我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

釔鋁石榴石

指数 釔鋁石榴石

釔鋁石榴石(yttrium aluminium garnet),簡稱YAG,分子式Y3Al5O12,為人工合成的透明石榴石。是钇铝复合材料的三相之一(其他两相为钇铝单斜晶体(YAM,Y4Al2O9)和钇铝钙钛矿(YAP,YAlO3))。相較於其他人工合成寶石,顏色較灰暗,但硬度較高,可用來切割。 纯的钇铝石榴石不能用于激光媒质。但如果掺杂适当的离子,YAG可以被用作各种固体激光器的主要材料,如钕离子和铒离子(掺钕钇铝石榴石雷射、)。若掺杂铈,形成的含杂YAG可作阴极射线管的磷光体、发光二极管和闪烁体探测器。.

目录

  1. 9 关系: 參數振盪器微下拉晶體成長法石榴石雷射加熱平台成長摻釹釔鋁石榴石雷射

參數振盪器

參數振盪器(parametric oscillator)是一種受驅動的諧振器,其中驅動系統的參數設置在某些頻率,而這頻率通常與振盪器的自然頻率不同。參數振盪器的一個簡單例子為兒童在鞦韆上週期性地站立跟蹲下,來增加鞦韆的振盪幅度。 Note: In real-life playgrounds, swings are predominantly driven, not parametric, oscillators.

查看 釔鋁石榴石和參數振盪器

微下拉晶體成長法

微下拉晶體成長法(Micro-pulling-down,簡稱μ-PD或微下拉法)是以連續的熔融餵料通過坩堝底部一微小通道來成長晶體的技術。熔融餵料抵達坩堝下方的固液兩相接面後會連續不斷地進行凝固。在穩定的操作情況下,液相熔融料和固相晶體會各自以等速被往下拉,但兩者的向下速度通常不會一樣。 此法可以成長多種晶體如釔鋁柘榴石、矽、矽鍺、鈮酸鋰、藍寶石、氧化釔、氧化鈧、氟化鋰、氟化鈣、氟化鋇等等。.

查看 釔鋁石榴石和微下拉晶體成長法

石榴石

石榴石(Garnet),是一組在青銅時代已經使用為寶石及(Abrasive)的礦物。常見的石榴石為紅色,但其顏色的種類十分廣闊,足以涵蓋整個光譜的顏色。英文來自拉丁文"granatus"("grain",即粮食、穀物),可能由"Punica granatum"("pomegranate",即石榴)而來,它是一種有紅色種子的植物,其形狀、大小及顏色都與部分石榴石結晶類似。 常見的石榴石因應其化學成分而確認為數種種類,分別為(Pyrope)、(Almandine)、錳鋁榴石(Spessartite)、鈣鐵榴石(Andradite)、(Spessartine)、(Grossular,變種有(tsavorite)及肉桂石(hessonite))及(Uvarovite)。 石榴石形成兩個固溶體系列:.

查看 釔鋁石榴石和石榴石

釔()是化學元素,符號為Y,原子序為39,是銀白色過渡金屬,化學性質與鑭系元素相近,且常歸為稀土金屬。釔在自然中並不單獨出現,而是和鑭系元素結合出現在稀土礦中。89Y是釔的唯一一種穩定同位素和自然同位素。 1787年,在瑞典伊特比附近發現了一種新的礦石,即,並根據發現地村落的名稱將它命名為「Ytterbite」。在1789年於阿列紐斯的礦物樣本中,發現了氧化釔。把這一氧化物命名為「Yttria」。弗里德里希·維勒在1828年首次分離出釔的單質。 釔的最大用途在於磷光體的生產,特別是紅色LED和電視機陰極射線管(CRT)顯示屏的紅色磷光體。釔元素也被用於電極、電解質、電子濾波器、激光器和超導體中,也有多項醫學和材料科學上的應用。釔沒有已知的生物用途,人類接觸釔元素可導致肺病。.

查看 釔鋁石榴石和钇

铥是一種化學元素,符號Tm,原子序數69,是一種金屬。铥是第二稀少的鑭系元素(僅次於钷,後者僅痕量存在於地球上),是一種質軟、容易加工的金屬,具有明亮的銀灰色光澤,在空氣中緩慢氧化而失去光澤。銩價格昂貴且相當稀有,通常被用於在便攜式透視設備和固態激光器作為輻射源。 1879年,瑞典化學家佩尔·提奥多·克勒夫從稀土元素鉺的氧化物中分離出了兩種從前未知的元素的氧化物,後來被確認分別為鈥和銩的氧化物。純淨的銩化合物直到1911年才獲得。 和其他鑭系元素一樣,銩最常見的氧化態是+3,出現於其氧化物、鹵化物和其他化合物中。在水溶液中,銩化合物通常與九個水分子結合。銩元素對於生物而言沒有已知的作用,也沒有顯著的毒性。.

查看 釔鋁石榴石和铥

銥是化學元素,符號為Ir,原子序為77,屬於鉑系過渡金屬,为質地堅硬易碎的銀白色固体。銥是所有元素中密度第二高的元素(僅次於鋨),而其耐腐蝕性是所有金屬元素中最高,在2000℃高溫下仍然能抵抗腐蝕。雖然固態銥只能受少數熔融鹽和鹵素侵蝕,但是銥粉末则相比之下較容易发生化学反应,可以燃燒。 1803年,史密森·特南特在自然鉑礦石的不可溶雜質中發現了銥元素。由於該元素的鹽有眾多鮮豔的顏色,所以他根據希臘神話的彩虹女神伊里斯(Iris)把這新元素命名為「Iridium」。銥是地球地殼中最稀有的元素之一。其全球年產量及年消耗量只有三噸。自然存在的銥有191Ir和193Ir两种同位素,後者的丰度較高。銥的其他同位素都是不穩定同位素。 最有實用價值的銥化合物包括其與氯所產生的鹽和酸。銥還可以形成多種有機金屬化合物,用於工業催化反應和科學研究。銥金屬可用作高耐蝕性高溫工具的材料,用於製造火花塞、高溫半導體再結晶過程所用的坩堝以及氯鹼法所用的電極等等。一些放射性同位素熱電機也有用到銥的放射性同位素。 一些隕石的含銥量比地壳的平均銥含量高出許多。K-T界線(白堊紀-第三紀界線)黏土層上的銥含量異常高,因此科學家提出了有關6600萬年前大型天體撞擊地球導致恐龍等許多物種滅絕的假說,這一滅絕事件稱為白堊紀-第三紀滅絕事件。根據估算,地球中銥的總含量應比地殼中的銥含量要高很多。但與其他鉑系金屬一樣,銥密度高,且容易與鐵結合,因此在地球形成後不久、仍處於熔融狀態時,大部份銥都已沉到地底深處。.

查看 釔鋁石榴石和铱

鐿是一種化學元素,符號為Yb,原子序為70。它屬於稀土元素,是鑭系金屬的最後一員,也是f區塊的最後一個元素。由於位於f區塊中,所以鐿的+2氧化態相對穩定。但和其他鑭系元素一樣,其最常見的氧化態為+3,這包括鐿的氧化物、鹵化物等化合物。在水溶液中,可溶鐿化合物會和9個水分子形成配合物,這與其他較後的鑭系元素相似。鐿具有閉殼層電子排布,所以它的熔點和沸點都和其他鑭系元素不同,特別是擁有比鄰近元素較低的密度、熔點和沸點。 1878年,瑞士化學家讓-夏爾·加利薩·德馬里尼亞從一種稱為「Erbia」的稀土物質中分離出新的成份,並以礦物的發現地瑞典伊特比村將該成份命名為「Ytterbia」。他猜測Ytterbia是某新元素的化合物,因此又把該元素命名為「Ytterbium」,即鐿元素。1907年,喬治·於爾班、卡爾·奧爾·馮·威爾斯巴赫和查爾斯·詹姆士分別從德馬里尼亞的鐿樣本中提取出了又一新元素,即鑥。經過不少的討論之後,科學界決定保留原名鐿,並捨棄了威爾斯巴赫所建議的「Aldebaranium」。1953年,科學家才製得純度較高的鐿金屬樣本。今天鐿被用在不鏽鋼和激光活性媒質中作摻雜劑,以及用作伽馬射線源。 自然形成的鐿由7種穩定同位素組成,其總豐度為百萬分之3。鐿存在於獨居石、黑稀金礦和磷釔礦中,在中國、美國、巴西和印度開採。它一般和其他稀土元素一同出現,且含量非常低。由於分離過程的困難,鐿並沒有太多的商業用途。鐿可以作釔鋁石榴石激光的摻雜劑,三氯化鐿和二碘化鐿也可以做各種有機合成反應的試劑。.

查看 釔鋁石榴石和镱

雷射加熱平台成長

雷射加熱平台成長(Laser-heated pedestal growth,縮寫簡稱LHPG)或雷射浮區法(laser floating zone,縮寫簡稱LFZ))是一種晶體成長技術。 該技術可以被視為一種精簡版的區域熔煉,只不過熱源改成了功率強大的二氧化碳雷射或者釔鋁柘榴石雷射。在現代眾多液體/固體相變化的晶體成長技術中,雷射加熱平台成長已成為材料科學研究中的重要技術。 雷射加熱平台成長技術具有兩大優勢,其一為高拉取速率(高達傳統柴氏拉晶法的60倍快),其二為可以生長熔點較高的材料。 除此之外,雷射加熱平台成長不需要用到坩堝,意味著該技術可以成長幾乎不受雜質及應力影響的單晶。.

查看 釔鋁石榴石和雷射加熱平台成長

摻釹釔鋁石榴石雷射

摻釹釔鋁石榴石雷射(Nd:YAG Laser)是以摻釹釔鋁石榴石(釔鋁石榴石中約有1%的釔被釹取代)這種晶體來做為雷射介質的固體雷射。這種雷射首先在1964年由J.

查看 釔鋁石榴石和摻釹釔鋁石榴石雷射