我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

阿布拉罕-勞侖茲力

指数 阿布拉罕-勞侖茲力

阿布拉罕-勞侖茲力(Abraham-Lorentz force)是一加速帶電粒子因為粒子放射出電磁輻射而所受到的平均力。其適用在粒子行進速度不快的時候。若在相對論性速度下,此力則稱作是阿布拉罕-勞侖茲-狄拉克力(Abraham-Lorentz-Dirac force)。 阿布拉罕-勞侖茲力問題的解被認為預測了「來自於未來的訊號影響了現在」這樣的結果,而挑戰了直觀上的因果律。試圖解決此一問題的涉及到許多近代物理的領域,雖然Yaghjian曾展試過這問題的解實際上相當簡單。.

目录

  1. 10 关系: 傑斐緬柯方程式电磁辐射馬克士威方程組黎納-維謝勢阿布拉罕-勞侖茲-狄拉克力量子電動力學推遲勢推遲時間洛伦兹力拉莫爾方程式

傑斐緬柯方程式

在電磁學裏,給予含時電荷密度分佈和電流密度分佈,可以使用傑斐緬柯方程式(Jefimenko equation)來計算電場和磁場。這方程式因其發現者物理學家而命名。傑斐緬柯方程式是馬克士威方程組對於這些電荷密度分佈和電流密度分佈的解答。.

查看 阿布拉罕-勞侖茲力和傑斐緬柯方程式

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

查看 阿布拉罕-勞侖茲力和电磁辐射

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

查看 阿布拉罕-勞侖茲力和馬克士威方程組

黎納-維謝勢

在電動力學裏,黎納-維謝勢指的是移動中的帶電粒子的推遲勢。從馬克士威方程組,可以推導出黎納-維謝勢;而從黎納-維謝勢,又可以推導出一個移動中的帶電粒子所生成的含時電磁場。但是,黎納-維謝勢不能描述微觀系統的量子行為。 於1898年,於1900年,分別獨立地研究求得黎納-維謝勢的公式。於1995年,Ribarič和Šušteršič正確計算出移動中的偶極子和四極子的推遲勢。.

查看 阿布拉罕-勞侖茲力和黎納-維謝勢

阿布拉罕-勞侖茲-狄拉克力

阿布拉罕-勞侖茲-狄拉克力(Abraham-Lorentz-Dirac force)是阿布拉罕-勞侖茲力的改版,跟阿布拉罕-勞侖茲力一樣,是描述當加速帶電粒子因為粒子放射出電磁輻射而所受到的平均力,只不過阿布拉罕-勞侖茲-狄拉克力把相對論產生的效應也加進去而已。.

查看 阿布拉罕-勞侖茲力和阿布拉罕-勞侖茲-狄拉克力

量子電動力學

在粒子物理學中,量子電動力學(Quantum Electrodynamics,簡稱QED)是電動力學的相對論性量子場論。它在本質上描述了光與物質間的相互作用,而且它還是第一套同時完全符合量子力學及狹義相對論的理論。量子電動力學在數學上描述了所有由帶電荷粒子經交換光子產生的相互作用所引起的現象,同時亦代表了古典電動力學所對應的量子理論,為物質與光的相互作用提供了完整的科學論述。 用術語來說,量子電動力學就是電磁量子的微擾理論。它的其中一個創始人,理查德·費曼把它譽為「物理學的瑰寶」("the jewel of physics"),原因是它能為相關的物理量提供,例如電子的異常磁矩及氫原子能階的蘭姆位移。.

查看 阿布拉罕-勞侖茲力和量子電動力學

推遲勢

在電磁學裏,推遲勢指的是,響應含時電荷分佈或含時電流分佈,而產生的推遲純量勢或推遲向量勢。對於這程序,由於「前因」與「後果」之間必然的推遲關係,訊號以光速從源位置傳播到場位置,需要有限時間。在某源位置的電流或電荷分佈,必須經過一段時間之後,才能夠將其影響傳播到場位置,產生對應的電磁作用。這一段時間的長久跟源位置與場位置之間距離的遠近有關。.

查看 阿布拉罕-勞侖茲力和推遲勢

推遲時間

在電動力學裏,由於電磁波傳播於真空的速度是有限的,觀測者偵測到電磁波的時間,會不同於這電磁波發射的時間,稱為推遲時間。 從馬克士威方程組,可以推導出電磁波傳播於自由空間的速度是光速 c\,\! 。由於光速是有限的,在時間 t_r\,\! 發射出來的光子,需要經過一些時間,才能移動到距離為 r\,\! 的觀測者。所以,觀測者偵測到這光子的時間 t\,\! ,遵守公式 因此,可以定義推遲時間為 推遲時間的概念意味著電磁波的傳播不是瞬時的。電磁波從發射位置傳播到終點位置,需要一段傳播期間,稱為時間延遲。與日常生活的速度來比,電磁波傳播的速度相當快。因此,對於小尺寸系統,這時間延遲,通常很難被注意到。例如,從開啟電燈泡到這電燈泡的光波抵達到觀測者的雙眼,所經過的時間延遲,只有幾億分之一秒。但是,對於大尺寸系統,像太陽照射陽光到地球,時間延遲大約為 8 分鐘,比較能夠被觀測到。.

查看 阿布拉罕-勞侖茲力和推遲時間

洛伦兹力

在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.

查看 阿布拉罕-勞侖茲力和洛伦兹力

拉莫爾方程式

在電動力學的領域中,拉莫爾方程式(Larmor formula)是用來計算非相對論性點電荷在有加速度的狀態下釋放電磁波的總功率。本公式是由約瑟夫·拉莫爾於1897年提出的光的波動理論一部分。 當任何點電荷(例如電子)有正或負的加速度時,會以電磁輻射的形式釋放能量。對於遠小於光速的狀態下,總輻射能量可用如下方程式表示: 公式中 a 是加速度, e 是電荷, c 是光速。相對論狀況下則由黎納-維謝勢給定。.

查看 阿布拉罕-勞侖茲力和拉莫爾方程式