我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

指数 镨

()是一种化学元素,它的化学符号是Pr,它的原子序数是59,属于镧系元素,也是稀土元素之一。.

目录

  1. 57 关系: 基态原子电子组态列表原子半径单一同位素元素同中子素同位素列表三茂镨三氧化二鐠乏核燃料乙酸镨亨利·莫塞莱快速振盪Ap星地球的地殼元素豐度列表化學元素化學元素名稱詞源列表化學元素發現年表化學元素豐度共价半径元素列表元素的电子组态列表元素熔点列表元素氧化态列表元素沸点列表CPK配色砷酸镨离子半径离子列表稀土金属第6周期元素电子亲合能电离能表电负性相对原子质量表鐠的同位素高氯酸镨钇钡铜氧铁氰酸镨金属金屬列表镧系元素镧系收缩PR核裂变产物标准电极电势表氯化镨氰化镨... 扩展索引 (7 更多) »

基态原子电子组态列表

这是一个关于基态电中性原子的电子组态──即原子核外电子排布方式的列表。此列表按照原子序数的递增顺序进行排列,列表表头由左至右依次为原子序数、元素名称和由1至7的电子层数。.

查看 镨和基态原子电子组态列表

原子半径

原子半径通常指原子的尺寸,并不是一个精确的物理量,并且在不同的环境下数值也不同。 一个特定的原子的半径值和所选用的原子半径的定义相关,而在不同的环境下给原子半径不同定义比统一的定义更合适。 术语原子半径本身就有疑问:可能指一个自由原子的尺寸,或者可能用作原子(包括分子中的原子和自由原子)尺寸不同测量方式的一个笼统的术语。在下文中,这个术语还包括离子半径,主要是因为共价键和离子键区别不大。而原子的定义“能区分出化学元素的最小粒子”本身就比较含糊,包括了自由原子以及与其它相同或不同原子一起组成化学物的原子。除了离子半径,其他可能指代的半径值包括玻尔半径,范德华半径,共价半径和金属半径等。 原子半径完全由电子决定,原子核的大小为是电子云的十万分之一。值得注意的是原子核没有固定的位置,而电子云没有固定的边界。 虽然有上述的困难,目前还是有很多的测量原子(包括离子)的方法,这些方法通常基于实验测量和计算方式的结合。目前普遍认为原子像一个球体,尺寸在30–300皮米之间,在元素周期表中的原子半径变化有规律可循,从而对元素的化学特性造成影响。.

查看 镨和原子半径

单一同位素元素

單一同位素元素是指只有一個穩定同位素的元素。.

查看 镨和单一同位素元素

同中子素

同中子素(),其定義是兩個不同質子數的核種,具有相同的中子數。例如:15N與16O都具有8個中子。此詞彙是由德國物理學家K.古根海瑪所創,是將英文同位素()中的「p」置換成代表中子的「n(neutron)」。 週期表的穩定核種中,有7種同中子素共具最高82個中子,其次是有5種同中子素具50個中子與20個中子。中子為魔數的同中子素,其穩定核種較多。.

查看 镨和同中子素

同位素列表

同位素列表列出了所有已知的化学元素的同位素。 此表由左到右按照原子序数的增长而排列,由下到上依照中子数目由少到多排列。 表格中的颜色表示各个同位素的半衰期(参见图例),表格边缘的颜色表示最稳定的核素的半衰期。.

查看 镨和同位素列表

三茂镨

三茂镨是镨的金属有机化合物,化学式为Pr(C5H5)3,在干燥空气中稳定。 三茂镨和一般过渡金属的环戊二烯配合物不同,被认为是离子型键合。.

查看 镨和三茂镨

三氧化二鐠

三氧化二鐠(化學式:Pr2O3),又稱氧化鐠(Ⅲ),是稀土元素鐠的倍半氧化物。它是黄绿色固体,难溶于水和碱液,但可溶于强无机酸溶液中。固体属六方晶系,金属离子配位数为7,有6个氧原子占据八面体的六个角,第七个氧原子则处于八面体的一个面中心。 镨最稳定的氧化物是十一氧化六鐠(Pr6O11),一般简称为氧化镨。.

查看 镨和三氧化二鐠

乏核燃料

乏核燃料是经受过辐射照射、使用過的核燃料,通常是由核电站的核反应堆产生。这种燃料无法繼續维持核反应。乏核燃料中仍然包含有大量的放射性元素,因此具有放射性,如果不加以妥善处理,会严重影响环境与接触它们的人的健康。.

查看 镨和乏核燃料

乙酸镨

乙酸镨是镨的乙酸盐,化学式为Pr(CH3COO)3。.

查看 镨和乙酸镨

亨利·莫塞莱

亨利·格溫·傑弗里·莫塞莱(Henry Gwyn Jeffreys Moseley,),英国物理学家和化学家。莫塞莱对物理学和化学做出的最重大的贡献就是打破先前物理学理论的成见,发现了原子序数这一概念。莫塞莱定律通过对元素周期表中的元素的正确排列,修正了化学中的众多基础概念。 当玻尔为重构氢原子结构而创立了玻尔模型的同时,莫塞莱定律也首次通过实验验证了该模型,极大地推动了物理学的发展。这一理论完善了欧内斯特·卢瑟福和安东尼斯·范登布勒克的模型,后者设想元素周期表中的元素序数等于原子核中的有效核电荷数量。至今为止,莫塞莱定律仍得到物理学界的普遍认可。 第一次世界大战爆发后,莫塞莱毅然离开了牛津大学的研究室,成为英军的皇家工兵的一名志愿兵。1915年4月,他作为负责电话通讯的军官,受命前往土耳其的加里波利半岛。同年8月10日,他在加里波利之战中被敌军开枪击中死亡,年仅27岁。当时多位人士都感慨,如果莫塞莱能够幸存到1916年,他将极有可能获得诺贝尔物理学奖。.

查看 镨和亨利·莫塞莱

快速振盪Ap星

快速振盪Ap星(Rapidly oscillating Ap stars,縮寫:roAp stars)是恆星光譜Ap型恆星的次型,特徵是短時間內或徑向速度的急速變化。已知的此型恆星光變週期在5到23分鐘之間。這類恆星在赫羅圖的主序帶上的盾牌座 δ變星不穩定帶。.

查看 镨和快速振盪Ap星

地球的地殼元素豐度列表

以下是地球地殼中的化學元素豐度的列表,其中包括 5 份不同資料來源得到的結果,此處的豐度以質量百分比的豐度為準。 其中的數字是估計值,會隨著資料來源及估計方式不同而改變。因此各元素豐度的大小關係只能作大致上的參考。.

查看 镨和地球的地殼元素豐度列表

化學元素

化學元素指自然界中一百多种基本的金属和非金属物质,同一種化學元素是由相同的原子組成,也就是其原子中的每一核子具有同样数量的質子,用一般的化学方法不能使之分解,并且能构成一切物质。一些常見元素的例子有氫、氮和碳。 原子序數大於82的元素(即鉛之後的元素)沒有穩定的同位素,會進行放射衰變。另外,第43和第61種元素(即锝和鉕)沒有穩定的同位素,會進行衰變。可是,即使是原子序數大於94,沒有穩定原子核的元素,有些仍可能存在在自然界中,如鈾、釷、钚等天然放射性核素。 所有化學物質都包含元素,即任何物質都包含元素,隨著人工的核反應,會發現更多的新元素。 1923年,国际原子量委员会作出决定:化学元素是根据原子核电荷的多少对原子进行分类的一种方法,把核电荷数相同的一类原子称为一种元素。 2012年,總共有118種元素被發現,其中地球上有94種。.

查看 镨和化學元素

化學元素名稱詞源列表

该列表列出了所有化学元素名称的词源。.

查看 镨和化學元素名稱詞源列表

化學元素發現年表

化学元素發现年表将各种化学元素的发现按时间顺序列出。其中--发现的时间以提炼出元素单质的时间为准,因为元素化合物的发现时间无法准确定义。表中列出了每种元素的名称、原子序数、发现时间、发现者姓名和发现方式的简介。.

查看 镨和化學元素發現年表

化學元素豐度

化學元素豐度(Abundance of the chemical elements)是在測量上與所有元素相比較所得到含量多寡的比值。豐度可以是質量的比值或是莫耳數(氣體的原子數量比值或是分子數量比值),或是容積上的比值。在混合的氣體中測量氣體容積上的比值是最常用於表示豐度的方法,對混合的理想氣體(相對於是低密度和低壓的氣體)這與莫耳數是相當一致的。 例如,氧在水中的質量比是89%,因為這是水的質量和氧的質量的比值,但是氧在水中的莫耳比值只有33%,因為在水的莫耳數中只有三分之一是氧原子。在整個宇宙中,和在如同木星這樣的巨大的氣體行星中,氫和氦在質量上的豐度比值分別相對是74%和23-25%,但是摩爾(原子)比值卻高達92%和8%。但是,因為氫是雙原子分子,而氦在木星外層的大氣環境下只是單原子分子,以分子的摩爾數來比較,在木星大氣層中氫的豐度是86%,而氦的豐度是13%。 在本文中所提到的豐度,多數都是質量百分比的豐度。.

查看 镨和化學元素豐度

共价半径

共价半径定义为由共价键结合的两个原子核之间距离的一半,單位通常使用皮米(pm)或埃(Å)。He、Ne、Ar等原子无共价半径数据,因至今未合成其任何共价化合物。 同周期元素的单键共价半径的变化规律为从左至右逐渐缩小,可认为是原子核对电子引力增大的缘故。.

查看 镨和共价半径

元素列表

本条目提供按元素序号排列的元素列表。.

查看 镨和元素列表

元素的电子组态列表

这是一个关于基态电中性原子的电子组.

查看 镨和元素的电子组态列表

元素熔点列表

元素熔点列表按化学元素在标准情况下的熔点排列。 以下元素熔点未知:.

查看 镨和元素熔点列表

元素氧化态列表

元素氧化态列表列出化学元素的所有已知整数氧化态,常见氧化态以粗体标记,所有元素单质氧化态为零。 该列表主要参考《元素化学》(Chemistry of the Elements),显示出元素周期律在元素价态上的一些趋势。 下图是欧文·朗缪尔1919年在研究八隅体规则时所画:.

查看 镨和元素氧化态列表

元素沸点列表

元素沸点列表按标准情况下化学元素的沸点排列,列出了热力学温标、摄氏温标和华氏温标的数据。 以下元素沸点未知:.

查看 镨和元素沸点列表

CPK配色

在化學中,CPK配色是一種國際通用的原子或分子模型的配色方式,也是最常用、最多人使用的分子模型上色方式,可用於各種分子模型或元素標示,最常用於CPK模型、球棒模型和空間填充模型。該配色方式由CPK模型的設計者Corey、Pauling(萊納斯·鮑林)與Koltun提出且改進。.

查看 镨和CPK配色

砷酸镨

砷酸镨是镨的砷酸盐,化学式为PrAsO4。它有着很好的热稳定性。其铁电转变温度为52°C。Choudhary, R. N. P..

查看 镨和砷酸镨

离子半径

离子半径(rion)是对晶格中离子的大小的一种量度。离子半径通常以皮米(pm)或埃(Å,1Å.

查看 镨和离子半径

离子列表

离子列表是一个记载了各元素所能形成的离子及其性质的列表。.

查看 镨和离子列表

稀土金属

土金属,或称稀土元素,是元素週期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。钪和钇因为经常与镧系元素在矿床中共生,且具有相似的化学性质,故被认为是稀土元素。 与其名称暗示的不同,稀土元素(钷除外)在地壳中的豐度相当高,其中铈在地壳元素豐度排名第25,占0.0068%(与铜接近)。稀土元素並不稀有,但其傾向於兩兩一起生成合金,且難以將稀土元素單獨分離。另外,稀土元素在地殼中的分佈相當分散,很少有稀土元素集中到容許商業开采的礦床。人类第一种发现的稀土矿物是从瑞典伊特比村的矿山中提取出的,许多稀土元素的名称正源自于此地。.

查看 镨和稀土金属

第6周期元素

6周期元素是元素周期表第六行(即周期)的元素,包括镧系元素。该周期元素都具有一定毒性。 有: 第1周期元素 - 第2周期元素 - 第3周期元素 - 第4周期元素 - 第5周期元素 - 第6周期元素 - 第7周期元素 - 第8周期元素.

查看 镨和第6周期元素

电子亲合能

在一般化學與原子物理學中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定義是,將一個電子加入一個氣態的原子或分子所需耗費,或是釋出的能量。 在固態物理學之中,對於一表面的電子親合能定義不同。.

查看 镨和电子亲合能

电离能表

这是各种元素的电离能的列表,单位为kJ·mol−1。.

查看 镨和电离能表

电负性

电负性(electron negativity,簡寫EN),也譯作離子性、負電性及陰電性,是综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出。它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。.

查看 镨和电负性

相对原子质量表

* 本相对原子质量表按照原子序数排列。.

查看 镨和相对原子质量表

鐠的同位素

鐠(原子量:140.90765(2))的同位素,其中有1個穩定同位素和3個觀測上穩定同位素。.

查看 镨和鐠的同位素

高氯酸镨

氯酸镨(praseodymium perchlorate)是镨的高氯酸盐,分子式为Pr(ClO4)3。.

查看 镨和高氯酸镨

钷(Promethium)為一化学元素,化学符号為Pm,原子序61,属于镧系元素與稀土元素,它所有同位素皆帶有放射性,半衰期最长只有17.7年,故常以人工合成的方法制得。 在原子序82号(鉛)以前只有两个元素没有稳定的同位素,其中一个即為鉕,另一个是锝。在化學上,钷是一種鑭系元素,會與其他元素形成鹽類。钷會以+3氧化態形成穩定的鹽,但是也有少數化合物中存在+2的钷。 在1902年時,预测在當時已知的釹(60)和釤(62)之間存在一個與它們性質相似的未知元素。1914年,亨利·莫塞萊利用原子序與原子核電荷之間的關係(莫塞萊定律),確認當時還未知的61號元素確實存在。不過他測定當時所有已知元素的原子序,却發現沒有任何元素的原子序是61。 1926年,兩個義大利佛羅倫薩的化學家声称他們發現了第61號元素,將其命名為Florentium(中文譯作鉘);同年,一批美國伊利諾大學的化學家亦宣布61號元素的發現,將其命名為Illinium(中文譯作鉯),但這兩個發現都被證實是錯誤的。 1938年,俄亥俄州立大學在進行核試驗的過程中,產生了一些放射性元素,且已确定不是釹或釤的放射性同位素。但此發現因缺乏化學證據證明那是61號元素,所以并沒有得到普遍的認可。1945年,美國橡樹嶺國家實驗室利用離子交換層析法(IEC)分析石墨核子反應堆中的鈾(235U)衰變產物,才真正发现並確認钷的存在。發現者原本打算以研究機構的名稱將之命名為Clintonium(源自橡樹嶺國家實驗室的前身柯林頓實驗室),但之後提出的名稱為“Prometheum”(現改變為Promethium),來自普羅米修斯(祂在希臘神話中偷走了火,從奧林匹斯山帶给人類),以象徵“大膽”以及“人類才智的濫用”。第一件钷的金屬樣本於1963年被制造出來。 自然钷有兩個可能的來源:銪-151衰變(產生钷-147),和鈾(產生各種同位素)。實際應用方面,虽然钷-145是最穩定的钷同位素,但只有钷-147的化合物有实际运用,用於夜光漆,核電池和厚度測量裝置。钷在自然界非常稀有,製作钷常用的方法是用熱中子轟擊鈾-235(濃縮鈾)来產生钷-147。.

查看 镨和钷

钇钡铜氧

钇钡铜氧,或称钇钡铜氧化物、YBCO,是化学式为YBa2Cu3O7的化合物。它是著名的高温超导体,属于第二类超导体,并且是第一个制得转变温度在液氮沸点以上的材料。.

查看 镨和钇钡铜氧

钕(舊譯作釢、鋖)是化学元素,化学符号是Nd,原子序数是60,属于镧系元素(稀土元素)。1885年由冯·韦尔塞巴赫发现。银白色金属,较活泼,室温下在空气中缓慢氧化,能与水和酸作用放出氢。有顺磁性。存在于独居石中,由含水氯化钕经脱水后用金属钙还原,或由无水氯化钕经熔融后电解而制得。用于制造特种合金、电子仪器和光学玻璃。在制造激光器材方面,有着重要的应用。 Category:镧系元素 6F 6F *.

查看 镨和钕

铁氰酸镨

铁氰酸镨是一种无机化合物,化学式为Pr,微溶于水,其溶解度小于铁氰酸镧。.

查看 镨和铁氰酸镨

铈()是一种化学元素,它的化学符号是Ce,它的原子序数是58,属于镧系元素,也是稀土元素之一。灰色软金属。在独居石中占稀土总量的40%以上。 化学性质活泼,在空气中用刀刮即着火,溶于酸,不溶于碱。 鈰的拉丁名稱Cerium是以小行星穀神星來命名的,另一種以小行星來命名的元素是鈀。.

查看 镨和铈

金属

金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.

查看 镨和金属

金屬列表

金屬列表包含了金屬的不同性質。.

查看 镨和金屬列表

(Protactinium,旧译作鎃)是一种放射性化学元素,化学符号为Pa,原子序为91。鏷是一种银灰色、密度大的锕系元素,容易与氧、水蒸汽和无机酸反应。 鏷在自然界中非常稀少,在地壳中的平均浓度是通常为兆分之一,但在一些晶质铀矿的矿床中可能达到百万分之一。鏷因为稀少,具有高放射性和高毒性,除了科学研究之外没有其他用途。由于由于镤和其他锕系元素的化学和物理特性过于接近,难以分离,故目前研究用的鏷主要是从用过核燃料中提炼。鏷寿命最长且最主要的天然同位素为235U的衰变产物231Pa,半衰期为32760年。.

查看 镨和镤

镧系元素

镧系元素是第57号元素镧到71号元素镥15种元素的统称。镧系元素的外层和次外层的电子构型基本相同,电子逐一填充到4f轨道上。镧系元素也属于过渡元素,只是镧系元素新增加的电子大都填入了从外侧数第三个电子层(即4f电子层)中,所以镧系元素又可以称为4f系。为了区别于元素周期表中的d区过渡元素,故又将镧系元素(及锕系元素)称为内过渡元素。由于镧系元素都是金属,所以又可以和锕系元素统称为f区金属。镧系元素用符号Ln表示。 所有镧系元素既能生成化学性质类似的三价化合物,个别镧系元素也能生成比较稳定或不很稳定的四价或二价化合物,所以15个元素的化学性质并不完全相似,在光学、电磁学等物理性质也有较大的差别。 镧系元素原子基态的电子构型是4f0~145d0~16s2。.

查看 镨和镧系元素

镧系收缩

镧系收缩是指在镧系元素——从镧(57)到镥(71)——的原子半径和离子半径在总体上比预期值小的现象,以及与它相关的一系列效应。.

查看 镨和镧系收缩

鋂(Americium,--)是一種放射性超鈾元素,符號為Am,原子序為95。鋂屬於錒系元素,在元素週期表中位於鑭系元素銪之下。鋂是以發現所在的美洲大陸(America)命名的。 位於伯克利加州大學由格倫·西奧多·西博格領導的團隊在1944年首次合成了鋂元素。雖然鋂是第三個超鈾元素,但它卻是繼鋦以後第四個被發現的超鈾元素。這項發現最初被列爲機密,直到1945年才公諸於世。大部分的鋂都是在核反應爐中以中子撞擊鈾或鈈而形成的:一噸乏核燃料含有大約100克鋂。鋂元素主要用在商業電離煙霧探測器和儀表中,或用作中子源。有人提出用242mAm同位素製造核電池和太空船的核推進燃料,但因該同核異構體的稀少和昂貴而尚待實現。 鋂是一種質軟的放射性金屬,外表呈銀白色。鋂的同位素中最常見的有241Am和243Am。在化合物中,特別是溶液中,鋂的氧化態通常是+3。鋂還有+2到+7之間的其他氧化態,可通過測量吸收光譜分辨出來。由於輻射變晶效應,鋂固體和鋂化合物的晶體結構本身含有缺陷。這些缺陷隨時間而增加,因此其物質屬性會進行變化。.

查看 镨和镅

PR

Pr可以指:.

查看 镨和PR

核裂变产物

核裂变产物即指核裂变过程中生成的产物。核裂变是指由较重的(原子序数较大的)原子,主要是指铀或钚,分裂成较轻的(原子序数较小的)原子的一种核反应形式。原子弹以及核电站的能量来源都是核裂变。早期原子弹应用(以铀-238制备的)钚-239为原料制成,而铀-235裂变在核电厂最常见,由钍-232制备的铀-233也在实验堆中使用。.

查看 镨和核裂变产物

标准电极电势表

标准电极电势可以用来计算化学电池或原电池的电化学势或电极电势。 标准电极电位是以标准氢原子作为参比电极,即氢的标准电极电位值定为0,与氢标准电极比较,电位较高的为正,电位较低者为负。 本表中所给出的电极电势以以下條件測得:.

查看 镨和标准电极电势表

氯化镨

氯化镨(III)是一种无机化合物,化学式为PrCl3。它是蓝绿色的固体,在潮湿空气中迅速吸水,转变为亮绿色的七水合物。.

查看 镨和氯化镨

氰化镨

氰化镨是镨的氰化物,化学式为Pr(CN)3。.

查看 镨和氰化镨

未發現元素列表

未發現元素是一些在元素周期表內,未被列出的元素。目前所有已被發現的人造元素,在未發現之前也都可被稱之為未發現元素,基於目前化學理論漸趨完備,我們可以依此對未發現元素作一些基本性質上的推論。由於理論推測最大的原子質子數不得超過210,故下表所列之預測元素就僅至第九週期;而截至2015年12月為止,最新命名之元素為原子序118號的(Oganesson, Og),第七週期元素已经合成成功,并经IUPAC正式承認,下表不予以保留。 通常科學家用實驗室的所在地或名稱來命名新發現的元素,國際純粹與應用化學聯合會(IUPAC)亦會給予已發現之元素名稱正式的認可。但IUPAC為統一起見,對於所有未經核定但已發現或被預測的元素名稱一律依照IUPAC之命名法則制定暫定名稱,使用拉丁文數字頭以該元素之原子序來命名,如Biunseptium(Bus)便是由bi(二)- un(一)- sept(七)- ium(元素)四個字根組合而成,表示「元素217號」。詳細的法則請見IUPAC元素系統命名法。以下所列即為未發現元素的IUPAC暫定名稱。.

查看 镨和未發現元素列表

最密堆积

在幾何上,最密堆积()或球堆疊,是指在一定範圍內放入最多不重疊球體的方式,通常這些球的大小視為相同。堆積的範圍通常是三維歐幾里得空間,不過有時也會對超過三維的歐式空間或非歐幾何空間進行討論。 常見的最密堆積問題通常是要求在一空間內放入最多的球體。此時,球體總體積占空間大小的比例稱為密度,科學家會利用演算法找出能使密度儘可能增大的方法。理論上,在三維空間內由相同球體所形成的最密堆積密度能到74%。相較之下,隨機排列(例如隨意將幾顆球丟進箱子裡)的密度平均只有64%。.

查看 镨和最密堆积

日語之德語借詞

日語中的德語借詞指日語從德語引入的辭彙,多集中於醫學、化學等領域。以下列表中,可以進一步追溯的語源亦一並列出。.

查看 镨和日語之德語借詞

扩展元素周期表

前的元素周期表中有七個周期,並以118號元素Og終結。如果有更高原子序數的元素被發現,則它將會被置於第八周期,甚至第九周期。這額外的周期預期將會比第七周期容納更多的元素,因為經過計算新的g區將會出現。g區將容納18個元素,各周期中均存在部分填滿的g原子軌域。這種擁有八個周期的元素表最初由格倫·西奧多·西博格于1969年提出。 第八或以上周期的元素未曾被合成或于自然發現。(2008年4月,有人宣稱發現122號元素Ubb存在于自然界中,但此被廣泛認為是錯誤的。)g區内第一個元素的原子序數應該為121。根據IUPAC元素系統命名法命名為unbiunium,符號Ubu。此區域内的元素很可能高度不穩定,並具有放射性,且半衰期極短。然而稳定岛理论預測126號元素Ubh會在穩定島内,不會有核裂變,但會有α衰變。而穩定島以外還能存在多少物理上可能的元素至今仍沒有結論。 根據量子力學對於原子結構解釋的軌域近似法,g區會對應不完全填滿的g軌域。不過,自旋-軌道作用會削弱軌域近似法所得結果的正確性,這可能會發生在較大原子序的元素上。.

查看 镨和扩展元素周期表

3族元素

3族元素指的是元素周期表上第3族(ⅢB族)的金属元素,其元素個數依其週期表的定義而定,元素個數可以為2個、4個或32個,甚至若包括超錒系元素在內,共有68個。(包含第八周期元素121Ubu~153Upt,以及第九周期的171Usu、172Usb與173Ust(原子序的上限為173Walter Greiner and Stefan Schramm, Am.

查看 镨和3族元素

59

59是58与60之间的自然数。.

查看 镨和59

7440-10-0

#重定向 镨.

查看 镨和7440-10-0

亦称为 59號元素,Praseodymium,元素59,第59號元素。

未發現元素列表最密堆积日語之德語借詞扩展元素周期表3族元素597440-10-0