我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

階 (群論)

指数 階 (群論)

在群論這一數學的分支裡,階這一詞被使用在兩個相關連的意義上:.

目录

  1. 41 关系: 半直积单群可解群外爾群子群小群列表局部有限群布勞爾-鈴木定理乒乓引理初等群論商群共轭类四维凸正多胞体秀爾演算法素数群同構群的生成集合瓦爾特·法伊特特徵標理論目 (群論)目 (群论)表示论魔群賦值質數列表阶 (群论)阶(群论)里昂群HNN擴張L符號P-群柯西定理 (群論)揚科群法伊特-湯普森定理有限群有限生成阿貝爾群无限价元无限阶元拉格朗日定理 (群論)0.999…

半直积

在數學中,特別是叫做群論的抽象代數領域中,半直積(semidirect product)是從其中一個是正規子群的兩個子群形成一個群的特定方法。半直積是直積的推廣。半直積是作為集合的笛卡爾積,但帶有特定的乘法運算。.

查看 階 (群論)和半直积

单群

数学上的单群(Simple group)是指没有非平凡正规子群的群。任意一个群如果不是单群,都可以作进一步分解而得到一个非平凡正规子群及对应的商群。这个过程可以一直做下去。对于有限群,若尔当-赫尔德定理表明,这个分解过程可以得到该群的唯一的合成列(最多相差一个置换)。在2008年完成的有限單群分類工作是数学史上一个重要的里程碑。.

查看 階 (群論)和单群

可解群

在數學的歷史中,群論原本起源於對五次方程及更高次方程無一般的公式解之證明的找尋,最終随着伽羅瓦理论的提出而确立。可解群的概念產生於描述其根可以只用根式(平方根、立方根等等及其和與積)表示的多項式所对应的自同構群所擁有的性質。 一個群被稱為可解的,若它擁有一個其商群皆為阿貝爾群的正規列。或者等價地說,若其降正規列 之中,每一個子群都會是前一個的导群,且最後一個為G的當然子群。上述兩個定義是等價的,对一個群H及H的正規子群N,其商群H/N為可交換的若且唯若N包含著H(1)。 對於有限群,有一個等價的定義為:一可解群為一有著其商群皆為質數階的循環群之合成列的群。此一定義會等價是因為每一個簡單阿貝爾群都是有質數階的循環群。若爾當-赫爾德定理表示若一個合成列有此性質,則其循環群即會對應到某個體上的n個根。但此一定義的等價性並不必然於無限群中亦會成立:例如,因為每一個在加法下的整數群Z的非當然子群皆同構於Z本身,它不會有合成列,但是其有著唯一同構於Z的商群之正規列,證明了其確實是可解的。 和喬治·波里亞的格言「若有一個你無法算出的問題,則會有的你可以算出的較簡單的問題」相一致的,可解群通常在簡化有關一複雜的群的推測至一系列有著簡單結構-阿貝爾群的群的推測有著很有用的功用。.

查看 階 (群論)和可解群

外爾群

在數學裡,尤其是在李群的理論中,一根系的外爾群是指經由正交於根之超平面的鏡面而產生之根系的等距同構群之子群。例如,根系A2包含中心為原點之正六邊形的角。根系的對稱之整個群因此是有12階的二面體群。外爾群產生於將六邊形平分成兩半的線之鏡射;其為6階的二面體群。 半單李群、半單李代數和半單線性代數群等之外爾群為群或代數之根系的外爾群。 除去由Φ的根所定義之超平面會將歐幾里得空間切成有限個開領域,此領域稱為外爾腔。這些領域可以被外爾群的群作用置換,且此一群作用為簡單傳遞的。特別地是,外爾腔的數量是和外爾群的階相同的。任一非零向量都可以以正交於v之超平面v∧將歐幾里得空間分成兩個半空間-v+和v−。若v在某一外爾腔裡,則沒有根會在v∧,所以每一個根都會在v+或v−裡,且若其一根α在一邊,則其另外一根−α會在另外一邊。因此,Φ+.

查看 階 (群論)和外爾群

子群

假設(G, *)是一個群,若 H 是 G 的一個非空子集且同時 H 與相同的二元運算 * 亦構成一個群,則 (H, *) 稱為 (G, *) 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。.

查看 階 (群論)和子群

小群列表

下面的數學列表包含著以群同構來分之小階有限群。 這個列表可以被用來決定一個給定的有限群G會同構於哪一種群:首先確定G的階,然後再找下面列表中有相同階的候選群。若知道G為可換與否,某些的候選群便可以立刻被刪掉。為了分別剩下的候選群,可以看給定之群內每個元素的階,並對照候選群內每個元素的階。.

查看 階 (群論)和小群列表

局部有限群

在數學的群論中,局部有限群是群的一種,研究方法與有限群相似。局部有限群的西羅子群、、阿貝爾子群等都有被研究。.

查看 階 (群論)和局部有限群

布勞爾-鈴木定理

布勞爾─鈴木定理(Brauer–Suzuki theorem)是抽象代數上的一個定理。 此定理指出,若一個有限群包含了廣義四元群的西羅2-子群,且不包含任意奇數階的非顯然正規子群,則該群有一階為2的中心,特別地,其必非單群。 布勞爾─鈴木定理的一個推廣為喬治‧格勞布曼(George Glauberman)的Z*定理(Z* theorem).

查看 階 (群論)和布勞爾-鈴木定理

乒乓引理

群論中,乒乓引理給出了一個充分條件,保證一個群中數個子群所生成的群是這些子群的自由積。.

查看 階 (群論)和乒乓引理

初等群論

在數學中,群 定義為集合 G 和叫做“乘積”并指示為中綴 "*" 的 G 上的二元運算。乘積服從下列規則(也叫做公理)。設 a, b 和 c 是 G 的任意元素。則.

查看 階 (群論)和初等群論

商群

在數學中,給定一個群G和G的正規子群N,G在N上的商群或因子群,在直覺上是把正規子群N“萎縮”為單位元的群。商群寫為G/N并念作G mod N(mod是模的簡寫)。如果N不是正規子群,商仍可得到,但結果將不是群,而是齊次空間。.

查看 階 (群論)和商群

共轭类

数学上,特别是在群论中,群的元素可以分割成共轭类(Conjugacy class);同一个共轭类的元素有很多共同的属性,而且研究非交换群的共轭类可以看出很多关于它们的结构的重要特征。对于交换群,这个概念是平凡的,因为每个类就是一个单元素集合。 在同一个共轭类上取常值的函数称为类函数。.

查看 階 (群論)和共轭类

四维凸正多胞体

在数学中,四维凸正多胞体(Convex Regular Polychoron)是指一类既是凸的又是正的的四维多胞体。它们是柏拉图立体(正多面体)(三维)和正多边形(二维)的四维类比。它们最先在19世纪被数学家路德维希·施莱夫利所发现,其中五个与五个柏拉图立体一一对应,另外一个(正二十四胞体)没有好的三维类比。 每个四维凸正多胞体必须有同种的同样大小的凸正多面体胞面面相接构成,并且每个顶点周围必须有相同数量的胞。.

查看 階 (群論)和四维凸正多胞体

秀爾演算法

演算法(Shor算法),以數學家彼得·秀爾命名,是一個在1994年發現的,針對整數分解這題目的的量子演算法(在量子計算機上面運作的演算法)。比較不正式的說,它解決題目如下:給定一個整數N,找出他的質因數。 在一個量子計算機上面,要分解整數N,秀爾演算法的運作需要多項式時間(時間是log N的某個多項式這麼長,log N在這裡的意義是輸入的檔案長度)。更精確的說,這個演算法花費的時間,展示出質因數分解問題可以使用量子計算機以多項式時間解出,因此在複雜度類BQP裡面。這比起傳統已知最快的因數分解演算法,普通數域篩選法,其花費次指數時間 -- 大約,還要快了一個指數的差異。 秀爾演算法非常重要,因為它代表使用量子計算機的話,我們可以用來破解已被廣泛使用的公開密鑰加密方法,也就是RSA加密演算法。RSA演算法的基礎在於假設了我們不能很有效率的分解一個已知的整數。就目前所知,這假設對傳統的(也就是非量子)電腦為真;沒有已知傳統的演算法可以在多項式時間內解決這個問題。然而,秀爾演算法展示了因數分解這問題在量子計算機上可以很有效率的解決,所以一個足夠大的量子計算機可以破解RSA。這對於建立量子計算機和研究新的量子計算機演算法,是一個非常大的動力。 在2001年,IBM的一個小組展示了秀爾演算法的實例,使用NMR實驗的量子計算機,以及7個量子位元,將15分解成3×5。.

查看 階 (群論)和秀爾演算法

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

查看 階 (群論)和素数

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

查看 階 (群論)和群

群同構

在抽象代數中,群同構是在兩個群之間的函數,它以關照到了群運算的方式架設了在群的元素之間的一一對應。如果兩個群之間存在一個同構,則這兩個群叫做同構的。從群論的立場看,同構的群有相同的性質而不要區分。.

查看 階 (群論)和群同構

群的生成集合

在抽象代數中,群 G 的生成集合是子集 S 使得所有 G 的所有元素都可以表達為 S 的元素和它們的逆元中的有限多個元素的乘積。 更一般的說,如果 S 是群 G 的子集,則 S 所生成的子群 是包含所有 S 的元素的 G 的最小子群,這意味著它是包含 S 元素的所有子群的交集;等價的說, 是可以用 S 的元素和它們的逆元中的有限多個元素的乘積表達的 G 的所有元素的子群。 如果 G.

查看 階 (群論)和群的生成集合

瓦爾特·法伊特

特·法伊特(Walter Feit,)是一位美國數學家,主要研究領域為有限群論及表示論。 法伊特生於維也納,並於1939年移居英格蘭。1946年,法伊特前往美國芝加哥大學攻讀學士學位,後於密西根大學完成博士學位,並先後於1952年及1964年在康乃爾大學及耶魯大學擔任教師。 法伊特最為人所知的成就為與約翰·格里格斯·湯普森一起證明出法伊特-湯普森定理。該定理敘述,所有奇數階的有限群都是可解群。在定理提出之際,該證明大概可說是史上曾出現過最為複雜與困難的數學證明。法伊特還寫過其他將近100篇的論文,大多數與有限群論、特徵標理論及模表示論等領域有關。 法伊特於1965年獲美國數學學會頒發柯爾獎,並獲選為美國國家科學院與美國文理科學院的院士。法伊特也曾擔任過國際數學聯盟的副總裁。 法伊特曾在1970年於尼斯舉辦的國際數學家大會上受邀演講。 法伊特逝世於康乃狄克州謝爾頓。.

查看 階 (群論)和瓦爾特·法伊特

特徵標理論

在數學裡,尤其是在群表示理論裡,一個群表示的特徵標(character)是指一個將群的每個元素連結至表示空間這個域內的每個元素之函數。特徵標蘊藏著群的許多重要性質,且因此可以用來做群的研究。 特徵標理論是對有限簡單群分類的一個有重要的工具。在范特-湯普遜定理證明接近一半的地方會有一個用到特徵標的複雜計算。另外還有一些較簡單但一樣重要的結論需用在特徵標理論,如伯恩賽德定理及理查·布勞爾和鈴木通夫所證出之定理,此定理表示有限簡單群不會有一個為廣義四元群的西洛2-子群。.

查看 階 (群論)和特徵標理論

目 (群論)

#重定向 階 (群論).

查看 階 (群論)和目 (群論)

目 (群论)

#重定向 階 (群論).

查看 階 (群論)和目 (群论)

表示论

表示論是數學中抽象代數的一支。旨在將抽象代数结构中的元素「表示」成向量空間上的線性變換,并研究这些代数结构上的模,藉以研究結構的性質。略言之,表示論將一代數對象表作較具體的矩陣,並使得原結構中的代数运算對應到矩陣加法和矩陣乘法。此法可施於群、結合代數及李代數等多種代數結構;其中肇源最早,用途也最廣的是群表示論。設G為群,其在域F(常取複數域F.

查看 階 (群論)和表示论

魔群

群(Monster group)或怪獸群,或友善巨人(the Friendly Giant)或費雪─格里斯怪獸(Fischer-Griess Monster),是一個有限單群,是26個散在群的其中之一,一般常將之記作M或F1。 怪獸群的階是26個散在群中最大的,其階為 有限單群的分類已完成(見有限單群分類一文)。每個有限單群都屬於當中有的18類可數無限族中,或不包含於那些可系統化模式的18類可數無限族中,那26個的「散單群」中。而怪獸群是那26個散單群中階數最大的群。而二十六個散單群除了六個,其餘的散單群均是怪獸群的子集合。羅伯特‧格里斯(Robert Griess)將那六個不為魔群子集的群稱為「低群」(pariahs),並以「快樂大家族」(the happy family)一詞稱呼其他的散單群。 或許對怪獸群最好的定義方式,就是將之定義為同時包含康威群(Conway group)和的的有限單群中階最小者(怪獸群雖為散在群中階最大的,但這不表示它是所有有限單群中階最大的,其他類的有限單群中有階比其更大者存在)。.

查看 階 (群論)和魔群

賦值

在代数中,赋值是域元素的阶(多少)或元素重复度一个度量。推广到交换代数,就是对复分析中极点,零点重复度度量,推广到代数数论中的代数整数整性的度量,在代数几何中也有类似概念,一个域与它的赋值被称为赋值域。.

查看 階 (群論)和賦值

質數列表

可以证明,质数的数目是无穷多的,而它們可以通过不同的質數公式產生出來。以下將列出頭500個質數,並以英文字母的順序將不同種類的質數中的第一批列出來。.

查看 階 (群論)和質數列表

阶 (群论)

#重定向 階 (群論).

查看 階 (群論)和阶 (群论)

阶(群论)

#重定向 階 (群論).

查看 階 (群論)和阶(群论)

里昂群

里昂群,或作Ly,是群論上的一個有限單群,為26個散在群之一。理查德‧里昂(Richard Lyons)在1970年時提出此群的存在性。 里昂群的階為 在單群中,里昂群的階是唯一能使其一些對合的中心化子與11階交错群 A11藉循環群 C2進行的非顯然中心擴張(central extension)同構者。 這個群的存在性和在同構方面的唯一性,已藉由一個混合輪換群理論和C.

查看 階 (群論)和里昂群

HNN擴張

數學上,HNN擴張(HNN extension)是組合群論中的一個基本構造法。HNN擴張是三名數學家Graham Higman、Bernhard Neumann、Hanna Neumann在1949年的論文Embedding Theorems for Groups提出。給定一個群中兩個同構子群及其間的群同構,這個構造法將這個群嵌入到另一個群中,令到所給定的群同構在新的群中成為共軛。.

查看 階 (群論)和HNN擴張

L符號

L符號是個類似大O符號的漸近符號,標記為L_n,多用於表示特定演算法的計算複雜性。.

查看 階 (群論)和L符號

P-群

在數學裡,給定一質數p,p-群即是指一個其每個元素都有p的次方階的週期群。亦即,對每個群內的元素g,都存在一個正整數n使得g的pn次方等於其單位元素。 若G是有限的,則其會和G自身的階為p的次方之敘述相等價。關於有限p-群的結構已知道了許多,其中第一個使用類方程的標準結論為一個非當然有限p-群的中心不可能為一個當然子群。一個pn階的p-群會包含著pi階的子群,其中0 ≤ i ≤ n。更一般性地,每一個有限p-群都會是冪零群,且因此都會是可解群。 有相同階的p-群不一定會互相同構;例如,循環群C4和克萊因四元群都是4階的2-群,但兩者並不同構。一個p-群不一定要是阿貝爾群;如8階的二面體群即為一個非可換2-群。(但每個p2階的群都會是可換的。) 以趨進的觀點來看,幾乎所有的有限群都會是p-群。實際上,幾乎所有的有限群都是2-群:2-群的同構類與其階至多為n之群的同構類的比例在當n趨進於無限大時會趨進於1。例如,其階至多為2000的所有不同的群會有99%為1024階的2-群。 每一個非當然有限群都會包括一個為非當然p-群之子群。詳述請見西洛定理。 無限群的例子,見普呂弗群。.

查看 階 (群論)和P-群

柯西定理 (群論)

柯西定理是一個在群論裡的定理,以奧古斯丁·路易·柯西的名字來命名。其敘述著若G是一個有限群且p是一個可整除G之階(G的元素數目)的質數,則G會有一個p階的元素。亦即,存在一個於G內的x,使得p為讓xp.

查看 階 (群論)和柯西定理 (群論)

揚科群

在數學上,揚科群(Janko Groups)是以數學家茲沃尼米爾‧揚科(Zvonimir Janko)為名的四個散在單群。揚科本人在1965年給出了第一個揚科群J1,並預測了J2與J3的存在。在1976年,他又提出了J4的存在。之後J2、J3與J4都被證實是存在的。.

查看 階 (群論)和揚科群

法伊特-湯普森定理

在數學裡,法伊特﹣湯普森定理,亦稱奇階定理(英語:odd order theorem),說明每一個奇階的有限群都是可解的。該定理由瓦爾特·法伊特(Walter Feit)和約翰·格里格斯·湯普森證明。.

查看 階 (群論)和法伊特-湯普森定理

有限群

在數學裡,有限群是有著有限多個元素的群。有限群理論中的某些部份在20世紀有著很深的研究,尤其是在局部分析和可解群與冪零群的理論中。期望有個完整的理論是太過火了:其複雜性會隨著群變得越大時而變得壓倒性地巨大。 較少壓倒性地,但仍然很有趣的是在有限域上的一些較小一般線性群。群論學家曾寫過:「有限群的典型例子為GL(n,q)-在q個元素的域上的n維一般線性群。學生在學此領域時,若以其他的例子來做介紹,則可能會被完全地誤導。(Bulletin (New Series) of the American Mathematical Society, 10 (1984) 121)此類型最小的群GL(2,3)的討論,見。 有限群和對稱有直接地關接,當其被限制在有限個轉變時。 其證明為,連續對稱,如李群中的,也會導致有限群,如外爾群。在此一方面,有限群和其性質將能夠用在如理論物理問題的重要地方,即使其用途在一開始並不顯著。 每一質數階的有限群都是循環群。.

查看 階 (群論)和有限群

有限生成阿貝爾群

在抽象代數中,阿貝爾群 (G,+) 叫做有限生成的,如果存在 G 中有限多個元素 x1,...,xs 使得所有 G 中的 x 可以寫為如下形式 n1,...,ns 是整數。在這種情況下,我們稱集合 是 G 的生成集,或 x1,...,xs 生成了 G。 明顯的有所有限阿貝爾群都是有限生成的。有限生成的阿貝爾群帶有相當簡單的結構并可以被完全的分類,我們后面會講到。.

查看 階 (群論)和有限生成阿貝爾群

无限价元

#重定向 階 (群論).

查看 階 (群論)和无限价元

无限阶元

#重定向 階 (群論).

查看 階 (群論)和无限阶元

拉格朗日定理 (群論)

拉格朗日定理是群論的定理,利用陪集證明了子群的階一定是有限群的階的因數值。.

查看 階 (群論)和拉格朗日定理 (群論)

0.999…

在數學的完备实数系中,循环小数0.999…,也可写成0.\overline、0.\dot或0.(9),表示一个等於1的实数,即「0.999…」所表示的数与「1」相同。目前該等式已经有各式各样的證明式;它们各有不同的嚴謹性、背景假设,且都蕴含实数的实质条件,即阿基米德公理、历史文脉、以及目标受众。 这类展开式的非唯一性不仅限於十进制系统,相同的现象也出现在其它的整数进位制中,数学家们也列举出了一些1在非整数进位制中的写法,这种现象也不是仅仅限於1的:对於每一个非零的有限小数,都存在另一种含有无穷多个9的写法,由於简便的原因,我们几乎肯定使用有限小數的写法,这样就更加使人们误以为没有其它写法了,实际上,一旦我们允许使用无限小数,那么在所有的进位制中都有无穷多种替代的写法,例如,18.3287与18.3286999…、18.3287000…,以及许多其它的写法,都表示相同的数,这些各种各样的等式被用来更好地理解分數的小数展开式的规律,以及一个简单-zh:分形; zh-hans:分形; zh-hant:碎形-图形──康托尔集合的结构,它们也出现在一个对整个实数的无穷集合的--研究之中。 在过去數十年裡,許多数学教育的研究人员研究了大眾及学生们对该等式的接受程度,许多学生在學習开始時怀疑或拒絕该等式,而後許多学生被老師、教科书和如下章節的算術推論說服接受两者是相等的,儘管如此,許多人們仍常感到懷疑,而提出进一步的辯解,這經常是由於存在不少對數學实数錯誤的觀念等的背後因素(參見以下教育中遇到的懷疑一章節),例如認為每一个实数都有唯一的一个小数展开式,以及認為無限小(无穷小)不等於0,並且將0.999…视为一个不定值,即該值只是一直不斷無限的微微擴張變大,因此与1的差永遠是無限小而不是零,因此「永遠都差一點」。我们可以构造出符合這些直觀的數系,但是只能在用於初等数学或多數更高等數學中的标准实数系统之外进行,的確,某些設計含有「恰恰小於1」的数,不過,这些数一般与0.999…无关(因为与之相关的理论上和实践上都皆無實質用途),但在数学分析中引起了相当大的關注。.

查看 階 (群論)和0.999…