缩写BS,又称--)是固定在一个地方的高功率多信道双向无线电发送机。它们典型的被用于低功率信道双向无线通讯,如移动电话、手提电话和无线路由器。用手机打电话时,信号就会同时由附近的一个基站发送和接受。通过基站,电话被接入到移动电话网的有线网络中。而移动电话如小灵通则是被直接接入到本地电话网。 "基站"的同义词包括蜂窝站、蜂窝塔(尽管很多蜂窝站天线布装在塔上)、移动电话杆(mobile phone mast)(英国英语)。基站包括基地收发机站(BTS)、基地台控制器(BSC)。 基地台最初是指廣播電台用來傳送節目訊號的天線和一般家庭在屋頂上自行架設的衛星電視訊號接收天線(俗稱“小耳朵”)。此外,因為行動電話的普及和無線網路的興起,基地台開始包括了行動電話和無線網路業者為了接收和傳送訊號而架設的天線。.

新!!: 電磁波和基站 · 查看更多 »

原子反射鏡

原子反射鏡是指一種可以反射中性原子的物體,像是鏡子反射光線一樣。原子反射鏡可能是電場、磁場、電磁波甚至是矽晶片。而這個概念是由量子反射而來。 Category:原子分子与光物理学.

新!!: 電磁波和原子反射鏡 · 查看更多 »

去耦电容

去耦电容是電路中裝設在元件的電源端的電容,此電容可以提供較穩定的電源,同時也可以降低元件耦合到電源端的噪聲,間接可以減少其他元件受此元件噪聲的影響。 在共享导体的电路中,共享电源的时候,当一个器件需要对外提供输出的时候就会同时拉低该导体的电压,产生噪声耦合到共享的电路中。在有噪声的环境中,这些電磁波会在导体内感应出电压信号,影响回路中的元件。在数位电路中,器件容易在临界位置由于干扰而产生错误的信号,从而产生错误的动作。去耦电容可以減少以上情形的發生。 去耦电容一般都安置在元件附近的电源处,以減少布线阻抗對滤波效果的影響。去耦电容多使用瓷片电容,其数值由电压信号最快上升和下降速度确定。.

新!!: 電磁波和去耦电容 · 查看更多 »

厘米-克-秒制

厘米-克-秒單位制或厘米-克-秒系統(英文:centimetre-gram-second system,故常簡稱CGS制)是一種物理單位的系統制度,分別以厘米、克及秒為長度、質量及時間的基本單位。 在力學單位方面厘米-克-秒單位制是一致的,但在電學單位方面則有幾種變體。此單位系統後來被MKS--取代,也就是米-千克-秒系統(meter-kilogram-second system),而其又被國際單位制(SI system)所取代;國際單位制具有MKS制的三個基本單位,再加上凱氏溫標、安培、燭光及莫耳,有許多工程及科學領域只使用國際單位制,不過仍有一些領域常使用厘米-克-秒單位制。 在量測純力學系統時(即只和長度、質量、力、壓力、能量等物理量有關的系統),厘米-克-秒制和國際單位制之間的轉換相當單純及明確。單位間的轉換係數均為10的次幂,均可由以下關係推導而成;100 cm.

新!!: 電磁波和厘米-克-秒制 · 查看更多 »

偏振

偏振(polarization)指的是横波能夠朝著不同方向振盪的性質。例如電磁波、引力波都會展示出偏振現象。纵波则不會展示出偏振現象,例如傳播於氣體或液體的聲波,其只會朝著傳播方向振盪。如右圖所示,緊拉的細線可以展示出線偏振現象與圓偏振現象。 電磁波的電場與磁場彼此相互垂直。按照常規,電磁波的偏振方向指的是電場的偏振方向。在自由空間裏,電磁波是以橫波方式傳播,即電場與磁場又都垂直於電磁波的傳播方向。理論而言,只要垂直於傳播方向的方向,振盪的電場可以呈任意方向。假若電場的振盪只朝著單獨一個方向,則稱此為「線偏振」或「平面偏振」;假若電場的振盪方向是以電磁波的波頻率進行旋轉動作,並且電場向量的矢端隨著時間流意勾繪出圓型,則稱此為「圓偏振」;假若勾繪出橢圓型,則稱此為「橢圓偏振」;對於這兩個案例,又可按照在任意位置朝著源頭望去,電場隨時間流易而旋轉的順時針方向、逆時針方向,將圓偏振細分為「右旋圓偏振」、「左旋圓偏振」,將橢圓偏振細分為「右旋橢圓偏振」、「左旋橢圓偏振」;這性質稱為手徵性。 光波是一種電磁波。很多常見的光學物質都具有各向同性,例如玻璃。這些物質會維持波的偏振態不變,不會因偏振態的不同而展現出不同的物理行為。可是,有些重要的雙折射物質或光學活性物質具有各向異性。因此,偏振方向的不同,波的傳播狀況也不同,或者,波的偏振方向會被改變。起偏器是一種光學濾波器,只能讓朝著某特定方向偏振的光波通過,因此,可以將非偏振光變為偏振光。 在涉及到橫波傳播的科學領域,例如光學、地震學、無線電學、微波學等等,偏振是很重要的參數。激光、光纖通信、無線通信、雷達等等應用科技,都需要完善處理偏振問題。 極化的英文原文也是「polarization」,在英文文獻裏,偏振與極化兩個術語通用,都是使用同一個詞彙來表達,只有在中文文獻裏,才有不同的用法。一般來說,偏振指的是任何波動朝著某特定方向振盪的性質,而極化指的是各個帶電粒子因正負電荷在空間裡分離而產生的現象。.

新!!: 電磁波和偏振 · 查看更多 »

假面騎士鎧武

《假面騎士鎧武》(仮面ライダー鎧武,Kamen Rider Gaim),從2013年10月6日起於朝日電視台放映,每週日早上8:00-8:30播出的日本特攝電視劇,假面騎士鎧武也是該劇主角變身的英雄的名字,本作為《假面騎士系列》的第15部平成系列作品。口號是「假面騎士戰國時代」。 香港無綫電視定本作譯名為《--》,從2016年7月23日起於翡翠台每週六早上11:15-11:50雙語廣播粵語配音版及日語版;其中粵語配音版配上繁體中文字幕經myTV網上直播及節目重溫,同時這部也是無綫翡翠台所播放的最後一部《--》作品,本作結束後接檔週是《少年勇將之再顯神威》,雖仍未確定播放--劇集而最終會否時段取消。 台灣地區由東森綜合台於2016年9月3日開始至翌年2017年7月22日每週六上午08:30播放中文配音版,並於當日(週六)下午16:30-17:00及隔天(週日)早上07:30-08:00於東森超視台重播,2017年1月21日於每週六下午15:00東森幼幼台重播。.

新!!: 電磁波和假面騎士鎧武 · 查看更多 »

半条命 (游戏)

是Valve公司開發的科幻类型第一人称射击游戏,1998年由雪乐山公司出版發行。遊戲使用的引擎是由雷神之锤II引擎修改的GoldSrc引擎。遊戲最初版本只可在Windows系统運行,后来被移植到索尼的PlayStation 2平台上。玩家扮演已畢業的理論物理學家戈登·弗里曼,由於一次的實驗失敗,玩家需要從一個秘密地下研究所中(黑色高地)逃出生天。 作為Valve開發的第一款遊戲,《半条命》在發行前普遍不被遊戲業界看好,認為遊戲劇情「太有野心」。Valve曾因此找不到出版商接手,直到雪樂山公司因為對於3D動作遊戲有興趣而簽下遊戲的版權。后来Valve又开发了它的几个后续版本:《半条命:针锋相对》、《半条命:蓝色行动》,以及游戏模组:《反恐精英》、《決勝之日》等。而《半条命》系列现在的最新版本是《戰慄時空2:二部曲》。 遊戲發售時,很多遊戲評論家都欣賞遊戲的整體表現,更獲得超過51個年度最佳遊戲獎項的殊榮。遊戲的玩法對第一人称射击影響深遠,更被稱為史上最優秀的遊戲。2004年11月16日,《半条命》銷售量達800萬套。2006年7月14日,《半条命》系列總共賣出超過2000萬套。而根據GameSpy統計,《半条命》是最多人玩的線上遊戲(包括MMORPG),其次是《半条命2》。.

新!!: 電磁波和半条命 (游戏) · 查看更多 »

千赫

千赫(Kilo Hertz,kHz)是波動頻率單位之一,旧称“千周”(Kilocycle,kc)。波動頻率的基本單位是赫茲,採千進位制,1千赫相當於1000赫茲,在電磁波裡,頻率為一千赫電的電磁波波長相當於300公里。 Category:频率单位.

新!!: 電磁波和千赫 · 查看更多 »

反物质

在粒子物理學裡,反物質(英语:antimatter)是反粒子概念的延伸,反物質是由反粒子構成的,如同普通物質是由普通粒子所构成的。例如一顆反質子和一顆反電子〈正電子〉能形成一個反氫原子,如同電子和質子形成一般物質的氫原子。此外,物質與反物質的結合,會如同粒子與反粒子結合一般,導致兩者湮滅,且因而釋放出高能光子(伽瑪射線)或是其他能量較低的正反粒子對。正反物質湮滅所造成的粒子,賦予的動能等同於原始正反物質對的動能,加上原物質靜止質量與生成粒子靜質量的差,後者通常佔大部分。(愛因斯坦相對論指出,質量與能量是等價的。) 反物質無法在自然界找到,除非是在稍縱即逝的少量存在(例如因放射衰變或宇宙射線等現象)。這是由於反物質若非存在於像物理實驗室的人工環境下,則無可避免地隨即與自然界的物質發生碰觸並湮滅。反粒子和一些穩定的反物質(例如反氫)可以人工製造出極少量,但卻不足以達到可對這些物質驗證其理論性的程度。 在科學與科幻領域,都有很大的疑問關於為何所見的宇宙很明顯地幾乎充滿了物質、是否有其他地方幾乎充滿了反物質,以及是否能夠駕馭反物質,但在現今可見的宇宙範圍中,明顯的正反物質不對稱性成了物理的最大難題之一。許多可能的物理過程都是在探究重子時所發現。.

新!!: 電磁波和反物质 · 查看更多 »

古斯塔夫·赫兹

古斯塔夫·路德维希·赫兹(Gustav Ludwig Hertz,),德国物理学家,量子力学的先驱,他是1925年诺贝尔物理学奖获得者,電磁波發現者海因里希·鲁道夫·赫兹的侄子和卡尔·赫尔穆特·赫兹的父亲。.

新!!: 電磁波和古斯塔夫·赫兹 · 查看更多 »

可觀測宇宙

可观测宇宙(observable universe)是一个以观测者作为中心的球体空间,小得足以让观测者观测到该范围内的物体,也就是说物体发出的光有足够时间到达观测者。截至2013年對宇宙年齡最精確的估計是年。 但由於宇宙的膨脹,可觀測宇宙的半徑並不是固定的138億光年,人類所觀測的古老天體當前的距離比起其原先的位置要遙遠得多(以固有距離(proper distance)來衡量,固有距離在現在的時點和同移距離是相等的)。 现在推测可观测宇宙半径约为465亿光年,直径约为930亿光年。 根據宇宙學原理,從任何方向到可觀測宇宙邊緣的距離大致是相等的。 “可观测”在这个意义上与现代科技是否容许我们探测到物体发出的辐射无关,而是指物体发出的光线或其他辐射可能到达观测者。实际上,我们最远只能观测到宇宙从不透明变为透明的临界最后散射面(surface of last scattering),但在未來的技術下,我们有可能觀測到更古老的宇宙中微子背景輻射,甚至可能能够从重力波的探测推断这个时间之前的信息。有時候天體物理學家將「可視宇宙」(visible universe)和「可觀測宇宙」相區分,前者只包括了再復合時期以來的信息而後者則包括了自宇宙膨脹(傳統宇宙學的大爆炸及現代宇宙學的暴脹時期結束)以來發出的信息。經過計算,到CMBR粒子的同移距離(可視宇宙的半徑)大約為140億秒差距(約457億光年),而到可觀測宇宙邊緣的同移距離大約為143億秒差距(約466億光年),大約比前者大2%。.

新!!: 電磁波和可觀測宇宙 · 查看更多 »

右手定則

右手定則(Right-hand rule)是一個在數學及物理學上使用的定則。是由英國電機工程師約翰·弗萊明(John Fleming)於十九世紀末期發明的定則,用來幫助他的學生轻松地求出移動於磁場的導體所產生的動生電動勢的方向 。 當設定三個相互垂直的向量時,可以有兩種不同的選擇:右手系統或左手系統。因此,假若遇到這類問題時,必需明確地指出是採用哪一種系統。.

新!!: 電磁波和右手定則 · 查看更多 »

吸收限

吸收限(absorption edge)是指物質對電磁波的吸收量隨著輻射頻率的增大,而輻射頻率增加至某一限度時吸收量會驟然减小,而這個限度稱作吸收限。吸收限的大小與原子中電子占有的能級有關。.

新!!: 電磁波和吸收限 · 查看更多 »

合金獵犬

《合金獵犬》(クロムハウンズ,Chromehounds)是由日本From Software製作,SEGA發行的Xbox 360平台3D動作射擊遊戲,於2006年6月29日正式發售。多人連線伺服器已於日本時間2010年1月7日16時59分停止服務。.

新!!: 電磁波和合金獵犬 · 查看更多 »

墨西哥地震预警系统

墨西哥地震预警系统(Sistema de Alerta Sísmica Mexicano, SASMEX),是墨西哥依托潜在震源地附近的地震台网,在震后数秒内快速估算地震影响范围和程度,在破坏性的S波和面波到达监测区域时发布警报的地震预警系统。该系统的前身“墨西哥城地震预警系统”(Sistema de Alerta Sísmica para la Ciudad de México, SAS)于1991年9月开始试运行,并于1993年8月正式向墨西哥城的民众提供预警信息,是世界上第一个正式为公众提供预警的地震预警系统。2005年,墨西哥城和瓦哈卡市对地震预警系统进行了整合,形成了墨西哥地震预警系统。 墨西哥地震预警系统由非营利性民间组织“墨西哥地震仪表与记录中心”(Centro deInstrumentacióny RegistroSísmico, A.C或CIRES)管理,并受到的支持。.

新!!: 電磁波和墨西哥地震预警系统 · 查看更多 »

多極展開

在物理學裏,多極展開方法廣泛應用於涉及於質量分佈產生的重力場、電荷分佈產生的電勢或電場、電流分佈產生的磁向量勢和磁場、電磁波的傳播等等問題。使用多極展開,重力場或電勢等等,都可以表達為單極項目、偶極項目、四極項目、八極項目等等的疊加。一個典型範例是,從原子核的外部多極矩與電子軌域的內部多極矩之間的交互作用能量,計算求得原子的原子核外多極矩。由於從原子核的外多極矩可以給出原子核內部的電荷分佈,物理學者可以研究原子核的形狀。 做理論運算時,在允許誤差範圍內,時常可以只取多極展開的最低階的幾個非零項目,忽略其它項目,因為它們的數值超小。.

新!!: 電磁波和多極展開 · 查看更多 »

大眾電信

大眾電信股份有限公司(英語:First International Telecom Corp.;FITEL)是台灣唯一採用個人手持式電話系統(PHS)的行動電話業務提供者,股東包括大眾全球投資控股(大眾投控)、新光集團、中興保全、UT斯達康、聯華電子(聯電)集團、啟碁科技、英華達、見龍化學工業(見龍化工)集團等。.

新!!: 電磁波和大眾電信 · 查看更多 »

大雄的宇宙漂流記

是刊載於《龙漫CORO-CORO》月刊1998年10月號到1999年3月號的《哆啦A夢大長篇》系列作品。這部是紀念哆啦A夢進入電影電視第20周年的大作品,同時是大長篇哆啦A夢系列第19本的作品。參考 以及 原作者藤子·F·不二雄,電影監製為芝山努,腳本:岸間信明,東寶出品。票房收入約20億日圓,動員觀客大約395萬人。同時上映的附篇電影有《哆啦A夢七小子與點心娜娜王國》以及《哆啦A夢》感動短篇《大雄的結婚前夜》。.

新!!: 電磁波和大雄的宇宙漂流記 · 查看更多 »

大氣折射

大氣折射(又稱:蒙氣差(蒙氣即行星的大氣)、折光差)即原本直線前進的光或其它電磁波在穿越大氣層時,因為空氣密度隨著高度變化所產生的偏折。這種折射是光通過空氣時因為密度的增加使速度降低(折射率增加)。大氣折射在近地面時會產生海市蜃樓,讓遠方的物體出現或蕩漾,和非幻覺的升高或降低,伸長或縮短。這個詞也適用於聲音的折射。無論是天體或地面上物體位置的測量都需要考慮大氣折射。 對天文或天體的折射,導致天體在天空中的位置看起來比實際為高。大地折射通常導致物體出現在比實際高的位置上,然而在靠近地面的空氣被加熱的下午,光線的曲折向上會使物體看似出現在比實際位置低的地方。 折射不僅影響可見光,還包括所有的電磁波,然而在程度上不盡相同(見光的色散)。例如在可見光,藍色受到的影響大於紅色。這會對天體光譜在展開時的高解析圖像造成影響。 只要有可能,天文學家會安排在天體在天空中接近高度最高的頂點時才要觀測。同樣的,水手也不會觀測一顆高度低於20°或更低恆星的位置。如果不能避免靠近地平線的觀測,有可能使用具有修正系統,以彌補這種折射造成的影響。如果色散也是一個問題(如果是寬頻的高解析觀測),大氣折射可以使用成對的旋轉玻璃稜鏡處理掉。但是當大氣折射的總量是溫度梯度、溫度、壓力和濕度(特別是在中紅外波長時的水蒸氣總量)的函數時,成功補償這些修正量的工作可以讓人為之望而卻步。另一方面,測量師經常都會將他們的工作安排在下午折射程度最低的時候。 在有很強的溫度梯度、大氣不均勻和空氣動盪的時候,大氣折射會變得很嚴重。這是造成恆星閃爍和日出與日落時太陽各種不同變形的原因。.

新!!: 電磁波和大氣折射 · 查看更多 »

天鵝座X-1

天鵝座X-1(簡稱Cyg X-1)是一個银河系内位于天鵝座的双星系统,是著名的X射線源。它在1964年的一次火箭彈道飛行時被發現,是從地球觀測最強的X射綫源之一,其頂峰X射綫通量為2.3 Wm−2Hz−1。天鵝座X-1是最先被廣泛承認為黑洞的候選星體,也是同類星體中最受研究關注的。現在估計其質量為太陽質量的8.7倍,而其密度之高使黑洞成爲唯一一種解釋。如果如此,它的事件視界半徑約為26公里。 天鵝座X-1屬於一個高質量X射線雙星系統,其距離太陽大約6,070光年,另一成員為一顆超巨星變星,編號為HDE 226868。兩者相互圍繞公轉,距離為0.2天文單位,即地球和太陽間距離的20%。該星的星風為X射綫源的吸積盤提供物質。盤的内部溫度達到幾百萬K,因此輻射出X射綫。兩條垂直于吸積盤的相對論性噴流將被吸進的物質噴射出星際空間。 這個系統可能屬於一個名為天鵝座OB3的星協,意味著天鵝座X-1的年齡超過500萬年,並源于一顆質量大於40個太陽質量的原星。這顆原星的大部分質量都散失了,很可能是以星風的形式。如果該星以超新星的形式爆炸,則其威力足以將剩餘物質噴射出這個系統。因此它可能直接坍縮成一個黑洞。 物理學家史蒂芬·霍金和基普·索恩曾拿天鵝座X-1作了一場科學的賭局。當中霍金賭天鵝座X-1不是一顆黑洞。1990年霍金讓步,因爲觀測證據顯示這個系統中存在著引力奇點。.

新!!: 電磁波和天鵝座X-1 · 查看更多 »

天文攝影

天文攝影為一特殊的攝影技術,可記錄各種天體和天象,月球、行星甚至遙遠的深空天體。天文攝影不一定要在夜間進行,一些特殊的天象如日食就需在日間拍攝。所需的器材因拍攝對象而異,簡單如一台配備標準鏡頭的單鏡反光機(SLR,single lens reflex camera),複雜如連接到望遠鏡的冷卻CCD相機,都可進行拍攝。除了天文台,全球有數量龐大之天文愛好者積極投入這活動,甚至視之為興趣。 一幅成功之天文攝影照片具有一定的欣賞價值,部分作品更可用作科學研究。例如流星雨照片可供天文學家推算出流星雨輻射點的準確位置,部分超新星爆炸甚至記錄在感光板上多年方由學者辨認出來。 近十幾年由於數碼相機、冷凍式電荷耦合元件(CCD)與摄像头等電子感光元件的發展與普及,另外相關的影象擷取與處理技術之躍進,絕大部分傳統底片之愛好者轉而以此作為天文攝影之主要工具,影象無論清晰度與層次感亦比傳統底片有很大進步,感光度亦大為上升至ISO 204,800(如佳能 EOS-1D X),普通入門機種亦有ISO 12800的高感光度;另外亦發展固定波段假色合成與多重疊加技術,效果迫近望遠鏡的解析度極限之餘,可操作性亦比底片時代便捷很多,故數碼天文攝影亦已成為主流天文攝影項目之一。.

新!!: 電磁波和天文攝影 · 查看更多 »

太瀚科技

太瀚科技(Waltop)是位於新竹科學園區內的台灣科技廠商,於2004年11月從天瀚科技分割出來而成的公司,2006年3月聯華電子所屬的宏誠創投(UMC Capital)入主太瀚,成為最大股東並掌握經營權。太瀚以智慧人機介面領域的電磁筆式觸控技術為起點,經由多年來自力研發並累積的:座標辨識技術(識別電磁筆的軟體技術)、筆跡輸入技術(輸入手寫資訊的硬體技術)、和整合性專用晶片設計技術等三大類核心技術,逐步開發出一系列適合自身技術特質和市場需求的產品和服務。 以2009及2010這兩年為例,太瀚科技主要之出貨產品目前仍集中於四大產品線:「電磁筆式輸入數位板(數位繪圖板)」、「電磁筆式電子白板」、「電磁筆式手寫液晶顯示器」、及「電磁筆式輸入模組」等四類。太瀚的產品以出口外銷到歐洲、美洲、亞洲等區域為其主要的市場。 數位繪圖板(也叫作數位板或手寫板)是家用及個人電腦週邊的一種,其功能上類似傳統滑鼠,可被當成供使用者在個人電腦上輸入座標、按鍵狀態的一種工具,不過數位板在電腦繪圖、輸入筆跡時,方便又有效率,其便利性遠勝於滑鼠及一般的電容式/電阻式觸控面板,其產品屬性雖歸屬於人性化介面的輸入裝置,但整體而言,數位板產業仍可說是電腦週邊產業下的一個獨特的附屬產業,同時,數位板產業的成長性仍與個人電腦產業的景氣密切相關。 隨著電腦週邊產業成長,特別是數位內容及文化創意產業的於這兩年來快速地發展,人性化介面中對筆跡、圖形輸入的需求越來越多,加上幾年下來的觸控市場風潮,新的作業系統(如Windows Vista及Windows 7)也都完全支援筆跡(Ink)輸入及筆勢(Gesture)控制操作,電磁筆式輸入的數位板已經能夠實現完全替代鍵盤和滑鼠的目的。.

新!!: 電磁波和太瀚科技 · 查看更多 »

太陽輻射

太陽輻射(Solar radiation)指太陽從核融合所產生的能量,經由電磁波傳遞到各地的輻射能。太陽輻射的光學頻譜接近溫度5800K的黑體輻射。大約有一半的頻譜是電磁波譜中的可見光,而另一半有紅外線與紫外線等頻譜。如果紫外線沒有被大氣層或是其他的保護裝置吸收,它會影響人體皮膚的色素的變化。 測量上通常都用全天日射計與銀盤日射計(Silver-disk pyrheliometer)等儀器來測量太陽輻射。.

新!!: 電磁波和太陽輻射 · 查看更多 »

外星人

外星人(舊稱宇宙人)是人類对地球以外的智慧生命的統稱。自古至今、人類對外星人一直存在猜測、想像、研究與探索。一些人將地球上難以用科學解釋的文明產物歸咎於外星人的影響。 有些學術單位(其中較著名的包括哈佛大學、柏克萊加州大學和非營利組織SETI協會等)參與了搜尋地外文明計劃(SETI)。這些組織致力於用無線電望遠鏡等先進設備接收從宇宙中傳來的電磁波,從中分析有規律的信號,希望藉此發現外星文明。 在各國史書中也有不少疑似外星人的奇异記載,但现今人类还无法實際探查是否有外星生命,甚至是外星人的存在。美國FBI於2011年4月所公開的解密手稿當中,關於羅斯威爾飛碟墜毀事件的紀錄,常被當作目前可能外星人存在的證據。一些學者專家認為,幽浮是已人為地被包裝成新時代的迷信對象,很多人在不同的程度上和外星人有過接觸,其實都是心理作用。大陸新聞中心/綜合報導,"北京天文館長:外星人從未在地球現身",NOWnews/ 今日新聞網,2010/09/29 21:04.

新!!: 電磁波和外星人 · 查看更多 »

妹妹們

妹妹們(,),通稱御坂妹妹,是《魔法禁書目錄》系列中御坂美琴的複製人。 起初因量产Level 5超能力者的试验而誕生,但由于生成个体不及本体能力的百分之一而被终止;后经过树状图设计者计算后,计划重启以用于Level 6进化实验。后由于上条当麻击败一方通行使進化實驗中止之後,為了因應複製人細胞生長分裂過快而壽命不長的自身特性,妹妹們被分散到世界各地去接受對應的治療;留在學園都市的妹妹們不到十人,并且作为人工天界的演算平台而存在。.

新!!: 電磁波和妹妹們 · 查看更多 »

字符编码

字符编码(Character encoding)、字集碼是把字符集中的字符编码为指定集合中某一对象(例如:比特模式、自然数序列、8位元组或者电脉冲),以便文本在计算机中存储和通过通信网络的传递。常见的例子包括将拉丁字母表编码成摩斯电码和ASCII。其中,ASCII将字母、数字和其它符号編號,並用7位元的二进制來表示这个整数。通常會額外使用一个扩充的位元,以便于以1个字节的方式存储。 在计算机技术发展的早期,如ASCII(1963年)和EBCDIC(1964年)这样的字符集逐漸成為標準。但这些字符集的局限很快就变得明显,于是人们开发了許多方法来扩展它们。对于支持包括东亚CJK字符家族在内的写作系统的要求能支持更大量的字符,并且需要一种系统而不是临时的方法实现这些字符的编码。.

新!!: 電磁波和字符编码 · 查看更多 »

宇宙

宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。.

新!!: 電磁波和宇宙 · 查看更多 »

安培定律

安培定律(Ampère's circuital law),又稱安培環路定律,是由安德烈-瑪麗·安培於1826年提出的一條靜磁學基本定律。安培定律表明,載流導線所載有的電流,與磁場沿著環繞導線的閉合迴路的路徑積分,兩者之間的關係為 其中,\mathbb是環繞著導線的閉合迴路,\mathbf是磁場(又稱為B場),d\boldsymbol是微小線元素向量,\mu_0是磁常數,I_是閉合迴路\mathbb所圍住的電流。 1861年,詹姆斯·馬克士威又將這方程式重新推導一遍,使得符合電動力學條件,並且發表結果於論文《論物理力線》內。馬克士威認為,含時電場會生成磁場,假若電場含時間,則前述安培定律方程式不成立,必須加以修正。經過修正後,新的方程式稱為馬克士威-安培方程式,是馬克士威方程組中的一個方程式,以積分形式表示為 其中,\mathbb是邊緣為\mathbb的任意曲面,\mathbf是穿過曲面\mathbb的電流的電流密度,\mathbf是電位移,d\mathbf是微小面元素向量。.

新!!: 電磁波和安培定律 · 查看更多 »

對蹠點

對點(antipodes),亦有人稱為對蹠地,為地理學與幾何學上的名詞。球面上任一點與球心的連線會交球面於另一點,亦即位於球體直徑兩端的點,這兩點互稱為對蹠點。也就是說,從地球上的某一地點向地心出發,穿過地心後所抵達的另一端,就是該地點的對蹠點。因此,對蹠點也可稱為地球的相對極。 因為人站在球面上均是頭朝天、腳踩地,如果兩個人站在地球直徑的兩端,兩人的腳底恰好彼此相對,所以對蹠點的英文是由「anti」與「pode」兩字所組成,前者有相對、反向的意思,後者則代表腳的意思,從字義上來看便是「腳與腳相對」之意。某位置的對蹠點是該位置在地球上距離最遠的地方,例如對西班牙城市加的斯來說,紐西蘭奧克蘭市可以算是距離最遠的城市。 尋找對蹠點的方式有很多種,通常是由經緯度來推算(經度減180度,緯度南北互換),而最簡單的方法,便是將一張世界地圖沿經度線對摺並撕開成兩半後,將其中一半相對於另一半旋轉180度後,彼此重疊的兩個點就是對蹠點。例如以香港为例子,香港城市的位置為北緯22.3度,東經114.2度。那麼,它的對蹠點則為南緯22.3度,西經65.8度,位於阿根廷胡胡伊省北部。 由於對蹠點分別位於地球的兩端,其最大的特徵就是彼此的寒暑與晝夜剛好相反;此外,就電磁波通信而言,對蹠點之間的傳遞效果通常都較其週邊地區好,這就是所謂的「對蹠點效果(antipode effect)」。 由於地球的圓周為39,941公里至40,075.02公里(似乎以子午線或赤道圓周計算),因此地球上所有的對蹠點之間的(穿過地心)距離為12,720公里至12,756公里之間。 因為地球表面有超過百分之七十是海洋,所以在世界上很少有兩個城市剛好為相對應的對蹠點。臺灣大多數區域的對蹠點位於巴拉圭國境內,包括臺北市在內的臺灣西北區域之對蹠點則為巴拉圭首都亞松森市及阿耶斯總統省與阿根廷的福爾摩沙省。上海的對蹠點為烏拉圭的薩爾托(阿根廷的布宜諾斯艾利斯则更接近青岛的對蹠點)、紐西蘭基督城的對蹠點是西班牙的拉科魯尼亞、香港的對蹠點是阿根廷的聖薩爾瓦多-德胡胡伊、柬埔寨暹粒的對蹠點是秘鲁的皮斯科。 英國格林威治的對蹠點,非常接近紐西蘭的安蒂波德斯群島,這也是該群島名稱─「Antipodes Islands」的由來。.

新!!: 電磁波和對蹠點 · 查看更多 »

射频识别

射频识别(Radio Frequency IDentification,縮寫:RFID)是一种無線通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。 無線電的訊號是通過調成無線電頻率的電磁場,把數據從附著在物品上的標籤上傳送出去,以自動辨識與追蹤該物品。某些標籤在識別時從識別器發出的電磁場中就可以得到能量,並不需要電池;也有標籤本身擁有電源,並可以主動發出無線電波(調成無線電頻率的電磁場)。標籤包含了電子儲存的信息,數公尺之內都可以識別。與條形碼不同的是,射頻標籤不需要處在識別器視線之內,也可以嵌入被追蹤物體之內。 許多行業都運用了無線射頻辨識技術。將標籤附著在一輛正在生產中的汽車,廠方便可以追蹤此車在生產線上的進度。倉庫可以追蹤藥品的位置。射頻標籤也可以附於牲畜與寵物上,方便對牲畜與寵物的積極識別(防止數隻牲畜使用同一個身份)。無線射頻辨識的身份識別卡可以使員工得以進入建築鎖住的部分,汽車上的射頻應答器也可以用來徵收收費路段與停車場的費用。 某些射頻標籤附在衣物、個人財物上,甚至於植入人體之內。由於這項技術可能會在未經本人許可的情況下讀取個人資訊,這項技術也會有侵犯個人隱私之隱憂。.

新!!: 電磁波和射频识别 · 查看更多 »

中子

| magnetic_moment.

新!!: 電磁波和中子 · 查看更多 »

希格斯机制

在標準模型裏,希格斯機制(Higgs mechanism)是一種生成質量的機制,能夠使基本粒子獲得質量。為什麼費米子、W玻色子、Z玻色子具有質量,而光子、膠子的質量為零?希格斯機制可以解釋這問題。希格斯機制應用自發對稱性破缺來賦予規範玻色子質量。在所有可以賦予規範玻色子質量,而同時又遵守規範理論的可能機制中,這是最簡單的機制。根據希格斯機制,希格斯場遍佈於宇宙,有些基本粒子因為與希格斯場之間交互作用而獲得質量。 更仔細地解釋,在规范场论裏,為了滿足定域規範不變性,必須設定规范玻色子的质量為零。由於希格斯場的真空期望值不等於零,希格斯場在最低能量態的平均值,就是「希格斯場的真空期望值」。費曼微積分(Feymann calculus)用來計算的是希格斯場在最低能量態的振動,即希格斯玻色子。造成自發對稱性破缺,因此規範玻色子會獲得質量,同時生成一種零質量玻色子,稱為戈德斯通玻色子,而希格斯玻色子則是伴隨著希格斯場的粒子,是希格斯場的振動。通過選擇適當的規範,戈德斯通玻色子會被抵銷,只存留帶質量希格斯玻色子與帶質量規範向量場。 費米子也是因為與希格斯場相互作用而獲得質量,但它們獲得質量的方式不同於W玻色子、Z玻色子的方式。在规范场论裏,為了滿足定域規範不變性,必須設定費米子的质量為零。通過湯川耦合,費米子也可以因為自發對稱性破缺而獲得質量。 本條目的數學表述內容需要讀者了解一些量子場論的知識。所有方程式都遵守愛因斯坦求合約定。按照粒子物理學慣例,採用CGS單位制為物理量的單位,並且設定光速與約化普朗克常數的數值為1。.

新!!: 電磁波和希格斯机制 · 查看更多 »

布拉格定律

在物理學中,布拉格定律給出晶格的相干及不相干散射角度。當X射線入射於原子時,跟任何電磁波一樣,它們會使電子雲移動。電荷的運動把波動以同樣的頻率再發射出去(會因其他各種效應而變得有點模糊);這種現象叫瑞利散射(或彈性散射)。散射出來的波可以再相互散射,但這種進級散射在這裏是可以忽略的。當中子波與原子核或不成對電子的相干自旋進行相互作用時,會發生一種與上述電磁波相近的過程。這些被重新發射出來的波來相互干涉,可能是相長的,也可能是相消的(重疊的波某程度上會加起來產生更強的波峰,或相互消抵),在探測器或底片上產生繞射圖樣。而所產生的波干涉圖樣就是繞射分析的基本部份。這種解析叫布拉格繞射。 布拉格繞射(又稱X射線繞射的布拉格形式),最早由威廉·勞倫斯·布拉格及威廉·亨利·布拉格於1913年提出,他們早前發現了固體在反射X射線後產生的晶體線(與其他物態不同,例如液體),而這項定律正好解釋了這樣一種效應。他們發現,這些晶體在特定的波長及入射角時,反射出來的輻射會形成集中的波峰(叫布拉格尖峰)。布拉格繞射這個概念同樣適用於中子繞射及電子繞射 。中子及X射線的波長都於原子間距離(~150 pm)相若,因此它們很適合在這種長度作“探針”之用。 威廉·勞倫斯·布拉格使用了一個模型來解釋這個結果,模型中晶體為一組各自分離的平行平面,相鄰平面間的距離皆為一常數d。他的解釋是,如果各平面反射出來的X射線成相長干涉的話,那麼入射的X射線經晶體反射後會產生布拉格尖峰。當相位差為2π及其倍數時,干涉為相長的;這個條件可經由布拉格定律表示: 其中n為整數,λ為入射波的波長,d為原子晶格內的平面間距,而θ則為入射波與散射平面間的夾角。注意移動中的粒子,包括電子、質子和中子,都有對應其速度及質量的德布羅意波長。 布拉格定律由物理學家威廉·勞倫斯·布拉格爵士於1912年推導出來,並於1912年11月11日首度於劍橋哲學會中發表。儘管很簡單,布拉格定律確立了粒子在原子大小下的存在,同時亦為晶體研究了提供了有效的新工具──X射線及中子繞射。威廉·勞倫斯·布拉格及其父,威廉·亨利·布拉格爵士獲授1915年諾貝爾物理學獎,原因為晶體結構測定的研究,他們測定了氯化鈉、硫化鋅及鑽石的結構。 他們是唯一一隊同時獲獎的父子隊伍,而威廉·勞倫斯·布拉格時年25歲,因此成了最年輕的諾貝爾獎得主。.

新!!: 電磁波和布拉格定律 · 查看更多 »

世界之最列表

世界之最列表紀錄了在世界領域最頂尖的世界紀錄和事物,這裡列舉了部分世界之最。.

新!!: 電磁波和世界之最列表 · 查看更多 »

干涉 (物理学)

干涉(interference)在物理学中,指的是兩列或两列以上的波在空间中重疊時发生叠加,从而形成新波形的現象。 例如采用分束器将一束单色光束分成两束后,再让它们在空间中的某个区域内重叠,将会发现在重叠区域内的光强并不是均匀分布的:其明暗程度随其在空间中位置的不同而变化,最亮的地方超过了原先两束光的光强之和,而最暗的地方光强有可能为零,这种光强的重新分布被称作“干涉条纹”。在历史上,干涉现象及其相关实验是证明光的波动性的重要依据 ,但光的这种干涉性质直到十九世纪初才逐渐被人们发现,主要原因是相干光源的不易获得。 为了获得可以观测到可见光干涉的相干光源,人们发明制造了各种产生相干光的光学器件以及干涉仪,这些干涉仪在当时都具有非常高的测量精度:阿尔伯特·迈克耳孙就借助迈克耳孙干涉仪完成了著名的迈克耳孙-莫雷实验,得到了以太风观测的零结果。迈克耳孙也利用此干涉仪測得的精確長度,並因此獲得了1907年的諾貝爾物理學獎。而在二十世纪六十年代之后,激光这一高强度相干光源的发明使光学干涉测量技术得到了前所未有的广泛应用,在各种精密测量中都能见到激光干涉仪的身影。现在人们知道,两束电磁波的干涉是彼此振动的电场强度矢量叠加的结果,而由于光的波粒二象性,光的干涉也是光子自身的几率幅叠加的结果。.

新!!: 電磁波和干涉 (物理学) · 查看更多 »

平面波

在三維空間裏,平面波(plane wave)是一種波動,其波阵面(在任何時刻,波相位相等的每一點所形成的曲面)是相互平行的平面。平面波的傳播方向垂直於波前。假若平面波的振幅不是常數,例如,振幅是位置的函數,則稱此種平面波為「非均勻平面波」。 加以延伸,平面波這術語時常用來形容,在空間的一個局部區域裏,近似於平面波的波動。例如,一個局部區域波源,像發射無線電波的天線,所發射出的電磁波,在可以近似為平面波。等價地說,對於在一個均勻介質內,波的傳播距離超長於波長的案例,在幾何光學的正確極限內,射線區域性地對應於近似平面波。.

新!!: 電磁波和平面波 · 查看更多 »

事件視界望遠鏡

事件視界望遠鏡(Event Horizon Telescope, EHT)是一個以觀測星系中央超大質量黑洞為主要目標的計畫。該計劃以甚長基線干涉技術(VLBI)結合世界各地的電波望遠鏡,使許多相隔數十萬公里的獨立天線能互相協調、同時觀測同一目標並記錄下數據,形成一口徑等效於地球直徑的虛擬望遠鏡,將望遠鏡的角解析力提升至足以觀測事件視界尺度結構的程度。EHT期望藉此檢驗愛因斯坦廣義相對論在黑洞附近的強重力場下是否會產生偏差、研究黑洞的吸積盤及噴流、探討事件視界存在與否,並發展基本黑洞物理學。 EHT的觀測目標主要為位於南半天球、銀河系中央的超大質量黑洞人馬座A*以及位於北天球的橢圓星系M87星系中央的超大質量黑洞。其中人馬座A*在地球天空中佔的盤面較大,而M87的黑洞則以擁有一道長達5,000光年的噴流為著名特色。為了看透銀河盤面及圍繞在黑洞周圍的物質,EHT將觀測波長設定於1.33毫米,並預計於未來提升至能更精細觀測的0.87毫米。由於連線觀測產生的數據量將大到無法使用網際網路傳輸,各觀測台會於觀測後將儲滿數據的硬碟郵寄至美國馬薩諸塞州的海斯塔克天文台,交由超級電腦運算,並合成單一影像。根據電腦模擬,環繞黑洞的物質發出的光將被黑洞自身質量產生的重力透鏡效應彎曲,在黑洞周圍形成一光環,而光環中央襯托出的圓形剪影便是黑洞的輪廓,也就是事件視界。 2012年,天文學家於美國亞利桑那州首次正式舉辦EHT會議,確立計畫的科學目標、技術計畫和組織架構等。觀測則始於更早的2006年,當時已有三座望遠鏡使用VLBI技術進行連線觀測。多年下來,EHT逐漸從一個鬆散、資金不足的團隊,成長為30多所來自12個國家的大學、天文觀測站等研究單位與政府機構參與的國際合作組織。EHT於2017年4月首次進行為期十天的全球連線觀測,觀測目標為人馬座A*。此次觀測也第一次納入位於智利的阿塔卡瑪大型毫米及次毫米波陣列(ALMA)、南極點的南極望遠鏡等成員。其中ALMA為一關鍵成員,它的加入將EHT的靈敏度提高了十倍。天文學家希望於此次觀測中攝得第一張黑洞剪影的影像。觀測結果預計於2017年底至2018年公布。.

新!!: 電磁波和事件視界望遠鏡 · 查看更多 »

以太

以太(Luminiferous aether、aether 或 ether)或譯為光乙太,是古希腊哲学家亞里斯多德所设想的一种物质,為五元素之一。19世紀的物理學家,認為它是一種曾被假想的電磁波的傳播媒質。但後來的实验和理论表明,如果不假定“以太”的存在,很多物理现象可以有更为简单的解释。也就是说,没有任何观测证据表明“以太”存在,因此“以太”理论被科学界抛弃。.

新!!: 電磁波和以太 · 查看更多 »

传热

热有三种方式:.

新!!: 電磁波和传热 · 查看更多 »

弧矢增二十二

弧矢增二十二(船尾座ζ,ζ Pup)是船尾座的一顆恆星。它的固有名稱是Naos(,源自希臘的ναύς "ship")和Suhail Hadar(阿拉伯文的 سهيل هدار,可能是「非常明亮的」)。 它的光譜分類是O5Ibf,使它是非常熱的恆星,而且是肉眼能夠看見的O型恆星之一。它曾被認為是距離地球超過400秒差距的船帆座複合體古姆星雲的一部分,但是2008年依巴谷的資料給出的距離只有 ± 4%。它的表面溫度是42,000K,目前的質量約為40太陽質量,半徑是太陽半徑的14倍,但是這些數值有著高度的不確定性。較早的資料認為它的距離更遠,数值相對也更大,而且有些新計算的值也超過前述數值的兩倍。 弧矢增二十二是極端藍的超巨星,也是銀河系內最明亮的恆星之一。視覺上,它的能量是太陽的12,500倍以上,是一顆非常藍的恆星,大部分的輻射集中在紫外線,因此它的熱光度超過太陽的500,000倍。從地球上看到它的視星等在亮度上排名上是第62名。 弧矢增二十二,是典型的O型星,它有著值得注意的強烈恆星風,並且在過去十年獲得越來越多的關注。它的恆星風速度估計是2,500公里/秒,每年抛射掉的質量超過百萬分之一,或是在可以比較的時間週期內排放掉十萬分之一太陽質量。這種質量拋射的證據在非可見光的波長上,像是電波和X射線是非常明確的。.

新!!: 電磁波和弧矢增二十二 · 查看更多 »

伽馬射線天文學

伽馬射線天文學是指以伽馬射線研究宇宙的天文學分支。伽馬射線是可穿透整個宇宙的電磁波中最高能量的波段,也是電磁波譜中波長最短的部分。 伽馬射線可由太空中的超新星、正電子湮滅、黑洞形成、甚至是放射衰變產生。例如超新星SN 1987A就發射了來自超新星爆炸的放射性產物鈷56釋放的伽馬射線。大多數天體釋放的伽馬射線一般認為並非來自放射衰變,而是和X射线天文学一樣來自加速的電子、電子和正電子作用(但因為能量較高而產生伽馬射線)。.

新!!: 電磁波和伽馬射線天文學 · 查看更多 »

引力波天文学

引力波天文学(Gravitational-wave astronomy)是观测天文学20世纪中叶以来逐渐兴起的一个新兴分支,其发展基础是广义相对论中引力的辐射理论在各类相对论性天体系统研究中的应用。传统天文学主要是使用电磁波來觀測各種天體系統,而引力波天文学則是通过引力波来观测发出引力辐射的天体系统。由于万有引力相互作用和电磁相互作用相比强度十分微弱,引力波的直接观测需要利用到當今最高端科技。 阿尔伯特·爱因斯坦於1915年发表广义相对论,隔年他又在理论上预言引力波的存在。然而,在之後一世紀時間,引力波都未能在实验上直接被检测到。間接的觀測最早是1974年普林斯顿大学的拉塞尔·赫尔斯和约瑟夫·泰勒发现的脉冲双星,PSR 1913+16,其軌道的演化遵守引力波理論的預測,兩人因此榮獲1993年諾貝爾物理學獎。隨後,又觀測到很多其它脈衝雙星,它們的軌道的演化都符合引力波理論的預測。 2016年2月11日,LIGO科學團隊與處女座干涉儀團隊於華盛頓舉行的一場記者會上宣布人類對於重力波的首個直接探測結果。所探測到的重力波來源於雙黑洞併合。兩個黑洞分別估計為29及36倍太陽質量,這次探測為物理學家史上首次由地面直接成功探測重力波。同年6月15日,LIGO團隊宣布,第二次直接探測到重力波。所探測到的重力波也來源於雙黑洞併合。兩個黑洞分別估計為14.2及7.8倍太陽質量,之後,又陸續確認探測到多次重力波事件。巴里·巴里什,莱纳·魏斯及基普·索恩因领导此项工作而荣获2017年诺贝尔物理学奖。.

新!!: 電磁波和引力波天文学 · 查看更多 »

位移電流

在電磁學裏,位移電流 (displacement current) 定義為電位移對於時間的變率。位移電流的單位與電流的單位相同。如同真實的電流,位移電流也有一個伴隨的磁場。但是,位移電流並不是移動的電荷所形成的電流;而是電位移對於時間的偏導數。 於 1861 年,詹姆斯·馬克士威發表了一篇論文《論物理力線》,提出位移電流的概念。在這篇論文內,他將位移電流項目加入了安培定律。修改後的定律,現今稱為馬克士威-安培方程式。 在馬克士威的 1864 年論文《電磁場的動力學理論》內,他用這馬克士威-安培方程式推導出電磁波方程式。由於這導引將電學、磁學和光學聯結成一個統一理論。這創舉現在已被物理學術界公認為物理學史的重大里程碑。位移電流對於電磁波的存在是基要的。.

新!!: 電磁波和位移電流 · 查看更多 »

彩雲

彩雲(英文:Iridescent Clouds)通常為一種莢狀雲,具有明亮點或彩色邊緣,其色彩稱之為雲彩(英文:Irisation或Cloud Iridescence),屬於一種光象。常見的色彩是桃紅色或綠色,位在距太陽附近的雲上。彩雲的形成為一種「繞射現象」(Diffraction),其雲彩為大型日華的片段,但比例過小,無法觀察出圓弧。.

新!!: 電磁波和彩雲 · 查看更多 »

影像平滑化

影像在傳輸過程中,由於受到通道、劣質取樣系統以及其他的干擾影響,導致影像變得粗糙、不清晰,因此,我們需要對影像做平滑處理(英:Image Smoothing)。 其主要目的為降低影像的雜訊成分。雜訊產生可分為很多種,有些來自系統外部的的干擾(例如:電磁波或是透過電源進入系統的外部雜訊);亦有些來自系統內部的干擾(例如:攝影機的熱雜訊、電器機械運動而產生的抖動雜訊)。雜訊產生的原因決定了雜訊與影像訊號的關係。而減少雜訊的方法可分為兩種:一種是在空間域做處理;另一種則是在頻率域上做處理。 影像中的雜訊通常是和信號混合在一起的,尤其是乘法性的雜訊,若平滑處理作得不妥,則會使影像本身的細節部分,像是邊緣輪廓、線條等地方模糊不清,進而使影像的品質下降。在做影像平滑處理時,需要以一定的細節模糊做為代價,因此要如何平滑掉影像的雜訊又儘量可以保持影像的細節是一個重要的課題。.

新!!: 電磁波和影像平滑化 · 查看更多 »

微細胞基地臺

行動通信為有效使用電磁波資源及提高使用效率,必須控制基地臺電磁波發射能量,使每個基地臺的服務範圍,限制在一定範圍內,再由多個基地臺構成行動通信網路系統,由於基地臺服務範圍彼此相鄰緊靠,就好像身體細胞或是蜜蜂窩一般,故稱為微細胞基地臺(Cell Mobile Station)。.

新!!: 電磁波和微細胞基地臺 · 查看更多 »

心律調節器

心律調節器(Pacemaker、Artificial pacemaker),又稱心臟節律器,是一種醫療器材,使用電擊對於心臟的肌肉做持續與規律的刺激,以維持心臟的持續跳動。.

新!!: 電磁波和心律調節器 · 查看更多 »

地震光

地震光(Earthquake Light),又稱地光,是在地震發生時,受震動波及之區域上空所出現的光。地震光肉眼可看見,是一種自然現象。.

新!!: 電磁波和地震光 · 查看更多 »

地震預測

地震預測(earthquake prediction)是預測一次地震發生的時間、地點和規模。地震學家目前仍無法預測地震的確切發生時間.

新!!: 電磁波和地震預測 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 電磁波和化學 · 查看更多 »

國防大學理工學院校友列表

國防大學理工學院校友國防大學理工學院「大學部」、「專科部」、「研究所」等相關科系所學有所成畢業校友。.

新!!: 電磁波和國防大學理工學院校友列表 · 查看更多 »

喬治·費茲傑羅

喬治·斐茲杰惹(George FitzGerald,)又譯喬治·菲茨--,全名喬治·弗朗西斯·斐茲杰惹(George Francis FitzGerald),大不列顛與愛爾蘭聯合王國的愛爾蘭裔物理學家,都柏林三一學院教授。.

新!!: 電磁波和喬治·費茲傑羅 · 查看更多 »

傳統古柏帶天體

在天文學中,QB1天體(Cubewano)是指運行軌道在海王星之外,且不與大行星產生軌道共振的古柏帶天體。這類天體的半長軸在40-50天文單位之間,且不會切入海王星的軌道,有時也稱為傳統的古柏帶天體。軌道接近圓形(離心率在0.15以下) 這個奇特的名稱來自被發現的第一顆海王星外天體(除了冥王星與卡戎),(15760) 1992 QB1,此後發現的類似天體均稱作QB1天體(原文為「QB1-o's」或直接發音為「Cubewanos」)。 歸屬於QB1天體者如下:.

新!!: 電磁波和傳統古柏帶天體 · 查看更多 »

哆啦A夢七小子

《哆啦A夢七小子》(日語:ザ・ドラえもんズ)是一套以主角哆啦A夢和學生時代的六位同學為主題的系列,該系列最大的特色就是強調「友情」。.

新!!: 電磁波和哆啦A夢七小子 · 查看更多 »

共轭体系

在化學當中,共軛體系是指具有单键-双键交替结构的体系,其中双键的p軌域通过电子离域相互连接,这通常會降低分子的總能量并增加其穩定性。这里的共軛是指由一个σ鍵相隔的p軌域之间发生轨道重疊(如果是大的原子,也可能涉及d軌域) 孤對電子,自由基或碳正離子都可能是此系統的一部分。這些化合物可能是環狀,非環狀,線狀或雜和狀。 一個共軛體系會有一個p軌域重疊,連接其中間的單鍵。它可以讓π電子游離通過所有相鄰對齊的p軌域。此π電子不屬於單鍵或原子,但是屬於一組的原子。 最大的共軛體系是在石墨烯、石墨、導電聚合物和奈米碳管中被發現的。 共轭体系在单键、双键相互交替(以及其他类型)的共轭体系中,由于分子中原子间特殊的相互影响,使分子更加稳定,内能更小键长趋于平均化的效应。 如苯分子中由于相邻的π键电子轨道的交迭而形成共轭,使其六个碳-碳键的键长均为1.39埃。这是分子在没有外界影响下表现的内在性质。.

新!!: 電磁波和共轭体系 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

新!!: 電磁波和光 · 查看更多 »

光学

光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.

新!!: 電磁波和光学 · 查看更多 »

光學史

人类对光學(optics)的研究开始于古代。最晚于公元前700年,古埃及人與美索不達米亞人便开始磨製與使用透鏡;之后前6~5世纪时古希臘哲學家與古印度哲學家提出了很多關於視覺與光線的理論;在,幾何光學開始萌芽。光学「optics」一词源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 中世紀時,穆斯林世界對早期光學做出许多貢獻,在幾何光學與生理光學(physiological optics)方面都有很大的進展。在文藝復興時期與科學革命時期,光學開始出現戲劇性的突破,以衍射光学的出现为标志。這些與之前發展出的光學被稱為「經典光學」。二十世紀发展的光學研究領域,如光譜學與量子光學,一般被稱為「現代光學」。.

新!!: 電磁波和光學史 · 查看更多 »

光學場

光學場(optical field) 是物理及向量微積分中用的一個詞語,是指電磁波的馬克士威方程中的電場 \vec。在電磁學理論中,電磁波會使電場及磁場產生振盪,其振盪方向都和電磁波行進方向垂直。電磁波和其他的波一樣會傳遞能量,而其能量密度是儲存在電場及磁場中。因為電場在推動粒子及作對粒子作功上,會較磁場有效,因此光學場會以電場 E 來表示。.

新!!: 電磁波和光學場 · 查看更多 »

光學介質

光學介質指的是电磁波可在其中傳遞的材料,電容率與磁導率是材料的特性指標。光在各個不同材料的傳遞特性,如內部阻抗、速率等,通常都可用電容率與磁導率表示。 材料的內部阻抗可用下式表示: 其中E_x與H_y分別是電場與磁場。 在絕緣體中,可以簡化如下: 舉例來說,真空的內部阻抗被稱為自由空間阻抗,以Z0表示: 波在介質中傳遞的速率可表示為c_w.

新!!: 電磁波和光學介質 · 查看更多 »

光環 (光象)

光環(英文:Glory)為氣象學的名詞,中國宋朝時稱為光相、現代中文習稱佛光、寶光、寶光環、觀音圈、觀音輪、反日華等等;歐洲則稱作布羅肯幽靈(英文:Brocken Specter)、布羅肯虹(英文:Brocken Bow)或布羅肯現象(英文:Brocken Phenomenon),是一種陽光透過雲霧反射,並經由雲霧中的水滴發生繞射與干涉,最後形成一圈彩虹光環的光学现象,在光環中經常包括觀察者本身的陰影。.

新!!: 電磁波和光環 (光象) · 查看更多 »

光电效应

光电效应(Photoelectric Effect)是指光束照射物体时會使其發射出電子的物理效應。發射出來的電子稱為「光電子」。 1887年,德國物理學者海因里希·赫茲發現,紫外線照射到金屬電極上,可以幫助產生電火花。(On an effect of ultra-violet light upon the electric discharge)1905年,阿爾伯特·愛因斯坦發表論文《关于光产生和转变的一个启发性观点》,給出了光電效應實驗數據的理论解釋。愛因斯坦主張,光的能量并非均匀分布,而是負載於離散的光量子(光子),而這光子的能量和其所組成的光的頻率有關。這个突破性的理論不但能够解释光电效应,也推动了量子力學的诞生。由於「他對理論物理學的成就,特別是光電效應定律的發現」,愛因斯坦獲頒1921年諾貝爾物理學獎。 在研究光電效應的过程中,物理學者对光子的量子性質有了更加深入的了解,这對波粒二象性概念的提出有重大影響。除了光電效應以外,在其它現象裏,光子束也會影響電子的運動,包括光電導效應、光伏效應、光電化學效應(photoelectrochemical effect)。 根據波粒二象性,光電效應也可以用波動概念來分析,完全不需用到光子概念。威利斯·蘭姆與馬蘭·斯考立(Marlan Scully)於1969年使用半經典方法證明光電效應,這方法將電子的行為量子化,又將光視為純粹經典電磁波,完全不考慮光是由光子組成的概念。.

新!!: 電磁波和光电效应 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 電磁波和光速 · 查看更多 »

固体

固體是物質存在的一種狀態,是四種基本物质状态之一。與液體和氣體相比,固體有固定的體積及形狀,形狀也不會隨著容器形狀而改變。固體的質地較液體及氣體堅硬,固體的原子之間有緊密的結合。固體可能是晶体,其空間排列是有規則的晶格排列(例如金屬及冰),也可能是無定形體,在空間上是不規則的排列(例如玻璃)。一般而言,固体是宏观物体,一个物体要达到一定的大小才能夠被称为固体,但是对其大小無明确的规定。 物理學中研究固體的分支稱為固体物理学,是凝聚态物理学的主要分支之一。材料科学探討各種常見固體的物理及化學特性。固體化學研究固體結構、性質、合成、表徵等的一門化學分支,也和一些固體材料的化學合成有關。.

新!!: 電磁波和固体 · 查看更多 »

国家地震烈度速报与预警工程

国家地震烈度速报与预警工程,简称国家烈预工程,是中华人民共和国依托震中附近的密集地震台网,在震后数秒内快速估算地震影响范围和程度,抢在破坏性的S波和面波到达目标地之前发布警报的覆盖全国的地震预警系统。该工程于2009年开始预研究,并已于2015年获中华人民共和国国务院批准,计划于2020年投入全国试运行。该工程建成后,将成为全球规模最大的地震预警系统。.

新!!: 電磁波和国家地震烈度速报与预警工程 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

新!!: 電磁波和国际单位制 · 查看更多 »

四維矢量

在相對論裏,四維向量(four-vector)是實值四維向量空間裏的矢量。這四維向量空間稱為閔考斯基時空。四維向量的分量分別為在某個時間點與三維空間點的四個數量。在閔考斯基時空內的任何一點,都代表一個「事件」,可以用四維向量表示。從任意慣性參考系觀察某事件所獲得的四維向量,通過勞侖茲變換,可以變換為從其它慣性參考系觀察該事件所獲得的四維向量。 本文章只思考在狹義相對論範圍內的四維向量,儘管四維向量的概念延伸至廣義相對論。在本文章內寫出的一些結果,必須加以修改,才能在廣義相對論範圍內成立。.

新!!: 電磁波和四維矢量 · 查看更多 »

四維頻率

在電磁學裏,平面電磁波的四維頻率 f^ 以公式定義為 其中,f 是電磁波的頻率,\mathbf 是朝著電磁波傳播方向的單位矢量。 四維頻率與自己的內積永遠等於零: 類似地,四維角頻率 \omega^ 以公式定義為 其中,\omega 是電磁波的角頻率。 顯然地, 四維波向量 ^ 與四維角頻率有密切的關係,定義為 其中,\mathbf 是電磁波的波向量。 在本篇文章裏,閔可夫斯基度規的形式被規定為 diag(1, -1, -1, -1) ,這是参考了約翰·傑克森(John D. Jackson)的著作《經典電動力學》中所採用的形式;並且使用了經典的張量代数以及愛因斯坦求和約定。.

新!!: 電磁波和四維頻率 · 查看更多 »

倒頻譜

倒頻譜(cepstrum),顧名思義,就是將頻譜(spectrum)的英文前四個字母反過來寫。倒頻譜是為了某些時候,為了計算方便,將原來信號的頻譜先轉成類似分貝的單位,再作逆傅里叶变换,把它視為一種新的訊號做處理。倒頻譜有複數倒頻譜,及實數倒頻譜。 倒頻譜被定義在1963的論文(Bogert等)。定義如下:.

新!!: 電磁波和倒頻譜 · 查看更多 »

CHAOS;HEAD

《CHAOS;HEAD》(標誌上寫作Chäos;HEAd)是5pb.原案、Nitro+於2008年4月25日发售的Windows用电脑游戏。為妄想科學ADV系列的首部作品。游戏的类型是“妄想科学小说”,推荐对象是15岁以上。企劃初期時的公布的遊戲名稱為「」,更早期沒有正式公佈的是「哀SWORD」和「C.O.D.E.」。其後發展出漫畫、動畫等,並移植遊戲至Xbox 360,標題為「」,2009年2月26日發售,因為折原梢线过于血腥的情节以及画面,被分級為CERO Z(推薦18歲以上)。PSP版移植时对折原梢线的画面表现加以抑制,分级降为D。iOS版为PSP版的移植。 2010年3月25日在Xbox 360平台上推出续作CHAOS;HEAD らぶChu☆Chu!,2011年1月27日CHAOS;HEAD らぶChu☆Chu!经移植后在PSP平台发售。.

新!!: 電磁波和CHAOS;HEAD · 查看更多 »

Code Geass機動兵器列表

本列表記載日本動畫《Code Geass 反叛的魯路修》系列及《Code Geass 亡國的阿基德》內登場的機動兵器Knightmare Frame,ナイトメアフレーム。.

新!!: 電磁波和Code Geass機動兵器列表 · 查看更多 »

皇家特工:間諜密令

《皇家特工:間諜密令》(Kingsman: The Secret Service)是一部马修·沃恩执导的英国諜報喜劇動作片,改编自漫画《金牌特務》。由哥連·費夫、森姆·積遜、馬克·史壯、泰隆·艾格頓與米高·肯恩主演,講述一位特工訓練一名年輕人加入團隊,最後戰勝意圖大屠殺的恐怖分子。美国原定于2014年10月24日上映,后来推迟至2015年2月13日,二十世纪福斯负责全球的发行工作。續集《金牌特務:機密對決》於2017年9月上映。.

新!!: 電磁波和皇家特工:間諜密令 · 查看更多 »

短波廣播

短波廣播(shortwave radio,SW)是利用短波波段播送的广播。由於传播距离较远,因而國際廣播通常都位於短波波段,部分国家的对内广播也会使用短波频段。其具有高度戰略價值,至今仍被專家們普遍認為是大規模全球傳送的唯一最有效途徑,且安全、便宜、快捷。.

新!!: 電磁波和短波廣播 · 查看更多 »

短波熱療

短波熱療(Short-Wave Diathermy)是利用短波(電磁波的一種)產生的熱效應進行治療的一種方法,是屬於物理治療中深層熱療(Deep Heat,指治療深度達2公分以上的熱療)中的一種。.

新!!: 電磁波和短波熱療 · 查看更多 »

玲音

《玲音》(Serial Experiments Lain)是一部试验性动画,于1998年7月6日至9月28日在东京电视台的深夜时段播映,共13集。讲述了一个身处日本的14岁女孩岩仓玲音,以及如何受父亲影响,接触,进而发现了“连线”(Wired,一个国际性计算机网络)之中隐藏的巨大秘密,和自己的神秘身世的故事。原创编剧为小中千昭,原创角色形象设计为安倍吉俊,由中村隆太郎导演,production 2nd制作。在北美的制作发行公司为Geneon,在新加坡的制作发行公司为Odex。 玲音中探讨了神、集体无意识、因特网、阴谋论和唯我论等其他一些经常在赛博朋克作品中出现的主题。喜爱这部作品的人普遍认为这是一部典型的文学性动画。.

新!!: 電磁波和玲音 · 查看更多 »

玻尔模型

玻尔模型是丹麦物理学家尼尔斯·玻尔于1913年提出的关于氢原子结构的模型。玻尔模型引入量子化的概念,使用经典力学研究原子内电子的运动,合理地解释了氢原子光谱和元素周期表,取得了巨大的成功。玻尔模型是20世纪初期物理学取得的重要成就,对原子物理学产生了深远的影响。.

新!!: 電磁波和玻尔模型 · 查看更多 »

理论物理学

论物理学(Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。 豐富的想像力、精湛的數學造詣、嚴謹的治學態度,這些都是成為理論物理學家需要培養的優良素質。例如,在十九世紀中期,物理大師詹姆斯·麥克斯韋覺得電磁學的理論雜亂無章、急需整合。尤其是其中許多理論都涉及超距作用(action at a distance)的概念。麥克斯韋對於這概念極為反對,他主張用場論來解釋。例如,磁鐵會在四周產生磁場,而磁場會施加磁場力於鐵粉,使得這些鐵粉依著磁場力的方向排列,形成一條條的磁場線;磁鐵並不是直接施加力量於鐵粉,而是經過磁場施加力量於鐵粉;麥克斯韋嘗試朝著這方向開闢一條思路。他想出的「分子渦流模型」,借用流體力學的一些數學框架,能夠解釋所有那時已知的電磁現象。更進一步,這模型還展示出一個嶄新的概念——電位移。由於這概念,他推理電磁場能夠以波動形式傳播於空間,他又計算出其波速恰巧等於光速。麥克斯韋斷定光波就是一種電磁波。從此,電學、磁學、光學被整合為一統的電磁學。.

新!!: 電磁波和理论物理学 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 電磁波和磁場 · 查看更多 »

磁矢势

磁矢势,又稱磁位、磁勢(magnetic potential),通常標記為 \mathbf 。磁向量勢的旋度是磁場,以方程式表示 其中,\mathbf 是磁場。 直觀而言,磁向量勢似乎不及磁場來得「自然」、「基本」,而在一般電磁學教科書亦多以磁場來定義磁向量勢。以前,很多學者認為磁向量勢並沒有實際意義,只是人為的物理量,除了方便計算以外,別無其它用途。但是,詹姆斯·馬克士威頗不以為然,他認為磁向量勢可以詮釋為「每單位電荷儲存的能量」,就好像電勢被詮釋為「每單位電荷儲存的能量」。相關論述,稍後會有更詳盡解釋。 磁向量勢並不是唯一定義的;其數值是相對的,相對於某設定數值。因此,學者會疑問到底儲存了多少動量?不論如何,磁向量勢確實具有實際意義。尤其是在量子力學裏,於1959年,阿哈諾夫-波姆效應闡明,假設一個帶電粒子移動經過某零電場、零磁場、非零磁向量勢場區域,則此帶電粒子的波函數相位會有所改變,因而導致可觀測到的干涉現象 。現在,越來越多學者認為電勢和磁向量勢比電場和磁場更基本。不單如此,有學者認為,甚至在經典電磁學裏,磁向量勢也具有明確的意義和直接的測量值。 磁向量勢與電勢可以共同用來設定電場與磁場。許多電磁學的方程式可以以電場與磁場寫出,或者以磁向量勢與電勢寫出。較高深的理論,像量子力學理論,偏好使用的是磁向量勢與電勢,而不是電場與磁場。因為,在這些學術領域裏所使用的拉格朗日量或哈密頓量,都是以磁向量勢與電勢表達,而不是以電場與磁場表達。 開爾文男爵最先於1851年引入磁向量勢的概念,並且給定磁向量勢與磁場之間的關係。.

新!!: 電磁波和磁矢势 · 查看更多 »

移动电话辐射对健康的危害

移动电话(電磁波)辐射和健康问题随着世界上移动电话用户的急剧增长()受到越来越多的关注,因为移动电话使用微波范围的电磁波。這些疑慮引來了許多的研究(包括流行病學上的和實驗上的,在動物上和人體上)。其他數位无线系统,像是資料通訊網路,對健康上的影響的疑慮也開始上升。 關於這疑慮,在動物和人體上進行了大量的流行病學觀察和實驗,其中大量的試驗並未表明手機輻射直接危害人體生理健康。這些試驗常常被簡單地當作手機對人體無害的證據,甚至被一些獨立研究機構採用。 基於大多數科學和醫學機構的研究,。世界衛生組織希望在2010年作出關於手機的規範。一些國家已經表明將採取措施讓公民更少地受這種危害。 2011年5月31日,隸屬世界卫生组织的国际癌症研究机构(IARC)发表声明称:从目前收集的证据可以得出结论,手机可能带有某些致癌风险,并最终把手机使用列入了“可能致癌”的分类中。这个分类意味着,有一些证据显示其会导致人体癌症,但远未到“总结性”的程度,需进一步研究。IARC将致癌物分为五类,除了“可能致癌”之外,还包括致癌、很可能致癌、未知、很可能不致癌。其中,吸烟和二手烟都被列入“肯定致癌”,“很可能致癌”則包括生产艺术玻璃和常用染发剂的理发师等职业行为,使用手机所属的“可能致癌”就排在其后。.

新!!: 電磁波和移动电话辐射对健康的危害 · 查看更多 »

科学大纲

以下大綱是科學的主題概述: 科学(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 電磁波和科学大纲 · 查看更多 »

空穴

空穴又称--(Electron hole),在固体物理学中指共價鍵上流失一个电子,最後在共價鍵上留下空位的現象。 一個呈電中性的原子,其正電的質子和負電的電子的數量是相等的。現在由於少了一個負電的電子,所以那裡就會呈現出一個正電性的空位——電洞。當有外面一個電子進來掉進了電洞,就會發出電磁波——光子。 電洞不是正電子,電子與正電子相遇湮滅時,所發出來的光子是非常高能的。那是兩粒子的質量所完全轉化出來的電磁波(通常會轉出一對光子)。而電子掉入電洞所發出來的光子,其能量通常只有幾個電子伏特。 半导体由于禁带较窄,电子只需不多的能量就能从价带激发到导带,从而在价带中留下空穴。周围电子可以填补这个空穴,同时在原位置产生一个新的空穴,因此实际上的电子运动看起来就如同是空穴在移动。 在半导体的制备中,要在4价的本征半导体(纯硅、锗等的晶体)的基础上掺杂。若掺入3价元素杂质(如硼、镓、铟、铝等),则可产生大量空穴,获得P型半导体,又称空穴型半导体。空穴是P型半导体中的多數载流子。 E E Category:准粒子.

新!!: 電磁波和空穴 · 查看更多 »

竹炭

竹炭,由竹子的人為炭化處理得當。使用高溫令竹子炭化,分為800℃、1000℃及1200℃三種,因溫度的差異所以品質上也分作三個級別。其中的一級(頂級)品, 主要是用於過濾及煮食時用,在日本及台灣是在煮飯時放一塊竹炭於米上一起煮。使用多次後,便用作防潮、吸味。多次使用後,便會打碎及堆放於種植植物使用。用途跟作為燃料的木炭或煤炭有所區別,竹炭主要應用於生活補助功能目的。 竹炭的取材來源以孟宗竹為主,桂竹次之,台灣產的竹炭中,80%來自孟宗竹 。燒製完成的竹炭體積為原本的1/10。養生黑鑽-竹炭 陳俞君/著 文經社出版 ISBN 978-957-663-414-7。 製作竹炭時可以同時產生竹醋液,可用於清潔、消毒之類等。.

新!!: 電磁波和竹炭 · 查看更多 »

等離子顯示屏

電漿顯示器(Plasma Display Panel)又稱為--顯示屏,是一種平面顯示屏幕,光線由兩塊玻璃之間的離子,射向磷質而發出。与液晶显示器不同,放出的氣體並無水銀成份,而是使用鈍氣氖及氙混合而成,這種氣體是無害氣體。 電漿顯示器甚為光亮(1000 lx或以上),可顯示更多種顏色,也可製造出較大面積的顯示屏,最大對角可達381厘米(150吋)。等離子顯示屏的對比度亦高,可製造出全黑效果,對觀看電影尤其適合。顯示屏厚度只有6厘米,連同其他電路板,厚度亦只有10厘米。 電漿的發光原理是在真空玻璃管中注入惰性氣體或水銀蒸氣,加電壓之後,使氣體產生等離子效應,放出紫外線,激發荧光粉而产生可见光,利用激發時間的長短來產生不同的亮度。電漿顯示器中,每一个像素都是三个不同颜色(三原色)的等离子发光體所产生的。由於它是每個獨立的發光體在同一時間一次點亮的,所以特別清晰鮮明。電漿顯示器的使用壽命約5~6萬個小時。隨著使用的時間的增加,其亮度會衰退。 要注意的是,電漿顯示器並不是液晶顯示器。後者的顯示器雖然也很輕薄,但是用的技術卻是大不相同。液晶顯示器通常會使用一到兩個大型螢光燈或是LED當作其背光源,在背光源上面的液晶面板則是利用遮罩的原理讓顯示器顯示出不同顏色。CNET Australia -.

新!!: 電磁波和等離子顯示屏 · 查看更多 »

紫外線B光照治療

紫外線B光照治療是用紫外線B(即波長290-320奈米的紫外光)所進行的光照療法,其又可據波長不同分為寬帶紫外線B和窄帶紫外線B。臨床上可用來治療乾癬、汗皰疹、白斑、異位性皮膚炎、全身性濕疹、尿毒症搔癢、玫瑰糠疹、苔癬性糠疹等等。.

新!!: 電磁波和紫外線B光照治療 · 查看更多 »

紫外线

紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.

新!!: 電磁波和紫外线 · 查看更多 »

約翰·洛克 (迷失)

約翰·洛克(John Locke),是美國廣播公司懸疑類電視連續劇《迷失》的角色之一,由特瑞·歐奎恩(Terry O'Quinn)飾演。 洛克是一個神秘和堅毅的人,擅於在野外生存,喜歡狩獵和追踪。由於海洋航空815航班失事後發生在他身上的一個“奇蹟”,他傾向以神秘的角度解釋在島上所發生的事。他的斯多亞主義和神秘主義支配着他的性格。在815航班生還者中,他是少數不願意離開島嶼的人。.

新!!: 電磁波和約翰·洛克 (迷失) · 查看更多 »

經典物理術語

這一篇詞彙收集了經典物理內所有最常用的術語,並且簡單地表述了它們的定義。.

新!!: 電磁波和經典物理術語 · 查看更多 »

線性正則變換

線性正則變換是一種積分變換,在1970年代被提出。線性正則變換是廣義化的傅立葉變換、分數傅立葉變換、菲涅耳轉換(en:Fresnel transform)、拉普拉斯轉換。.

新!!: 電磁波和線性正則變換 · 查看更多 »

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

新!!: 電磁波和红外线 · 查看更多 »

纵波

纵波,又稱為疏密波,是指在传播介质中质点的振动方向与波的传播方向平行的一类波,形成的波是疏密相間的波形。.

新!!: 電磁波和纵波 · 查看更多 »

真空

真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.

新!!: 電磁波和真空 · 查看更多 »

真空磁导率

真空磁导率(\mu_0),又称磁场常数、磁常數、自由空間磁导率或磁常數是一物理常數,指真空中的磁导率。实验测得这个数值是一个普适的常数,联系着力学和电磁学的测量。真空磁导率是由運動中的帶電粒子或電流產生磁場的公式中產生,也出現在其他真空中產生磁場的公式中,在国际单位制中,其數值為 真空磁导率是一個常數,也可以定義為一個基礎的不變量,是真空中馬克士威方程組中出現的常數之一。在經典力學中,自由空間是電磁理論中的一個概念,對應理論上完美的真空,有時稱為「自由空間真空」或「經典真空」 : 在真空中,磁场常数是磁感应强度和磁场强度的比率: 真空磁导率 \mu_0 和真空电容率 \varepsilon_0 以及光速的关系为c^2\varepsilon_0\mu_0.

新!!: 電磁波和真空磁导率 · 查看更多 »

真空电容率

真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.

新!!: 電磁波和真空电容率 · 查看更多 »

电偶极矩

在物理學裏,电偶极矩衡量正電荷分佈與負電荷分佈的分離狀況,即电荷系统的整體极性。 对于分别带有正电量 q 、負电量 - q 的两个点电荷的简单案例,电偶极矩 \mathbf 为: 其中,\mathbf 是从负电荷位置指至正电荷位置的位移向量。 这方程式意味着电偶极矩 \mathbf 的方向是从负电荷指向正电荷。注意到这跟在正电荷与负电荷之间的电场线的方向相反——从正电荷开始,在负电荷结束。这裏并没有矛盾,因为电偶极矩与電偶極子的取向有關,即與电荷的相对位置有关;它不能單獨直接地表示出電場線的方向。 稱這雙電荷系統為「物理電偶極子」。在距離超遠於兩個點電荷相隔距離之處,物理電偶極子所產生的電場,可以近似為其電偶極矩所產生的電場。令物理電偶極子的兩個點電荷相隔距離 \mathbf 趨向於 0 ,同時保持其電偶極矩 \mathbf 不變,則極限就是「點電偶極子」,又稱為「純電偶極子」。物理電偶極子產生的電場,其多極展開式的一次項目就是點電偶極子產生的電場。.

新!!: 電磁波和电偶极矩 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 電磁波和电子 · 查看更多 »

电容率

在電磁學裏,介電質響應外電場的施加而電極化的衡量,稱為電容率。在非真空中由於介電質被電極化,在物質內部的總電場會減小;電容率關係到介電質傳輸(或容許)電場的能力。電容率衡量電場怎樣影響介電質,怎樣被介電質影響。電容率又稱為「絕對電容率」,或稱為「介電常數」。 採用國際單位制,電容率的測量單位是法拉/公尺(Farad/meter,F/m)。真空的電容率,稱為真空電容率,或「真空介電常數」,標記為\varepsilon_0,\varepsilon_0或 A2s4 kg-1m−3。.

新!!: 電磁波和电容率 · 查看更多 »

电磁场

電磁場(electromagnetic field)是由帶電粒子的運動而產生的一種物理場。處於電磁場的帶電粒子會受到電磁場的作用力。電磁場與帶電粒子(電荷或電流)之間的交互作用可以用馬克士威方程組和勞侖茲力定律來描述。 電磁場可以被視為電場和磁場的連結。追根究底,電場是由電荷產生的,磁場是由移動的電荷(電流)產生的。對於耦合的電場和磁場,根據法拉第電磁感應定律,電場會隨著含時磁場而改變;又根據馬克士威-安培方程式,磁場會隨著含時電場而改變。這樣,形成了傳播於空間的電磁波,又稱光波。無線電波或紅外線是較低頻率的電磁波;紫外光或X-射線是較高頻率的電磁波。 電磁場涉及的基本交互作用是電磁交互作用。這是大自然的四個基本作用之一。其它三個是重力相互作用,弱交互作用和強交互作用。電磁場倚靠電磁波傳播於空間。 從經典角度,電磁場可以被視為一種連續平滑的場,以類波動的方式傳播。從量子力學角度,電磁場是量子化的,是由許多個單獨粒子構成的。.

新!!: 電磁波和电磁场 · 查看更多 »

电荷守恒定律

在物理學裏,電荷守恒定律(law of charge conservation)是一種關於電荷的守恆定律。電荷守恒定律有兩種版本,「弱版電荷守恒定律」(又稱為「全域電荷守恒定律」)與「強版電荷守恒定律」(又稱為「局域電荷守恒定律」)。弱版電荷守恒定律表明,整個宇宙的總電荷量保持不變,不會隨著時間的演進而改變。注意到這定律並沒有禁止,在宇宙這端的某電荷突然不見,而在宇宙那端突然出現。強版電荷守恒定律明確地禁止這種可能。強版電荷守恒定律表明,在任意空間區域內電荷量的變化,等於流入這區域的電荷量減去流出這區域的電荷量。對於在區域內部的電荷與流入流出這區域的電荷,這些電荷的會計關係就是電荷守恒。 定量描述,這強版定律的方程式乃是一種連續方程式: 其中,Q(t)是在時間t某設定體積內的電荷量,Q_、Q_是在時間間隔內分別流入與流出這設定體積的電荷量。 上述兩種守恆定律建立於一個基礎原則,即電荷不能獨自生成與湮滅。假設帶正電粒子接觸到帶負電粒子,兩個粒子帶有電量相同,則因為這接觸動作,兩個粒子會變為中性,這物理行為是合理與被允許的。一個中子,也可以因貝他衰變,生成帶正電的質子、帶負電的電子與中性的反微中子。但是,任何粒子,不可能獨自地改變電荷量。物理學明確地禁止這種物理行為。更仔細地說,像電子、質子一類的亞原子粒子會帶有電荷,而這些亞原子粒子可以被生成或湮滅。在粒子物理學裏,電荷守恆意味著,在那些生成帶電粒子的基本粒子反應裏,雖然會有帶正電粒子或帶負電粒子生成,在反應前與反應後,總電荷量不會改變;同樣地,在那些湮滅帶電粒子的基本粒子反應裏,雖然會有帶正電粒子或帶負電粒子湮滅,在反應前與反應後,總電荷量絕不會改變; 雖然全域電荷守恒定律要求宇宙的總電荷量保持不變,到底總電荷量是多少仍舊是有待研究問題。大多數跡象顯示宇宙的電荷量為零,即正電荷量與負電荷量相同。.

新!!: 電磁波和电荷守恒定律 · 查看更多 »

电流

電流(courant électrique; elektrischer Strom; electric current)是电荷的平均定向移动。电流的大小称为电流强度,是指单位时间内通过导线某一截面的电荷,每秒通过1库仑的電荷量稱为1安培。安培是國際單位制七個基本單位之一。安培計是專門測量電流的儀器 。 有很多種承載電荷的載子,例如,導電體內可移動的電子、電解液內的離子、電漿內的電子和離子、強子內的夸克。這些載子的移動,形成了電流。 有一些效應和電流有關,例如電流的熱效應,根據安培定律,電流也會產生磁場,馬達、電感和發電機都和此效應有關。.

新!!: 電磁波和电流 · 查看更多 »

無線通訊

無線通訊(Wireless communication)是指多個節點間不經由導體或纜線傳播進行的遠距離傳輸通訊, 利用收音機、無線電等都可以進行無線通訊。 無線通訊包括各種固定式、移动式和便携式应用,例如、手機、个人数码助理及無線網路。其他无线电無線通訊的例子還有GPS、、無線滑鼠等。 大部份無線通訊技術會用到无线电,包括距離只到數公尺的Wi-fi,也包括和航海家1號通訊、距離超過數百萬公里的深空網路。但有些無線通訊的技術不使用无线电,而是使用其他的電磁波無線技術,例如光、磁場、電場等。.

新!!: 電磁波和無線通訊 · 查看更多 »

異物偵測

物偵測(Foreign Object Detection,縮寫 FOD),是無線充電技術的一環,用來偵測在充電器與接收器之間是否有金屬物體. 由於金屬可能會被電磁波加熱,如果充電器跟接收器之間存在金屬,且傳送的功率較大,這個金屬的溫度就會上升到足以燙傷人體表面的程度,因此需要針對這種狀況特別設計偵測機制。目前最常見的作法為能量差偵測,也就是讓接收器回報其所接收到的功率給充電器,充電器將其所發射的功率減掉接收器收到的功率,兩者的差如果太大,即代表附近有其他物體在吸收電磁波。 此功能在 2013 年即有相關文章解釋,在 2014 年德州儀器所推出的無線充電晶片中便已支援。.

新!!: 電磁波和異物偵測 · 查看更多 »

物理學分支

物理學是一種自然科學,注重于研究物質、能量、空間、時間,尤其是它們各自的性質與彼此之間的相互關係。物理學是關於大自然規律的知識;更廣義地說,物理學探索分析大自然所發生的現象,以了解其規則。.

新!!: 電磁波和物理學分支 · 查看更多 »

物理學重要著作列表

没有描述。

新!!: 電磁波和物理學重要著作列表 · 查看更多 »

特高頻

特高頻(Ultra High Frequency,簡稱UHF),是指頻率由300MHz到3GHz的電磁波。波長由10cm到1m不等。用於短途通信,可以用小而短的天線作收發,適合移動通信。.

新!!: 電磁波和特高頻 · 查看更多 »

相干性

在物理學裏,相干性(coherence)指的是,為了產生顯著的干涉現象,波所需具備的性質。更廣義地說,相干性描述波與自己、波與其它波之間對於某種內秉物理量的相關性質。 當兩個波彼此相互干涉時,因為相位的差異,會造成相长干涉或相消干涉。假若兩個正弦波的相位差為常數,則這兩個波的頻率必定相同,稱這兩個波「完全相干」。兩個「完全不相干」的波,例如白炽灯或太陽所發射出的光波,由於產生的干涉圖樣不穩定,無法被明顯地觀察到。在這兩種極端之間,存在著「部分相干」的波。 相干性又大致分類為時間相干性與空間相干性。時間相干性與波的頻寬有關;而空間相干性則與波源的有限尺寸有關。 波與波之間的的相干性可以用來量度。是波與波之間的干涉圖樣的輻照度對比,相干度可以從干涉可見度計算出來。.

新!!: 電磁波和相干性 · 查看更多 »

遙控模型

遙控模型是娛樂的一種,主要分為遙控器及模型兩部份。玩家主要透過遙控發出電磁波(有時為紅外線,但相當少見),操控模型行駛或飛行。主要的遙控模型包括遙控車、遙控船、遙控飛機及遙控直升機;至於較不常見的,有遙控潛艇、遙控機械人、遙控電單車及遙控坦克等。 遙控模型若深入研究,是一門深奧複雜的領域。各類遙控模型的組裝、維修、製作(自製)、操控,都是十分複雜的。有些遙控模型是兒童玩具,操作當然不會如此複雜。但真正專業玩家在玩的遙控模型,各方面都是相當深奧的。 特别注意:任何遥控模型,都属于土豪的玩具,不是平民老百姓能消费的起的玩具。他与吸粉存在某些功能点也存在某些不同点,不是每个人都能玩的玩具。共同点有(易上瘾,高消费,刺激娱乐,对人生安全构成一定威胁),不同点有(航模可以提升一个人的动手能力).

新!!: 電磁波和遙控模型 · 查看更多 »

衰減係數

衰減系數,(attenuation coefficient) 通常是指某些物理量例如光子、聲波、電子、粒子的數量或能量等等,在物體中單一方向行進貫穿的難易程度。以光線為例,衰減系數大,代表光線進入某特定物質時會快速變弱;衰減系數小,代表光線可以很容易穿透此物質,即此一物質是相當透明的。 衰減系數其實是一種機率概念:假設 100 個光子每行進一公分,20 個光子與物質發生特定交互作用被吸收掉,衰減系數就是每公分損失 20%, 寫成為長度單位的倒數,0.2 cm-1。以國際標準單位制來表示,可寫成 20 m-1,單位為公尺分之一。 衰減系數大小與入射標的物的性質有關,例如入射光波長;也與貫穿作用物質本身的性質有關。.

新!!: 電磁波和衰減係數 · 查看更多 »

颜色

色或色彩是通过眼、脑和我们的生活经验所产生的一种对光的视觉效应。人对颜色的感觉不仅仅由光的物理性质所决定,還包含心理等許多因素,比如人类对颜色的感觉往往受到周围颜色的影响。有时人们也将物质产生不同颜色的物理特性直接称为颜色。.

新!!: 電磁波和颜色 · 查看更多 »

食品輻照

食品輻照(Food irradiation),亦稱“食品照射”或“電離輻射滅菌”,指將食物暴露在游離輻射(ionizing radiation)下。此過程可以滅除食物上的微生物、細菌、病毒或微小蟲類。其他的應用還有抑制發芽、延緩果實成熟、促進果汁生產、和增進再水合(re-hydration)等。 此滅菌原理是以電磁波輻射的能量破壞生物體中的DNA結構,使得微生物無法再繼續繁殖,同時也能造成植物胚芽停止生長分化。 Category:食品科學 Category:食品保存.

新!!: 電磁波和食品輻照 · 查看更多 »

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

新!!: 電磁波和馬克士威方程組 · 查看更多 »

驚爆危機用語列表

這是有關電視動畫、OVA上的作品《驚爆危機》的術語列表。.

新!!: 電磁波和驚爆危機用語列表 · 查看更多 »

高壓電

壓電(High Voltage)是指配電線路電壓超過1000V交流電或1500V直流電(國際電工委員會標準)。 高壓電通常只在輸電系統及鐵路系統中使用。在输电功率相同时,電壓較高,電流便較小,可以減少輸電過程中電流通過電線發熱,而造成的銅損。事實上,架空電纜通常由鋁製成。.

新!!: 電磁波和高壓電 · 查看更多 »

高能天文學

能天文學是研究天體所釋放的高能量電磁波的一個天文學分支。高能天文學包含伽馬射線天文學、X射线天文学和極紫外線天文學;並且也研究微中子和宇宙射線。而這些物理現象的研究也常被稱為高能天文物理學。.

新!!: 電磁波和高能天文學 · 查看更多 »

高斯磁定律

在電磁學裏,高斯磁定律闡明,磁場的散度等於零。因此,磁場是一個螺線向量場。從這事實,可以推斷磁單極子不存在。磁的基本實體是磁偶極子,而不是磁荷。當然,假若將來科學家發現有磁單極子存在,那麼,這定律就必須做適當的修改,如稍後論述。高斯磁定律是因德國物理學者卡爾·高斯而命名。 在物理學界,很多學者使用「高斯磁定律」來指稱這定律,但並不是每一位學者都採用這名字。有些作者稱它為「自由磁單極子缺失」,或明確地表示這定律沒有取名字。還有些作者稱此定律為「橫向性要求」,因為在真空中或線性介質中傳播的電磁波必須是橫波。.

新!!: 電磁波和高斯磁定律 · 查看更多 »

論物理力線

《論物理力線》(On Physical Lines of Force)是詹姆斯·馬克士威於1861年發表的一篇論文。在這篇論文裏,他闡述了可以比擬各種電磁現象的「分子渦流理論」,和電位移的概念,又論定光波為電磁波。馬克士威又將各種描述電磁現象的定律整合為馬克士威方程組。.

新!!: 電磁波和論物理力線 · 查看更多 »

,又稱鬼魂,日本稱之為幽靈,有些人認為鬼是生物死亡後遺留下的靈體。 在其他語言的翻譯上,中文的「鬼」最常被翻譯成英語的「Ghost」,另外邪靈、魔鬼、妖怪、吸血鬼,以及不死生物等其他在恐怖片出現的怪物,和一些宗教神话、民间传说和都市传说的传说生物,也常被稱之為「鬼」,所以叫鬼怪。.

新!!: 電磁波和鬼 · 查看更多 »

警察搜查隊

警察搜查隊(綽號:藍衣忍者;英文:Force Search Unit,縮寫:FSU)於1992年9月19日成立,隸屬於香港警務處行動處行動部行動科重點及搜查組,主要責任為執行反恐及安全保障等搜查任務,並且因應其他警察單位及紀律部隊的求助而協助蒐證。警察搜查隊於要員訪問香港或者香港舉辦國際活動前,均會在現場及附近一帶的範圍執行反恐搜查及安全保障等搜查任務。警察搜查隊是亞洲首支具有反恐能力的搜查隊,亦是警務處編制最龐大的兼任單位。.

新!!: 電磁波和警察搜查隊 · 查看更多 »

魔法科高中的劣等生

| | | | 《魔法科高中的劣等生》(魔法科高校の劣等生),是日本小說家佐島勤撰寫的輕小說系列。小說最初从2008年10月至2011年3月,在「成為小說家吧」上進行網絡連載。直至与電擊文庫达成协议后,从2011年7月起发行成書版。2013年,不同的漫画家与出版社把小說各各篇亦发行成漫畫。同一年,MADHOUSE宣布電視動畫於2014年4月至9月的播放。魔法科高中的劣等生中文特许经营权由三间公司本地化。在台湾小说与漫画由Kadokawa Fantastic Novels代理,而电视动画则由台湾角川代理。在中国,小说与漫画由天聞角川輕小說代理。而在美国,魔法科高中的劣等生英文特许经营权则由两间公司本地化。小说与漫画由Yen Press代理,而Aniplex of America则代理电视动画。电视动画由四个广播网广播,之后亦在Netflix播放。 故事以一个充满先进科技改善的魔法的架空历史为背景。故事叙述进入国立魔法大学附属第一高中就读的兄妹:司波达也与司波深雪。在保持与四叶家关系秘密的同时, 尝试过着平安的日常生活。司波达也因无能而招人回避,而司波深雪则因魔法功能而备受验证。 電視動畫普遍上受人好评。小说出现于SUGOI JAPAN Award 2015的民意调查,自2011年以来小说是日本最畅销的小说系列。截至2016年已售卖了六百五十万本。 除此以外,它的漫画与动画也出现在销售量排行榜。 劇場版《魔法科高中的劣等生劇場版 呼喚繁星的少女》(魔法科高校の劣等生 星を呼ぶ少女)於2017年6月17日於日本上映。同年香港地區於8月10日上映。台灣地區於12月22日上映。.

新!!: 電磁波和魔法科高中的劣等生 · 查看更多 »

變電所

變電所是電力供應的設施之一,在從發電廠長途輸送電力時需要提高電壓以降低電流傳輸時耗損,到用戶端供電線路之前必須降低電壓,再由變壓器降為用戶所需的電壓。變電所變換電壓並分配用電量,所以要儘可能靠近用電多的地方才有效率用電電壓才不會互相影響。.

新!!: 電磁波和變電所 · 查看更多 »

鮮食

食狹義的定義指的是便利商店通路業者結合製造商所提供的即食性食品,如便當、飯糰、三明治、涼麵、包子、熱狗等,多為製造商為便利商店量身訂做的商品。 其實便利商店發源地為美國,店頭販售的即時性食品通稱為「Foods to Go」,美國7-Eleven又將其中的冷藏三明治、甜點等稱為「Fresh Foods」。而後,便利商店產業在日本發揚光大,日本將便利商店販售的食品歸類為「中食」市場的一環,多用「FF」即「ファーストフード」(Fast Food;速食)或是「デリカ」(Delicatessen;現成佳餚,熟食品)來稱呼;又因是OEM自營商品,也常見以「オリジナル商品」(Original)稱呼,少部分組織則使用「フレッシュフーズ」(Fresh Foods)。由於台灣便利商店鮮食多是師法日本而來,所以沿用「デリカ」、「フレッシュフーズ」翻譯為「鮮食」,除強調美味,也說明鮮度管理對便利商店鮮食的重要性。.

新!!: 電磁波和鮮食 · 查看更多 »

費城實驗

費城實驗(Philadelphia Experiment)是一項流傳已久的傳聞,宣稱美國海軍在1943年10月28日曾在宾夕法尼亚州費城一船塢舉行秘密實驗,使一艘在观察者眼中隐形。該實驗也叫費城計劃,又稱彩虹計劃。所有參與計劃的船員都否認曾有任何事件發生,除了一位目擊者宣稱目擊了整個實驗發生的經過。由於沒有任何直接證據,且實驗內容缺乏嚴謹的科學理論基礎,費城實驗傳聞的真實性因而普遍受到質疑,並被認為是單純的都會傳奇。.

新!!: 電磁波和費城實驗 · 查看更多 »

質光比

質光比,通常的符號是\Upsilon。這是天文物理和物理宇宙學共同對佔有體積(通常是星系或星系團)的總質量和其光度之間的商數。這個比率經常使用太陽質量和太陽亮度的比值(\Upsilon_\odot.

新!!: 電磁波和質光比 · 查看更多 »

超力戰隊王連者

《超力戰隊王連者》(原題:超力戦隊オーレンジャー)是日本東映公司在1995年製作的「超級戰隊系列」第19部特攝作品。全套48話。1995年3月3日至1996年2月23日(平成8年)期間每周五下午5:30-5:55在日本朝日電視台播放,這組強調地球上的人類與宇宙邪惡機器軍團針鋒相對,展開一場保衛宇宙和平的英雄故事。本劇的兩集VS劇場版,台灣曾在卡通頻道以國語配音播出,其中《王連者VS隱連者》也是第一部在台播出的戰隊劇場版作品。1997年香港的亞洲電視播出本片,而臺灣的臺灣電視公司所播出的則為1996年東映與美國合作的《新金剛戰士》版本。.

新!!: 電磁波和超力戰隊王連者 · 查看更多 »

黎納-維謝勢

在電動力學裏,黎納-維謝勢指的是移動中的帶電粒子的推遲勢。從馬克士威方程組,可以推導出黎納-維謝勢;而從黎納-維謝勢,又可以推導出一個移動中的帶電粒子所生成的含時電磁場。但是,黎納-維謝勢不能描述微觀系統的量子行為。 於1898年,於1900年,分別獨立地研究求得黎納-維謝勢的公式。於1995年,Ribarič和Šušteršič正確計算出移動中的偶極子和四極子的推遲勢。.

新!!: 電磁波和黎納-維謝勢 · 查看更多 »

黑体 (物理学)

在熱力學中,黑体(Black body),旧称绝对黑体,是一个理想化的物体,它能夠吸收外来的全部电磁辐射,並且不會有任何的反射與透射。隨著溫度上升,黑體所輻射出來的電磁波與光線則稱做黑體辐射。這個名詞在1862年由古斯塔夫·基爾霍夫所提出並引入熱力學內。.

新!!: 電磁波和黑体 (物理学) · 查看更多 »

黑体辐射

黑体辐射指处于热力学平衡态的黑体发出的电磁辐射。黑体辐射的电磁波谱只取决于黑体的温度。 另一方面,所謂黑體輻射其實就是光和物質達到平衡所表現出的現象。物質達到平衡,所以可以用一個溫度來描述物質的狀態,而光和物質的交互作用很強,如此光和光之間也可以用一個溫度來描述(光和光之間本身不會有交互作用,但光和物質的交互作用很強)。而描述這關係的便是普朗克分佈(Planck distribution)。黑体辐射能量按波长的分布仅与温度有关。 黑体不仅仅能全部吸收外来的电磁辐射,且散射电磁辐射的能力比同温度下的任何其它物体强。 对于黑体的研究,使自然现象中的量子效应被發现。 黑体作为一个理想化的物体,在现实中是不存在的,因此现实中物体的辐射也与理论上的黑体辐射有所出入。但是,可以观察一些非常类似黑体的物质发出的辐射,例如一顆恆星或一個只有單一開口的空腔所发出的辐射。舉個例來說,人們觀測到宇宙背景輻射,對應到一個約3K的黑體輻射,這暗示宇宙早期光是和物質達到平衡的。而隨著時間演化,溫度慢慢降了下來,但方程式依然存在。(頻率和溫度的效應抵銷).

新!!: 電磁波和黑体辐射 · 查看更多 »

辐射

物理學上的輻射指的是能量以波或是次原子粒子移動的型態,在真空或介質中傳送。包含.

新!!: 電磁波和辐射 · 查看更多 »

迴旋管

迴旋管是一種能產生高功率微波的真空管,藉由加速電子在強大的磁場中做迴旋運動,同步、群聚進而產生的毫米電磁波。輸出的頻率範圍約20至250 GHz,波長涵蓋的範圍從微波至太赫茲波段的邊緣。典型的迴旋管輸出功率範圍從幾十千瓦至兆瓦都有。迴旋管可被設計成脈衝或是連續操作的功率輸出。.

新!!: 電磁波和迴旋管 · 查看更多 »

远红外线烘烤炉

遠紅外線烘烤爐(Far infrared oven或Halogen oven),在中國大陸、香港和澳門常稱為光波炉,是一种烘烤炉具的家用電器。.

新!!: 電磁波和远红外线烘烤炉 · 查看更多 »

能量均分定理

在经典統計力學中,能量均分定理(Equipartition Theorem)是一種聯繫系統溫度及其平均能量的基本公式。能量均分定理又被稱作能量均分定律、能量均分原理、能量均分,或僅稱均分。能量均分的初始概念是熱平衡時能量被等量分到各種形式的运动中;例如,一个分子在平移運動时的平均動能應等於其做旋轉運動时的平均動能。 能量均分定理能够作出定量預測。类似于均功定理,对于一个给定温度的系统,利用均分定理,可以計算出系統的總平均動能及勢能,從而得出系统的熱容。均分定理還能分別給出能量各個组分的平均值,如某特定粒子的動能又或是一个彈簧的勢能。例如,它預測出在熱平衡時理想氣體中的每個粒子平均動能皆為(3/2)kBT,其中kB為玻爾兹曼常數而T為溫度。更普遍地,無論多複雜也好,它都能被應用於任何处于熱平衡的经典系統中。能量均分定理可用於推導经典理想氣體定律,以及固體比熱的杜隆-珀蒂定律。它亦能夠應用於預測恒星的性質,因为即使考虑相對論效應的影響,该定理依然成立。 儘管均分定理在一定条件下能够对物理现象提供非常準確的預測,但是當量子效應變得显著時(如在足够低的温度条件下),基于这一定理的预测就变得不准确。具体来说,当熱能kBT比特定自由度下的量子能級間隔要小的時候,該自由度下的平均能量及熱容比均分定理預測的值要小。当熱能比能級間隔小得多时,这样的一個自由度就說成是被“凍結”了。比方說,在低溫時很多種類的運動都被凍結,因此固體在低溫時的熱容會下降,而不像均分定理原測的一般保持恒定。對十九世紀的物理學家而言,這种熱容下降现象是表明經典物理学不再正確,而需要新的物理学的第一個徵兆。均分定理在預測電磁波的失敗(被稱为“紫外災變”)普朗克提出了光本身被量子化而成為光子,而這一革命性的理論對刺激量子力學及量子場論的發展起到了重要作用。.

新!!: 電磁波和能量均分定理 · 查看更多 »

阿曼德·斐索

阿曼德·斐索(Armand Hippolyte Louis Fizeau,),法国物理學家。.

新!!: 電磁波和阿曼德·斐索 · 查看更多 »

阋神星

鬩神星(小行星序號:136199 Eris)是現已知太陽系中第二大的矮行星,在所有直接圍繞太陽運行的天體中質量排名第九。它估測直徑約為公里 ,比冥王星重約27%(但冥王星的體積更大一些),質量約為地球質量的0.27%。它由米高·布朗、乍德·特魯希略和大衛·拉比諾維茨在2005年1月5日,從一堆於2003年10月21日拍攝的相片中發現,並在2005年7月29日與2003 EL61一起公佈,當時它的暫時編號為2003 UB313,名字暫稱為齊娜(Xena,美国电视剧《战士公主西娜》的女主角)。 鬩神星於2005年7月位於距離太陽97個天文單位遠的位置,而它的軌道極為傾斜,公轉周期為557年。它被分類為黃道離散天體(偏離地球軌道平面的星體)。在2006年8月之「第26屆國際天文學大會」上,把2003 UB313劃入矮行星之列,賦與小行星編號136199號,並以希臘神話中的鬩神厄里斯(Ἒρις)命名。 因为阋神星看起来比冥王星要大,所以一开始它的发现者和NASA 把其称之为太阳系的第十大行星。但隨著其他类似大小天体的陸續發現,符合行星定義的太陽系天體數量驟增,促使国际天文联合会第一次重新进行行星定义。根据2006年8月24日的IAU的行星定义 ,阋神星是一个同冥王星、谷神星、妊神星、鸟神星一样的矮行星。 2010年11月6日,对阋神星掩星的初步结果显示,其直径约2326公里,誤差±12公里,只和冥王星相当 。从标准差来估计,现在还很难确定阋神星和冥王星哪个更大。估计两者固体直径大约在2330公里。.

新!!: 電磁波和阋神星 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: 電磁波和薛定谔方程 · 查看更多 »

铁磁流体

鐵磁流體(ferrofluid, ferrum 拉丁语 “鐵” 与 fluid “流体” 两词的混成词)是一種在磁場存在時強烈極化的液體。鐵磁流體由懸浮於載流體當中納米數量級的鐵磁微粒組成;其載流體通常為有機溶液或水。鐵磁微粒由表面活性劑包裹以防止其因凡得瓦力和磁力作用而發生凝聚。儘管被稱為鐵磁流體,但它們本身並不表現鐵磁性。這是因為在外部磁場不存在的情況下,鐵磁流體無法保持磁性。事實上,鐵磁流體表現順磁性,並且由於它們的高磁化率,通常被認為具有“超順磁性”。液态磁性材料(区别于铁磁流体)在實際當中很難,一般要求高溫及電磁浮置等條件。.

新!!: 電磁波和铁磁流体 · 查看更多 »

蓝移

蓝移也称蓝位移,与红移相对。在光化学中,蓝移也非正式地指浅色效应。 藍移是一個移動的發射源在向觀測者接近時,所發射的電磁波(例如光波)頻率會向電磁頻譜的藍色端移動(也就是波長縮短)的現象。 這種波長改變的現象在相互間有移動現象的參考座標系中就是一般所說的都卜勒位移或是都卜勒效應。 當一般將星光的紅移被視為是宇宙膨脹的證據時,天文学中同样有很多蓝移现象,例如:.

新!!: 電磁波和蓝移 · 查看更多 »

重力波 (相對論)

在廣義相對論裡,重力波是時空的漣漪。當投擲石頭到池塘裡時,會在池塘表面產生漣漪,從石頭入水的位置向外傳播。當帶質量物體呈加速度運動時,會在時空產生漣漪,從帶質量物體位置向外傳播,這時空的漣漪就是重力波。由於廣義相對論限制了引力相互作用的傳播速度為光速,因此會產生重力波的現象。相反地說,牛頓重力理論中的交互作用是以無限的速度傳播,所以在這一理論下並不存在重力波。 由於重力波與物質彼此之間的相互作用非常微弱,重力波很不容易被傳播途中的物質所改變,因此重力波是優良的信息載子,能夠從宇宙遙遠的那一端真實地傳遞寶貴信息過來給人們觀測。重力波天文學是觀測天文學的一門新興分支。重力波天文學利用重力波來對於劇烈天文事件所製成的重力波波源進行數據收集,例如,像白矮星、中子星與黑洞一類的星體所組成的聯星,另外,超新星與大爆炸也是劇烈天文事件所製成的重力波波源。原則而言,天文學者可以利用重力波觀測到超新星的核心,或者大爆炸的最初幾分之一秒,利用電磁波無法觀測到這些重要天文事件。 阿爾伯特·愛因斯坦根據廣義相對論於1916年預言了重力波的存在。1974年,拉塞爾·赫爾斯和約瑟夫·泰勒發現赫爾斯-泰勒脈衝雙星。這雙星系統在互相公轉時,由於不斷發射重力波而失去能量,因此逐漸相互靠近,這現象為重力波的存在提供了首個間接證據。科學家也利用重力波探測器來觀測重力波現象,如簡稱LIGO的激光干涉重力波天文台。2016年2月11日,LIGO科學團隊與處女座干涉儀團隊共同宣布,人类於2015年9月14日首次直接探测到重力波,其源自於双黑洞合併。之後,又陸續多次探測到重力波事件,特別是於2017年8月17日首次探測到源自於雙中子星合併的重力波事件GW170817。除了LIGO以外,另外還有幾所重力波天文台正在建造。2017年,萊納·魏斯、巴里·巴利許與基普·索恩因成功探測到重力波,而獲得諾貝爾物理學獎。.

新!!: 電磁波和重力波 (相對論) · 查看更多 »

重子不對稱性

重子不對稱性是在物理宇宙學一個重要的問題,就是为什麼在宇宙中,重子(重子是構成質子、中子等粒子)的數量比反重子多?根據在現在說明宇宙誕生的理論來看,粒子的數量應該和反粒子的數量一樣多,而粒子會和反粒子湮滅產生光子(也就是電磁波),因此宇宙應該是由完全電磁波構成的,而不會有任何的物質,但我們知道事實不是這樣,因此出現許多的理論出來解釋,其中可能是;宇宙有分許多不同的地區,有些地區是被物質佔據,而其他的地區則是反物質,這些地區的之間建的距離很遠,要不然不同地區的粒子就會互相湮滅,於是展開觀察反物質的行動,但情況並不樂觀,到2007年5月都沒由任何比氦重的反原子核被觀測到。因此這個問題還有待其他物理學家解決。.

新!!: 電磁波和重子不對稱性 · 查看更多 »

自由空間

在經典物理裏,自由空間(free space)是電磁理論的一種概念,指的是一種理論的完美真空,不含有任何物質的真空。有時候,自由空間又稱為自由空間真空,或經典真空。自由空間可以恰當地被視為一種參考介質 許多國際單位制的單位,像安培或公尺,其定義都是建立於以自由空間為參考介質的測量值。由於實驗室所使用的參考介質並不是自由空間,實驗室得到的測量值必須經過修正,才能成為以自由空間為參考介質的測量值。.

新!!: 電磁波和自由空間 · 查看更多 »

自由空間阻抗

自由空間阻抗Z0是一物理常數,和自由空間中電磁波產生的電場及磁場量值有關。 其中 自由空間阻抗也等於真空磁導率μ0及真空中光速c0的乘積,其數值大約是376.73031 歐姆。由於真空磁導率及光速的數值均為定義值,不是測量值,因此自由空間阻抗也是一定義值。公尺單位的定義是光在真空中行進299,792,458分之1秒的距離,因此也同時定義了真空中光速的數值。而安培單位的定義也定義了真空磁导率為4πx10-7,自由空間阻抗為二者的乘積,因此也是一定義值。 當一平面波通過一介電材料時也有類似的物理量說明其電場及磁場之間的關係,稱為介質的或特性阻抗,其符號為η。Z0有時也稱為自由空間的本質阻抗,其符號為η0。.

新!!: 電磁波和自由空間阻抗 · 查看更多 »

致癌物質

致癌物質(Carcinogen)是指任何會直接導致生物體產生癌症的物質、輻射或放射性同位素,這些物質於生態環境中會造成動物細胞基因組內的脫氧核糖核酸(是控制個體生命的遺傳和生理的重要化學物質)受到損害、突變,從而使細胞內的生化反應不能夠正常工作,例如訊息傳遞及代謝失常等。.

新!!: 電磁波和致癌物質 · 查看更多 »

腔量子电动力学

腔量子電動力學(Cavity quantum electrodynamics,簡稱:cavity QED 或 CQED)描述了被微腔中的光場與其它粒子(例如原子)之間的相互作用 。對强作用腔量子电动力学所作出的研究,為量子邏輯提供了的一種實現途徑,這就是建造量子计算机的原理之一。.

新!!: 電磁波和腔量子电动力学 · 查看更多 »

雷达散射截面

雷達截面積(Radar cross-section,RCS)是指雷達的反射截面積,雷達探測的原理是發射電磁波照射到物體表面在反射回接收天線,而雷達波照射到物體表面物體表面依原路徑返回的電磁波越少,雷達截面積越小,雷達對目標的信號特徵就越小,探測距離也越短。.

新!!: 電磁波和雷达散射截面 · 查看更多 »

電是靜止或移動的電荷所產生的物理現象。在大自然裏,電的機制給出了很多眾所熟知的效應,例如閃電、摩擦起電、靜電感應、電磁感應等等。 很久以前,就有許多術士致力於研究電的現象,但所得到的結果乏善可陳。直到十七和十八世紀,才出現了一些在科學方面重要的發展和突破,不過在那時,電的實際用途並不多。十九世紀末,由於電機工程學的進步,電才進入了工業和家庭裡。從那時開始,日新月異、突飛猛進的快速發展帶給了工業和社會巨大的改變。作為能源的一種供給方式,電有許多優點,這意味著電的用途幾乎是無可限量。例如,交通、取暖、照明、電訊、計算等等,都必須以電為主要能源。進入二十一世紀,現代工業社會的骨幹仍是電能。.

新!!: 電磁波和電 · 查看更多 »

電學

電學(英文:electricity, electrical science),涵蓋一切以電為研究基礎的學科。19世紀末隨著電報、電力系統的應用逐漸奠定了此工程的學科基礎,並廣泛地應用在各個領域。在技職教育上,以基本電學作為起始基礎教育學科,電機工程包括許多「次領域」如:電路學、電子學、電力學、電磁學等等,並且與其他物理科學領域有相互關係。.

新!!: 電磁波和電學 · 查看更多 »

電磁極化子

電磁極化子是一種準粒子。它是由電磁波之間的強烈耦合以及帶有電偶極子或磁偶極子的激發作用中誕生。這現象體現了物理學上「反交叉」的原理(見)。 電磁極化子的形成也可看為一顆受激的光子,它能解釋在共振中色散的光的交叉。.

新!!: 電磁波和電磁極化子 · 查看更多 »

電磁波譜

在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.

新!!: 電磁波和電磁波譜 · 查看更多 »

電磁波方程式

在電磁學裏,電磁波方程式(英語:Electromagnetic wave equation)乃是描述電磁波傳播於介質或真空的二階微分方程式。電磁波的波源是局域化的含時電荷密度和電流密度,假若波源為零,則電磁波方程式約化為二階。這方程式的形式,以電場\mathbf\,\!和磁場\mathbf\,\!來表達為 其中,\nabla^2\,\!是拉普拉斯算符,c\,\!是電磁波在真空或介質中傳播的速度,t\,\!是時間。 由於光波就是電磁波,c\,\!也是光波傳播的速度,稱為光速。在真空裏,c.

新!!: 電磁波和電磁波方程式 · 查看更多 »

透地雷達

透地雷達(Ground-penetrating radar,縮寫:GPR)是以雷達脈衝波探測地表以下狀況並的儀器。這是以上的微波(UHF/VHF)波段電磁波進行的一種无损检测方式,並接收因為地表下各種物體結構造成的雷達反射波。透地雷達可以在岩石、土壤、冰、淡水、人行道以及各種結構物等介質使用。透地雷達可探測到地表下的物質、材質變化、空隙和裂隙等。.

新!!: 電磁波和透地雷達 · 查看更多 »

耿恩-彼得森槽

耿恩-彼得森槽(Gunn-Peterson trough)是類星體的光譜在天體光譜中的一個特徵,它是由星系際物質 (IGM)的中性氫造成的。槽的特徵是受到來自類星體波長小於萊曼α的電磁發射在紅移壓抑的發射線。詹姆斯·冈恩和布魯斯·彼德森在1965年就預測了這種效應。.

新!!: 電磁波和耿恩-彼得森槽 · 查看更多 »

F-117夜鷹戰鬥攻擊機

F-117“夜鹰”(英文:F-117 Nighthawk)是美国空军的一种隐身戰鬥攻击机,也是世界上第一款完全以隐形技术设计的飞机。F-117由洛克希德公司设计生产,它的原型技术直接来源于(Have Blue)计划。 F-117在1989年美國入侵巴拿馬時第一次投入實戰。在這次戰役中,兩架F-117對巴拿馬軍方的Río Hato基地發動突襲。然而,由於通信失誤,與計劃臨時被更動之原因,本次作戰並不十分成功。 F-117在1991年波斯灣战争时發揮了極大的作用。在大約1,300次任務,6905個飛行小時之中,F-117成功摧毀了1,600個高價值目標,超過全部戰略目標的40%。雖然F-117在歷次空中攻擊任務中表現出其極為重要的價值,但由於軍費削減之原因,美國國防部於2006年決定在數年內將所有的F-117退出現役。2008年4月,F-117正式退出作戰序列,並於2008年8月進行了它的最後一次飛行。.

新!!: 電磁波和F-117夜鷹戰鬥攻擊機 · 查看更多 »

Fate/EXTRA

《Fate/EXTRA》(フェイト/エクストラ)是由TYPE-MOON和IMAGEEPOCH開發,Marvelous Entertainment发售的一款角色扮演游戏。是根据TYPE-MOON的文字冒险游戏《Fate/stay night》改編而成的。其後推出本作後續作品《Fate/EXTRA CCC》、《Fate/EXTELLA》、《Fate/EXTELLA LINK》。 2016年3月在AnimeJapan 2016的Fate Project新作發表會宣佈推出電視動畫《Fate/EXTRA Last Encore》,並於2018年1月27日起東京都會電視台、日本BS放送等電視台深夜時段首播。.

新!!: 電磁波和Fate/EXTRA · 查看更多 »

GRB 970508

GRB 970508是一次於协调世界时1997年5月8日21点42分發生的伽瑪射線暴(简称GRB),即伽瑪射線瞬間急速增強。伽瑪射線暴的發生通常與遙遠星系的爆炸相關,放出電磁波中能量最強的伽瑪射線,並且在之後的一段長時間內放射波長較長的“餘輝”(X射線、紅外線、可見光、紫外線和無線電波)。 GRB 970508是被安裝在X射線天文學衛星BeppoSAX上的伽瑪射線暴監視系統探測到的。天文學家马克·梅茨格(Mark Metzger)断定,GRB 970508的爆發點距離地球有60億光年,這是人們第一次量度伽瑪射線暴的距離。 這次爆發前,天文學界並對於伽瑪射線暴發生地點會距離地球多遠並沒有共識。一些學者認為它們發生在銀河系以內,但因為能量不高而顯得暗淡;其他學家則認為它們發生在宇宙大尺度距離上,並不發生在銀河系內,而且能量極高。儘管伽瑪射線暴可能有很多種,意味著兩種理論可以共存,但是這次量度出來的大距離明確地證明射線暴發生在銀河系外。 GRB 970508也是第一個被探測到放射無線電波“餘輝”的伽瑪射線暴。天文學家利用無線電波強度的波動,得以算出其來源膨脹的速度幾乎達到光速。這提供了有力的證據,證明伽瑪射線暴是相對論性的爆炸。.

新!!: 電磁波和GRB 970508 · 查看更多 »

GW170817

GW170817是雷射干涉重力波天文台(LIGO)和室女座干涉儀(VIRGO)在2017年8月17日觀測到的引力波事件,其出自於兩個中子星併合在一起。在此之前觀測到的幾次引力波事件都是出自於兩個黑洞併合。學者認為,不會觀測到關於黑洞併合的任何相關的電磁波信號。這次中子星併合事件的後續電磁現象也被很多種不同波段的望遠鏡觀測到,這標誌著的新紀元已經來臨。 對於這一次併合事件,至少有三種不同的觀測方法分別見證到不同的現象:.

新!!: 電磁波和GW170817 · 查看更多 »

I (消歧義)

I或i在語言方面可以指:.

新!!: 電磁波和I (消歧義) · 查看更多 »

ICL地震预警技术系统

ICL地震预警技术系统,是中國大陸的地震預警系統,可以在地震波到達各地前的一段時間生成地震預警警報,以手機、電腦、廣播、電視、專用接收終端等渠道發佈。截至2016年3月,该系统运用中國大陸国家地震烈度速报与预警工程已建成的部分台站,系统覆盖面積達到220万平方公里、覆盖人口佔中国大陸人员密集之地震区人口的90%,是全球规模最大的地震预警系统。ICL为“成都高新减灾研究所”英文名称“Institute of Care-Life”(关爱生命机构)的首字母缩写。.

新!!: 電磁波和ICL地震预警技术系统 · 查看更多 »

Γ

Gamma(大寫Γ,小寫γ,中文音译:伽马、伽瑪、伽傌),是第三個希臘字母。 西里爾字母的Г、Ґ和拉丁字母的C、G都是從Gamma變來。 大寫的Γ用於:.

新!!: 電磁波和Γ · 查看更多 »

LINE

--(;中文:連我),是一個韓國Naver集團開發的即時通信軟體與流動應用程式,於2011年6月發表。用戶間可以通過互聯網在不額外增加費用情況下與其他用戶傳送文字、圖片、動畫、語音和影片等多媒體信息(甚至進行語音通話)。在2016年3月以來,LINE於全球擁有超過10億人註冊使用,其中約有高達2.15億活躍用戶。 LINE起始平台以Android和iOS為主,後期陸續擴展至BlackBerry(2012年8月)、Nokia Asha(亞洲和大洋洲,2013年3月)、Windows Phone(2013年7月)和Firefox OS(2014年2月)的應用程式。此外還提供在Microsoft Windows、Mac OS和Chrome OS平台上彼此通訊。在基本架構上,LINE須在使用者的-zh-hans:智能手机; zh-hk:智能電話; zh-tw:智慧型手機;-或與其相容的平板電腦註冊使用。 LINE服務性質相當於舊有電信商提供的-zh-cn:多媒体短信;zh-sg:多媒体简讯;zh-hk:多媒體短訊;zh-tw:多媒體簡訊;-或簡訊等服務或-zh-cn:即时通信; zh-tw:即時通訊;-之演進,但受惠於--的特性而視覺效果更為豐富,並有部份替代效果——電信簡訊一般仍依則數加收費用;而除了无线局域网(WLAN)或電信數據量可能造成的額外費用外,通常LINE基本使用與少數貼圖免費,只在額外販售的貼圖或其他服務計價。 在LINE軟體中有一些人物图案。也有以这些虚构人物为主题的“LINE”连载动画与漫画期刊在日本播映或出版。 LINE為NHN Japan所開發,2013年公司更名為LINE株式会社,現為韓國Naver公司旗下子公司。.

新!!: 電磁波和LINE · 查看更多 »

STS-114

STS-114是发现号航天飞机的第31次太空飞行,也是哥伦比亚号航天飞机在2003年初升空时外部燃料仓碎片击中机翼在返回地球坠毁之后,美国国家航空航天局首度恢复航天飞机的飞行任务。.

新!!: 電磁波和STS-114 · 查看更多 »

接地常數

接地常數為一電信名詞,是指土壤的電氣相關參數,例如電導率、电容率及磁导率。 接地常數會隨各地區的土壤化學成份以及密度而不同。若是在探討電磁波的傳遞,例如由地表傳播的表面波,這些參數也會隨方向及頻率而不同。.

新!!: 電磁波和接地常數 · 查看更多 »

推遲勢

在電磁學裏,推遲勢指的是,響應含時電荷分佈或含時電流分佈,而產生的推遲純量勢或推遲向量勢。對於這程序,由於「前因」與「後果」之間必然的推遲關係,訊號以光速從源位置傳播到場位置,需要有限時間。在某源位置的電流或電荷分佈,必須經過一段時間之後,才能夠將其影響傳播到場位置,產生對應的電磁作用。這一段時間的長久跟源位置與場位置之間距離的遠近有關。.

新!!: 電磁波和推遲勢 · 查看更多 »

推遲時間

在電動力學裏,由於電磁波傳播於真空的速度是有限的,觀測者偵測到電磁波的時間,會不同於這電磁波發射的時間,稱為推遲時間。 從馬克士威方程組,可以推導出電磁波傳播於自由空間的速度是光速 c\,\! 。由於光速是有限的,在時間 t_r\,\! 發射出來的光子,需要經過一些時間,才能移動到距離為 r\,\! 的觀測者。所以,觀測者偵測到這光子的時間 t\,\! ,遵守公式 因此,可以定義推遲時間為 推遲時間的概念意味著電磁波的傳播不是瞬時的。電磁波從發射位置傳播到終點位置,需要一段傳播期間,稱為時間延遲。與日常生活的速度來比,電磁波傳播的速度相當快。因此,對於小尺寸系統,這時間延遲,通常很難被注意到。例如,從開啟電燈泡到這電燈泡的光波抵達到觀測者的雙眼,所經過的時間延遲,只有幾億分之一秒。但是,對於大尺寸系統,像太陽照射陽光到地球,時間延遲大約為 8 分鐘,比較能夠被觀測到。.

新!!: 電磁波和推遲時間 · 查看更多 »

東京晴空塔

東京晴空塔 (;英語譯名:Tokyo Skytree),又譯稱東京天空樹、新東京鐵塔,是位於日本東京都墨田區的電波塔,由東武鐵道及其子公司共同籌建,於2008年7月14日動工,2012年2月29日完工、同年5月22日正式啟用。其高度為634公尺,於2011年11月17日獲得吉尼斯世界纪录認證為「世界第一高塔」,成為全世界最高的自立式塔形建築;目前亦為世界第二高的人工構造物,僅次於哈里發塔。.

新!!: 電磁波和東京晴空塔 · 查看更多 »

橢圓偏振技術

橢圓偏振技術(ellipsometry)是一種多功能和強大的光學技術,可用以取得薄膜的介電性質(複數折射率或介電常數)。它已被應用在許多不同的領域,從基礎研究到工業應用,如半導體物理研究、微電子學和生物學。橢圓偏振是一個很敏感的薄膜性質測量技術,且具有非破壞性和非接觸之優點。 分析自樣品反射之偏振光的改變,橢圓偏振技術可得到膜厚比探測光本身波長更短的薄膜資訊,小至一個單原子層,甚至更小。橢圓儀可測得複數折射率或介電函數張量,可以此獲得基本的物理參數,並且這與各種樣品的性質,包括形態、晶體質量、化學成分或導電性,有所關聯。它常被用來鑑定單層或多層堆疊的薄膜厚度,可量測厚度由數埃(Angstrom)或數奈米到幾微米皆有極佳的準確性。 之所以命名為橢圓偏振,是因為一般大部分的偏振多是橢圓的。此技術已發展近百年,現在已有許多標準化的應用。然而,橢圓偏振技術對於在其他學科如生物學和醫學領域引起研究人員的興趣,並帶來新的挑戰。例如以此測量不穩定的液體表面和顯微成像。.

新!!: 電磁波和橢圓偏振技術 · 查看更多 »

次毫米波陣列望遠鏡

次毫米波陣列望遠鏡(Sub-Millimeter Array,簡稱SMA)位於美國夏威夷毛納基山天文台,是由美國夏威夷大島上的史密松天体物理台與中華民國(台灣)的中央研究院天文及天文物理研究所合作興建。首先由史密松天文台所建造的六座次毫米波陣列望遠鏡先行測試運轉,其後由台灣負責製造的兩座次毫米波陣列望遠鏡(Sub-Millimeter ARray of Taiwan, SMART)也設置完成,並於2003年11月22日共同舉行這八座次毫米波陣列望遠鏡及操控中心的啟用典禮。 次毫米波是指波長略小於毫米的電磁波。比起大家較熟悉的無線電波段和光學波段,次毫米波段無疑稱得上是天文學中相對發展較晚的領域。次毫米波段介於紅外線與微波之間,頻率為300~900吉赫,波長則介於1~0.3毫米,是研究恆星形成的最佳頻段,但因其透明度較低,只能在海拔4000公尺以上,氣候乾燥且氣流穩定的高地才能觀測到。 設置在毛納基山的這八座次毫米波陣列望遠鏡,個別直徑均為6公尺,能夠共同構成一個天線陣列,用以模擬出一座直徑508公尺、面積大約九座足球場大小的單一碟型望遠鏡。.

新!!: 電磁波和次毫米波陣列望遠鏡 · 查看更多 »

死光

死光(Death Ray),亦作殺人光線(さつじんこうせん)或死亡射線。在一種理論物理學上,利用粒子束或電磁波(包括光)為基礎的武器,其高峰研究期位於1920年代到1930年代。當中以尼古拉·特斯拉(Nikola Tesla)及Harry Grindell-Matthews最為知名,其他獨立研究者還有Edwin R. Scott及Graichen,他們都是死光武器研究的先驅。研究現時基本終止,但在科幻小說裡經常都有出現。1957年,美國的全國發明家理事會在其發表的所需的軍事發明列表內,當中仍然包括有死光。.

新!!: 電磁波和死光 · 查看更多 »

氢氧根离子吸收

氢氧根离子吸收(Hydroxyl ion absorption)是指光纖中因為水氣進入,殘留氢氧根离子,因此吸收電磁波的情形。 氢氧根(OH−)會在光纖製作過程中或製作完成後穿透外層的玻璃,造成離散光波長的,例如用在电信中,以1.383 μm為中心的光波波長。.

新!!: 電磁波和氢氧根离子吸收 · 查看更多 »

沃尔夫数学奖

沃尔夫数学奖(Wolf Prize in Mathematics)是沃尔夫奖的一个奖项,因爲数学界的最高荣誉菲尔兹奖只每4年頒給40歲以下的數學家,此獎項在阿貝爾獎出現之前被認爲是最接近諾貝爾獎的獎項。获得该奖项的华裔有二位,皆有美国国籍,分別是已故数学家陈省身及数学家丘成桐。.

新!!: 電磁波和沃尔夫数学奖 · 查看更多 »

沃爾夫岡·克洛爾

沃爾夫岡·克洛爾(Wolfgang Kroll,),是一名德裔臺灣物理學家。他出生於德國北部的格賴夫斯瓦爾德。1930年,克洛爾進入布雷斯勞大學就讀,1930年畢業并取得博士學位。隨後幾年,克洛爾於萊比錫跟隨維爾納·海森堡進行博士後研究。 1937年,由於納粹掌權,克洛爾離開德國而轉往日本北海道任教,最後於1941年到達日治時代的臺北,並任教於臺北帝國大學預科。戰後,克洛爾受邀轉任國立臺灣大學物理學系,升任為副教授再升為教授,是戰後臺灣第一位擁有理論物理博士學位的專任教授,亦為臺大物理系第一篇在國際科學刊物上發表論文的教師。此後,他也受邀至東海大學物理系等地教課。1976年8月,克洛爾自臺大物理系退休,並於隔年和許雲基一同成為名譽教授。退休後,克洛爾亦曾在中國文化學院等處兼課。1970年代後期,由於臺灣經濟開始起飛,導致物價上揚,使得克洛爾的退休金相對而言變得微薄,生活也因此陷入困境。到了1992年2月28日,克洛爾因肺氣腫,病逝於臺大醫院,享壽87歲。.

新!!: 電磁波和沃爾夫岡·克洛爾 · 查看更多 »

波或波动是扰动或物理信息在空间上传播的一种物理現象,扰动的形式任意,傳遞路徑上的其他介質也作同一形式振動。波的传播速度总是有限的。除了电磁波、引力波(又稱「重力波」)能够在真空中传播外,大部分波如机械波只能在介质中传播。波速與介質的彈性與慣性有關,但與波源的性質無關。.

新!!: 電磁波和波 · 查看更多 »

波動角度

波動角度(英語:Angle of incidence),這裏集合了有關波動的角度的定義。.

新!!: 電磁波和波動角度 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

新!!: 電磁波和波粒二象性 · 查看更多 »

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

新!!: 電磁波和波长 · 查看更多 »

波浪

波浪在廣義上可泛稱具有週期性起伏的力學運動或形態,通常是指水面的波浪,.

新!!: 電磁波和波浪 · 查看更多 »

洛伦兹变换

洛伦兹变换是观测者在不同惯性参照系之间对物理量进行测量时所进行的转换关系,在数学上表现为一套方程組。洛伦兹变换因其创立者——荷兰物理学家亨德里克·洛伦兹而得名。洛伦兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。.

新!!: 電磁波和洛伦兹变换 · 查看更多 »

游離輻射

游離輻射(ionizing radiation)是指波長短、頻率高、能量高的射線(粒子或波的双重形式)。輻射可分為游離輻射和非游離輻射,游離輻射可以從原子或分子裡面電離過程(Ionization)中作用出至少一個電子。反之,非游離輻射則不行。游離能力,決定於射線(粒子或波)所帶的能量,而不是射線的數量。如果射線沒有帶有足夠游離能量的話,大量的射線並不能夠導致游離。.

新!!: 電磁波和游離輻射 · 查看更多 »

湮滅輻射

湮滅輻射是指粒子和反粒子互相湮滅所產生的輻射。根據質能轉換公式,其輻射的能量等於粒子的質量(一般湮滅後會產生兩個光子,每個光子都等於粒子的質量。)。在自然界中,最常見的湮滅輻射就是成對產生而造成的輻射,能量是511keV,成對產生是電磁波脈衝穿過原子時在原子核附近形成的形成正電子和電子,而電子-正電子對很快就會湮滅并释放511 keV 伽马射线。 Category:原子核物理學 Category:粒子物理學.

新!!: 電磁波和湮滅輻射 · 查看更多 »

湯馬士·戈爾德 (天文學家)

湯馬士·戈爾德(Thomas Gold,)是一位生於奧地利的天文物理學家,他曾擔任康乃爾大學天文學教授、美國國家科學院院士、皇家學會院士。戈爾德是1950年初提出現已幾乎被廢棄的宇宙穩恆態理論的三位年輕科學家之一。戈爾德的研究是跨學科的,涉及生物物理學、天文學、航空航天工程和地球物理學。.

新!!: 電磁波和湯馬士·戈爾德 (天文學家) · 查看更多 »

漸逝波

漸逝波(evanescent wave) ,又稱為消逝波或,隱失波,是指當光波從光密介質入射到光疏介質時,發生全反射而光疏介質一侧所產生的一種電磁波。由於其振幅隨與分界面垂直的深度的增大而呈指数形式衰减,而隨切線方向改變相位,因此也是一種表面波。漸逝波是近场的,强度随着呈指数衰减的,没有被吸收的,其解是距边界的距离x的函数。漸逝波作为波动方程的解,可以运用于任何波动方程。形成于两种拥有不同的波动性质的介质的边界上。。特别的,漸逝波可以发生在除了光学的其它情况下,如电磁辐射、声学、机械波的情况下。.

新!!: 電磁波和漸逝波 · 查看更多 »

潮濕

潮濕或濕氣是指有微量的液體(特別是水分)存在。像在空氣中(濕度)、食物、或是商業产品中都有微量的水分。.

新!!: 電磁波和潮濕 · 查看更多 »

本構關係

在電磁學裏,為了要應用宏观馬克士威方程組,必須分別找到\mathbf場與\mathbf場之間,和\mathbf場與\mathbf場之間的關係。這些稱為本構關係的物理性質,設定了束縛電荷和束縛電流對於外場的響應。它們實際地對應於,一個物質響應外場作用而產生的電極化或磁化。 本構關係式的基礎建立於\mathbf場與\mathbf場的定義式: 其中,\mathbf是電極化強度,\mathbf是磁化強度。 本構關係式的一般形式為 在解釋怎樣計算電極化強度與磁化強度之前,最好先檢視一些特別案例。.

新!!: 電磁波和本構關係 · 查看更多 »

戰慄時空系列

是一个科幻第一人称射击遊戲,由Valve开发,维旺迪环球发行。游戏的--基于雷神之锤的游戏引擎 的大幅改进版本。游戏最先发布在微软Windows平台上,后来也发布了PS2版本。据说Dreamcast版本和Macintosh版本已经开发完毕,但是没有正式发布。《半条命》的一些遊戲模組也十分流行,例如反恐精英(Counter-Strike,通常简称CS)。.

新!!: 電磁波和戰慄時空系列 · 查看更多 »

流星之洛克人

《流星洛克人》(日文:流星のロックマン),為Capcom於任天堂DS平台上由洛克人EXE系列班底開發的全新洛克人系列。日文版於2006年12月14日發售。 此遊戲被分為三個版本同時發售,副標題分別為、及。然而,北美天龍版則為GameStop(當地知名零售商)獨家發售。之後又推出了2代及3代。 流星洛克人和洛克人EXE相似點衆多,但被視為完全不同的本質。本作的動畫及漫畫改編作品,已經在遊戲發售的數月前於日本發行並於當地連載中。 漫畫系列於2007年11月4日於香港快樂龍開始連載,共15話。.

新!!: 電磁波和流星之洛克人 · 查看更多 »

海因里希·赫兹

海因里希·赫兹(Heinrich Hertz,),德国物理学家,于1887年首先用实验证实了电磁波的存在,并于1888年发表了论文。他对电磁学有很大的贡献,故频率的国际单位制单位赫兹以他的名字命名。.

新!!: 電磁波和海因里希·赫兹 · 查看更多 »

海洋能

海洋能(Marine energy或Ocean power)是利用海洋運動過程生產出來的能源,這些能量包括潮汐能、波浪能、海流能、海洋温差能和海水鹽差能等形式。 海洋隱含极大量的能源,并靠近许多都市或聚落。海洋能具有提供新的可再生能源给世界各地的巨大潜力。.

新!!: 電磁波和海洋能 · 查看更多 »

新鐵金剛之金眼睛

《黃金眼》(GoldenEye)于1995年上映,是第17部占士·邦系列影片,也是由皮尔斯·布鲁斯南出演邦德的首部007电影。与前面的007电影不同的是,该影片并非改编自小说家伊恩·弗莱明的小说。影片中,邦德成功制止了一个欲使用间谍卫星袭击伦敦,从而引发世界经济危机的大阴谋。 该片上映于1995年,在上任邦德演员提摩西·達頓退休6年后,皮尔斯·布鲁斯南接替他成为新的邦德人选。该片也是苏联解体及冷战结束后的第一部007影片。.

新!!: 電磁波和新鐵金剛之金眼睛 · 查看更多 »

新视野号

新視野號(New Horizons)又譯新地平線號,是美國國家航空暨太空總署旨在探索矮行星冥王星(在發射時間仍然被認為是一顆行星)和柯伊伯带的行星際機器人太空船任務,它是第一艘飛越和研究冥王星和它的衛星,凱倫、尼克斯和許德拉的太空探測器。NASA可能還會批准它飛越一個或两個古柏帶天體。任務概要是由美国西南研究院首席研究員所領導的一個團隊提出。 經過在發射地點的幾個延誤後,新視野號于2006年1月19日在卡纳维拉尔角發射,直接進入地球和太陽逃逸軌道,在最後關閉引擎時相對於地球的速度是16.26公里/秒,或58,536公里/小時(10.10英里/秒或36,373英里/小時)。因此,它是有史以來以最快的發射速度離開地球的人造物體。2015年7月14日新视野号飛越冥王星系统。随后,新視野號将繼續進入古柏帶。 經過與小行星132524 APL一個短暫的相遇後,新視野號飛往木星,在2007年2月28日使得其最接近木星的距離为。木星飛掠提供重力助推给新視野號的速度增加了。木星相遇也被用來作為新視野號科技性能的全面測試,傳回關於行星的大氣層,衛星和磁層的數據。在飛掠木星後,探測器繼續前往冥王星。在木星後的大部分旅行中,太空船是处于休眠模式度過,以保護太空船上的系統。在2006年9月,新視野號第一次拍攝了冥王星,其次是在2013年7月拍攝了區分冥王星和它的衛星冥卫一作為兩個單獨的對象的圖像。無線電信號从新視野號太空船旅行到地球需要用4個多小時。 格林威治時間2015年7月14日上午11時49分,新視野號接近冥王星12,500公里,為旅程中最接近冥王星的位置。 它成為了第一艘探索冥王星的航天器。 協調世界時7月15日00時52分37秒(美國東部時間7月14日20時52分37秒),美國國家航空暨太空總署收到了新視野號傳來的訊息,證實了探測器在預定的時間成功地飛越了冥王星,探測器各方面的運作一切正常,和先前預料的一樣。.

新!!: 電磁波和新视野号 · 查看更多 »

方波

方波是一種非正弦曲線的波形,通常會於電子和訊號處理時出現。理想方波只有「高」和「低」這兩個值。.

新!!: 電磁波和方波 · 查看更多 »

无线网络

無線網路(Wireless network)指的是任何型式的無線電電腦網路,普遍和電信網路結合在一起,不需電纜即可在節點之間相互連結。無線電信網路一般被應用在使用電磁波的搖控資訊傳輸系統,像是無線電波作為載波和實體層的網路。如:.

新!!: 電磁波和无线网络 · 查看更多 »

无线电

無線電,又稱无线电波、射頻電波、電波,或射頻,是指在自由空間(包括空氣和真空)傳播的電磁波,在電磁波譜上,其波長長於紅外線光(IR)。頻率範圍為300 GHz以下 ,其對應的波長範圍為1公釐以上。就像其他電磁波一樣,無線電波以光速前進。經由閃電或天文物體,可以產生自然的無線電波。由人工產生的無線電波,被應用在無線通訊、廣播、雷達、通訊衛星、導航系統、電腦網路等應用上。 無線電發射機,藉由交流電,經過振盪器,變成高頻率交流電,產生電磁場,而經由電磁場可產生無線電波。無線電波像磁鐵,有同性相斥、異性相吸的現象。同類電子會互相排斥,因此當無線電波射出時,會將前方電波往前推,當連續電波一直射出來時,電波就會在空氣中傳播。 無線電技術是通過無線電波傳播信號的技術,其原理在於,導體中電流強弱的改變會產生無線電波。利用這一現象,通過調製可將信息加載於無線電波之上。當電波通過空間傳播到達收信端,電波引起的電磁場變化又會在導體中產生電流。通過解調將訊息從電流變化中提取出來,就達到了資訊傳遞的目的。 麥克斯韋最早在他遞交給英國皇家學會的論文《電磁場的動力理論》中闡明了電磁波傳播的理論基礎。他的這些工作完成於1861年至1865年之間。 海因里希·魯道夫·赫茲在1886年至1888年間首先通過試驗驗證了麥克斯韋爾的理論。他證明了無線電輻射具有波的所有特性,並發現電磁場方程可以用偏微分方程表達,通常稱為波動方程。 1906年聖誕前夜,范信達在美國麻薩諸塞州採用外差法實現了歷史上首次無線電廣播。范信達廣播了他自己用小提琴演奏「平安夜」和朗誦《聖經》片段。位於英格蘭切爾姆斯福德的馬可尼研究中心在1922年開播世界上第一個定期播出的無線電廣播娛樂節目。.

新!!: 電磁波和无线电 · 查看更多 »

时间倒流

時間倒流亦稱時間倒轉、時光倒流,概念和科幻故事中常見的時間旅行中回到過去的時代不同,是指該人物或物體或背景(可以是整個地球或其局部)狀況變回到某時段的情形。.

新!!: 電磁波和时间倒流 · 查看更多 »

放射能

放射能可以指:.

新!!: 電磁波和放射能 · 查看更多 »

感觉系统

感觉系统(英語:sensory system)是神经系统中处理感觉信息的一部分。感觉系统包括感受器、神经通路以及大脑中和感觉知觉有关的部分。通常而言感觉系统包括那些和视觉、听觉、触觉、味觉以及嗅觉相关的系统。简单而言,感觉系统是物理世界与内在感受之间的变换器,人類或是動物以此產生對外在世界的知觉。 感受野對應特定的感覺細胞或感覺器官,是指外在世界上可產生刺激,使感覺細胞或器官可以感知的部份。例如眼睛可見之處,就是眼睛的感受野,而视杆细胞或视锥细胞可以感受到的光,是這些細胞的感受野。感受野會因為對應视觉系统、聽覺系統、體感系統等,而有不同的感受野。.

新!!: 電磁波和感觉系统 · 查看更多 »

愛丁頓獎章

愛丁頓獎章(Eddington Medal)是英國皇家天文學會授予理論天文物理學最高獎項,一般情形下每兩年頒發一次。本獎項以理論天文物理學家亚瑟·爱丁顿爵士命名。 愛丁頓獎章於1953年開始頒發,得獎者是比利時牧師與天文學家乔治·勒梅特。在早期時愛丁頓獎章頒發時間不定,1958年至1972年連續頒發,1972年至2005間每三年頒獎一次,之後2005再改為每兩年頒發一次,但2014年卻又破格頒授給萊斯特大學物理學教授,最近得獎的是英國物理學家。 得主最多的國家是英國,有16個,美國則有14個,排第二。在所有得獎者中有三位隨後獲得了諾貝爾物理學獎,分別為1967年獲得的漢斯·貝特、1974年獲得的安東尼·休伊什與1983年獲得的威廉·福勒。.

新!!: 電磁波和愛丁頓獎章 · 查看更多 »

散射

傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.

新!!: 電磁波和散射 · 查看更多 »

曙光少女

是GONZO和AIC製作的動作、科幻日本動畫。講述一個受極光阻斷空中交通的城市內居民的故事。由平池芳正導演,朝日電視台、GONZO共同製作,大森俊之音樂製作。.

新!!: 電磁波和曙光少女 · 查看更多 »

21公分線

21厘米線,又被稱為氫線,21厘米輻射(hydrogen line, 21 centimeter line or HI line)是指由中性氫原子因為能階變化而產生的電磁波譜線。頻率是1420.40575177 MHz,相當於在太空中波長 21.10611405413 公分。在電磁波譜上的位置是微波。 這個波長的輻射經常在射电天文學上被應用,尤其無線電波可以穿過對可見光是不透明的星際雲等巨大星際介質區域。 21公分波來自於1s基態氫原子的兩個超精細結構之間。兩個超精細結構能階的能量不同,而量子的頻率則是由普朗克關係式決定。.

新!!: 電磁波和21公分線 · 查看更多 »

300

300是299與301之間的自然數。.

新!!: 電磁波和300 · 查看更多 »

729全台大停電

729全臺大停電是發生於1999年7月29日臺南以北絕大多數地區大規模停電的事件。.

新!!: 電磁波和729全台大停電 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »