我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

逻辑或

指数 逻辑或

逻辑或(logical or)又称逻辑析取(logical disjunction)、邏輯選言,是逻辑和数学概念中的一个二元逻辑算符。其运算方法是:如果其两个变量中有一个真值为“真”,其结果为“真”,两个变量同时为假,其结果为“假”。.

目录

  1. 55 关系: 域关系演算吸收律合取范式向量邏輯子句 (逻辑)存在量化实体图实质条件与非门两元素布尔代数布尔代数一致性历史弗雷格命题演算当且仅当分配律命题逻辑冒险 (数字电路)关系代数 (数据库)直觉主义直觉主义逻辑直觉类型论相继式DNA纳米技术顺序点规范形式 (布尔代数)谢费尔竖线霍恩子句蜘蛛图邏輯矩陣肯定選言量化 (数理逻辑)自由布尔代数配对公理雙管問題逻辑代数逻辑异或逻辑符号表逻辑运算符逻辑或非选言三段论ORXML与HTML字符实体引用列表析取范式林登鲍姆-塔斯基代数排中律次协调逻辑欧拉图正则表达式波兰表示法... 扩展索引 (5 更多) »

域关系演算

在计算机科学中,域关系演算(DRC)是Michel Lacroix和 Alain Pirotte为关系数据模型发明的的作为声明性数据库查询语言Michel Lacroix, Alain Pirotte: Domain-Oriented Relational Languages.

查看 逻辑或和域关系演算

吸收律

在抽象代数中,吸收律是连接一对二元运算的恒等式。 任何两个二元运算比如 $ 和 %,服从吸收律如果: 运算 $ 和 % 被称为对偶对。 设有某个集合闭合在两个二元运算下。如果这些运算是交换律、结合律的,并满足吸收律,结果的抽象代数就是格,在这种情况下这两个运算有时叫做交和并。因为交换律和结合律经常是其他代数结构的性质,吸收律是格的定义性质。由于布尔代数和 Heyting代数是格,它们也服从吸收律。 因为经典逻辑是布尔代数的模型,直觉逻辑是 Heyting代数的模型,吸收律对分别指示逻辑或和逻辑与的运算 \vee 和 \wedge 成立,因此.

查看 逻辑或和吸收律

合取范式

在布尔逻辑中,如果一个公式是子句的合取,那么它是合取范式(CNF)的。作为规范形式,它在自动定理证明中有用。它类似于在电路理论中的规范和之积形式。 所有的文字的合取和所有的文字的析取是 CNF 的,因为可以被分别看作一个文字的子句的合取和一个单一子句的合取。和析取范式(DNF)中一样,在 CNF 公式中可以包含的命题连结词是与、或和非。非算子只能用做文字的一部分,这意味着它只能在命题变量前出现。 例如,下列所有公式都是 CNF: 而下列不是: 上述三个公式分别等价于合取范式的下列三个公式: 所有命题公式都可以转换成 CNF 的等价公式。这种变换基于了关于逻辑等价的规则: 双重否定律、德·摩根定律和分配律。 因为所有逻辑公式都可以转换成合取范式的等价公式,证明经常基于所有公式都是 CNF 的假定。但是在某些情况下,这种到 CNF 的转换可能导致公式的指数性爆涨。例如,把下述非-CNF 公式转换成 CNF 生成有 2^n 个子句的公式.

查看 逻辑或和合取范式

向量邏輯

向量邏輯Mizraji, E. (1992).

查看 逻辑或和向量邏輯

子句 (逻辑)

在逻辑中,子句是文字的析取,在命题逻辑中,子句通常写做如下,这里的符号 l_i是文字: 在某些情况下,子句被写为文字的集合,所以上述子句将被写为 \。从上下文中得到提示把这个集合解释为它的元素的析取。子句可以为空;在这种情况下,它是文字的空集。空字句被指示为各种符号比如 \empty、\bot 或 \Box。空字句的真值求值总是 false。 在一阶逻辑中,子句是对文字的无量词析取的所有自由变量的全称量化。形式上说,一阶文字是 P(t_1,\ldots,t_n) 种类的公式,这里的 P 是 n 元谓词而每个 t_i 都是可能包含变量的一个任意的项。如果L_1,\ldots,L_m 是文字,而 x_1,\ldots,x_k 是它们的(自由)变量,则 \forall x_1,\ldots,x_k.

查看 逻辑或和子句 (逻辑)

存在量化

在谓词逻辑中,存在量化是对一个域的至少一个成员的性质或关系的论断。使用叫做存在量词逻辑算子符号∃来指示存在量化。 它相对于声称某些事物对所有事物都为真的全称量化。.

查看 逻辑或和存在量化

实体图

实体图是查尔斯·皮尔士于1880年代开始在定性逻辑的名义下开发的逻辑的图形语法的一个要素,只覆盖了逻辑的命题演算方面所关心的内容的形式化。请参见《Peirce's Collected Papers》的 3.468, 4.434, 和 4.564。 语法是.

查看 逻辑或和实体图

实质条件

在命题演算,或在数学的逻辑演算中,实质条件、實質蘊涵(容易和語意蘊涵\vDash搞混,建議不要用蘊涵這兩字)或蕴涵算子是一种二元的真值泛函的逻辑运算符,它有着如下形式 这裡的A和B是陈述变量(可以被语言中任何有意义的可表示的句子所替代)。在这种形式的陈述中,第一项这裡的A,叫做前件;第二项这裡的B,叫做后件。 这个算子使用右箭头“→”(有时用符号“⇒”或“⊃”)来符号化,符合“如果A為真,那么B亦為真”被写为如下:.

查看 逻辑或和实质条件

与非门

与非门(NAND gate)是数字逻辑中实现逻辑与非的逻辑门,功能见左侧真值表。若当输入均为高电平(1),则输出为低电平(0);若输入中至少有一个为低电平(0),则输出为高电平(1)。与非门是一种通用的逻辑门,因为任何布尔函数都能用与非门实现。 使用特定逻辑电路的数字系统利用了与非门的函数完备性(功能完备性)。复杂的逻辑表达式常以其他逻辑函数表示,如与、或、非,而将表达式改写为用逻辑与非表示的式子可以节约成本,因为使用与非门实现电路能使电路结构更为紧凑。 与非门并不仅限於2输入,可以是多输入,这时当输入全为高电平时,输出为低电平;若有任意一个输入为低电平,则输出为高电平。这些门电路不再是简单的二进制运算器,而是可作为n元运算器使用的门电路。代数中,这些门电路可以用函数NAND(a, b,..., n)表示,等价於NOT(a AND b AND...

查看 逻辑或和与非门

两元素布尔代数

两元素布尔代数是最简单的布尔代数,它只有两个元素,习惯指名为 1 和 0。保罗·哈尔莫斯给这个起名为 2,被一些文献和本文采用。 任何布尔代数都关联着叫做“全集”或“载体”的一个偏序集合 B,使得这个布尔代数的运算是从 Bn 到 B 的映射。这个载体是由于有显著的成员 0 和 1 而是有界的。2 简单的就是其载体同一于它的界的集合的布尔代数,即 B.

查看 逻辑或和两元素布尔代数

布尔代数

在抽象代数中,布尔代数(Boolean algebra)是捕获了集合运算和逻辑运算二者的根本性质的一个代数结构(就是说一组元素和服从定义的公理的在这些元素上运算)。特别是,它处理集合运算交集、并集、补集;和逻辑运算与、或、非。 例如,逻辑断言陈述a和它的否定¬a不能都同时为真, 相似于集合论断言子集A和它的补集AC有空交集, 因为真值可以在逻辑电路中表示为二进制数或电平,这种相似性同样扩展到它们,所以布尔代数在电子工程和计算机科学中同在数理逻辑中一样有很多实践应用。在电子工程领域专门化了的布尔代数也叫做逻辑代数,在计算机科学领域专门化了布尔代数也叫做布尔逻辑。 布尔代数也叫做布尔格。关联于格(特殊的偏序集合)是在集合包含A ⊆ B和次序 a ≤ b之间的相似所预示的。考虑的所有子集按照包含排序的格。这个布尔格是偏序集合,在其中  ≤ 。任何两个格的元素,比如p .

查看 逻辑或和布尔代数

一致性历史

一致性历史是一种量子力学诠释,其推广了传统的哥本哈根诠释,为量子宇宙学提供了自然诠释。这一诠释基于一致性准则,允许系统的概率有多种演化历史,而不同演化历史得到的概率遵守经典概率学规律,且与薛定谔方程得到的结果一致。与量子力学一些其他的诠释,特别是哥本哈根诠释,不同,在这一框架中,任何物理过程都不会以“波函数坍缩”描述,并且量子测量并不是量子力学的基本问题。.

查看 逻辑或和一致性历史

弗雷格命题演算

在数理逻辑中弗雷格命题演算是第一个公理化的命题演算。它由弗雷格发明,他还在1879年发明了谓词演算,作为他的二阶谓词逻辑的一部分(尽管查尔斯·桑德斯·皮尔士首次使用了术语“二阶”并独立于 Frege 开发了自己版本的谓词演算)。 它只使用两个逻辑算子: 蕴涵和否定,并且由六个公理和一个推理规则肯定前件构成。 公.

查看 逻辑或和弗雷格命题演算

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

查看 逻辑或和当且仅当

#重定向 逻辑或.

查看 逻辑或和∨

分配律

在抽象代数中,分配律是二元运算的一个性质,它是基本代数中的分配律的推广。.

查看 逻辑或和分配律

命题逻辑

在邏輯和數學裡,命題演算(或稱句子演算)是一個形式系統,有著可以由以邏輯運算符結合原子命題來構成代表「命題」的公式,以及允許某些公式建構成「定理」的一套形式「證明規則」。.

查看 逻辑或和命题逻辑

冒险 (数字电路)

冒险(Hazard),也简称险象,是一种由于数字电路内部设计或者外部影响造成错误数字信号的不良效应。.

查看 逻辑或和冒险 (数字电路)

关系代数 (数据库)

关系代数是一阶逻辑的分支,是闭合于运算下的关系的集合。运算作用于一个或多个关系上来生成一个关系。关系代数是计算机科学的一部分。 在纯数学中的关系代数是有关于数理逻辑和集合论的代数结构。.

查看 逻辑或和关系代数 (数据库)

直觉主义

在数学哲学和邏輯中,直觉主义(Intuitionism),或者新直觉主义(Neointuitionism )(对应於前直觉主义(Preintuitionism)),是用人类的构造性思维活动进行数学研究的方法。也可翻译成直觀主義。 任何数学对象被视为思维构造的产物,所以一个对象的存在性等价于它的构造的可能性。这和古典的方法不同,因为根據古典方法,一个实体的存在可以通过否定它的不存在来证明。对直觉主义者來說,这是不正确的:不存在的否定不表示可能找到存在的构造证明。正因为如此,直觉主义是数学结构主义的一种;但它不是唯一的一类。 直觉主义把数学命题的正确性和它可以被证明等同起来;如果数学对象纯粹是精神上的构造,还有什么其它法则可以用作真实性的检验呢(如同直觉主义者所說的一样)?这意味着直觉主义者对一个数学命题的含义,可能與古典的数学家有不同理解。例如,说 A 或 B,对于一个直觉主义者,是宣称 A 或是 B 可以被「证明」,而非兩者之一「為真」。值得一提的是,只允許 A 或 非A 的排中律,在直覺主義邏輯中是不被允许的;因为不能假设人们总是能够证明命题 A 或它的否定命题。 直觉主义也拒绝承认的抽象概念;也就是说,它不把像所有自然数的集合或任意有理数的序列这样的无穷当作实体来考虑。这要求将集合论和微积分的基础分别重新构造为和构造主义分析。.

查看 逻辑或和直觉主义

直觉主义逻辑

觉主义逻辑或构造性逻辑是最初由阿蘭德·海廷开发的为鲁伊兹·布劳威尔的数学直觉主义计划提供形式基础的符号逻辑。这个系统保持跨越生成导出命题的变换的证实性而不是真理性。从实用的观点,也有使用直觉逻辑的强烈动机,因为它有存在性质,这使它还适合其他形式的数学构造主义。.

查看 逻辑或和直觉主义逻辑

直觉类型论

觉类型论、或构造类型论、或Martin-Löf 类型论、或就叫类型论是基于数学构造主义的函数式编程语言、逻辑和集合论。直觉类型论由瑞典数学家和哲学家 Per Martin-Löf 在1972年介入。 Martin-Löf 已经多次修改了它的提议;先是非直谓性的而后是直谓性的,先是外延的而后是内涵的类型论变体。 直觉类型论基于的是命题和类型的同一: 一个命题同一于它的证明的类型。这种同一通常叫做Curry-Howard同构,它最初公式化了命题逻辑和简单类型 lambda 演算。类型论通过介入包含着值的依赖类型把这种同一扩展到谓词逻辑。类型论内在化了 Brouwer、Heyting 和 Kolmogorov 提议的叫做 BHK释义的直觉逻辑释义。类型论的类型扮演了类似于集合在集合论的角色,但是在类型论中的函数总是可计算的。.

查看 逻辑或和直觉类型论

相继式

在证明论中,相继式是对在规定演绎的演算的时候经常用到的可证明性的形式陈述。.

查看 逻辑或和相继式

DNA纳米技术

DNA纳米技术專門研究利用脫氧核糖核酸或其他核酸的分子性質(如自組裝的特性),來建構出可操控的新型纳米尺度結構或機械。在这个领域,核酸被用作非生物的材料而不是在活细胞中那样作为遗传信息的载体。严格的核酸碱基配对法则(使链上特定的碱基列相互连接以形成牢固的双螺旋结构)使这一技术成为可能。这一技术允许合理的碱基链设计,从而严格地组合形成具有精密控制的纳米级特性的复杂的目标结构。脫氧核糖核酸是常使用的优势材料,但包括其他核酸如核糖核酸和肽核酸也被用来构造结构,所以偶尔也用“核酸纳米技术”来概括这个领域。 DNA纳米技术概念的基础最先由纳德里安·西曼(Nadrian Seeman)在1980年代早期阐述,在2000年后开始引起广泛的关注。这一领域的研究者已经构建了静止结构如二维和三维晶体结构、毫微管、多面体和其他任意的造型;和功能结构如纳米机器和DNA運算。一些组建方法被用来构建拼装结构、折叠结构和动态可重构结构。现在,这种科技开始被用作解决在结构生物学和生物物理学中基础科学问题的工具;同时也被应用在结晶学和光谱学中来测定蛋白质结构。这项技术在分子电子学(molecular scale electronics)和纳米医学中的应用仍在研究中。.

查看 逻辑或和DNA纳米技术

顺序点

顺序点,也称作序列点,是计算机程序中一些执行点,在该点处之前的求值的所有的副作用已经发生,在它之后的求值的所有副作用仍未开始。在C与C++程序设计语言中,表达式的值依赖于它的子表达式的求值顺序。增加更多的顺序点限制了可能的求值顺序,能保证有一个一致结果。 C++11中,顺序点概念已经被这种方法取代:直接指出一个求值是在另一个求值之前,或者两个求值是无顺序的。无顺序的求值可以重叠进行。.

查看 逻辑或和顺序点

规范形式 (布尔代数)

布尔代数中,由标准逻辑运算符组成的布尔函数可以按利用了对偶性“极小项”和“极大项”的概念的规范形式来表达。.

查看 逻辑或和规范形式 (布尔代数)

谢费尔竖线

谢费尔竖线(Sheffer stroke),得名于,写为“| ”(見豎線)或“↑”,指示等价于合取运算的否定的逻辑运算。普通语言表达为“不全是即真”(Not AND,因此也常縮寫為NAND),也就是说,A | B假,当且仅当A与B都真时才成立。它是可用来表达与命题逻辑有关的所有布尔函数的自足算子之一。在布尔代数和数字电子中有叫做「NAND」的等价运算。.

查看 逻辑或和谢费尔竖线

霍恩子句

在数理逻辑中,霍恩子句(Horn Clause)是带有最多一个肯定文字的子句(文字的析取)。霍恩子句得名于逻辑学家 Alfred Horn,他在 1951 年首先在文章《On sentences which are true of direct unions of algebras》, Journal of Symbolic Logic, 16, 14-21 中指出这种子句的重要性。 有且只有一个肯定文字的霍恩子句叫做明确子句,没有任何肯定文字的霍恩子句叫做目标子句。霍恩子句的合取是合取范式,也叫做 霍恩公式。霍恩子句在逻辑编程中扮演基本角色并且在构造性逻辑中很重要。 下面是一个霍恩子句的例子: 它可以被等价地写为: 霍恩子句对定理证明的实用性是一阶归结提供的,两个霍恩子句的归结是一个霍恩子句。在自动定理证明中,这能导致子句的在计算机上表示得更加高效。实际上,Prolog 就是完全在霍恩子句上构造的编程语言。 霍恩子句在计算复杂性中也是关键的,在这里找到一组变量指派使霍恩子句的合取的为真的问题是一个P-完全问题,有时叫做 HORNSAT。这是布尔可满足性问题的 P 的变体,它是一个中心的NP-完全问题。.

查看 逻辑或和霍恩子句

蜘蛛图

蜘蛛图比欧拉图多增加了存在点。这种点代表了欧拉图中的交集或是逻辑与(AND)條件,这些点的连接則代表了逻辑或(OR)條件。這些線連在一起形成像蜘蛛一样的形状,也就是這種圖被命名為蜘蛛圖的原因。 舉例來說,在右圖存在以下交集 A \land B B \land C F \land E G \land F 除了上述指定的交集之外, A、B 和 D 到G 這些集合是可分开获得的,集合 C 只能是 B 的子集。在复杂的图中,单元素集合与/或合取经常有可能被其他集合组合所遮掩。 在这个例子中的两个蜘蛛分別对应于下列逻辑表达式: 红蜘蛛: (F \land E) \lor (G) \lor (D) 蓝蜘蛛: (A) \lor (C \land B) \lor (F).

查看 逻辑或和蜘蛛图

邏輯矩陣

逻辑矩阵(或者布尔矩阵)是由布尔域B.

查看 逻辑或和邏輯矩陣

肯定選言

肯定選言謬誤(fallacy of affirming a disjunct),或稱替代選言謬誤(fallacy of the alternative disjunct)、不當排除選言(false exclusionary disjunct),是對「甲或乙」的肯定選言命題不當推論導致的形式謬誤。.

查看 逻辑或和肯定選言

量化 (数理逻辑)

在语言和逻辑中,量化是指定一个谓词的有效性的广度的构造,就是说指定谓词在一定范围的事物上成立的程度。产生量化的语言元素叫做量词。结果的句子是量化的句子,我们称我们已经量化了这个谓词。量化在自然语言和形式语言中都使用。在自然语言中,量词的例子有“所有”、“某些”;“很多”、“少量”、“大量”也是量词。在形式语言中,量化是从旧公式产生新公式的公式构造子(constructor)。语言的语义指定了如何把这个构造子解释为一个有效性的广度。量化是变量约束操作的实例。 在谓词逻辑的两类基本量化是全称量化和存在量化。这些概念被更详细的叙述于在单独文章中;下面我们讨论适用于二者的特征。其他种类的量化包括唯一量化。.

查看 逻辑或和量化 (数理逻辑)

自由布尔代数

在数学分支抽象代数中,自由布尔代数是布尔代数 ,使得集合 B (叫做“载体”)有其中元素叫做生成元的子集。生成元满足下列性质.

查看 逻辑或和自由布尔代数

配对公理

在公理化集合论和使用它的逻辑、数学和计算机科学分支中,配对公理是 Zermelo-Fraenkel 集合论的公理之一。.

查看 逻辑或和配对公理

雙管問題

雙管問題(英語:double-barreled question)或一題多問,有時也稱複合問題,是指在一個問題以合取(且)或析取(或)等方式組合多個子問題,卻只允許簡單的答案。.

查看 逻辑或和雙管問題

逻辑代数

在数学和数理逻辑中,逻辑代数(有时也称开关代数、布尔代数)是变量的值仅为真和假两种真值(通常记作 1 和 0)的代数的子领域。初等代數中变量的值是数字,并且主要运算是加法和乘法,而逻辑代数的主要运算有合取与,记为∧;析取或 ,记为∨;否定非 ,记为¬ 。因此,它是以普通代数描述数字关系相同的方式来描述逻辑关系的形式主义。 逻辑代数是乔治·布尔(George Boole)在他的第一本书《逻辑的数学分析》(1847年)中引入的,并在他的《思想规律的研究》(1854年)中更充分的提出了逻辑代数。 根据Huntington“布尔代数”这个术语,最初是由Sheffer于1913年提出。 逻辑代数一直是数字电路设计的基础,并且所有现代编程语言提供支持。它也用在集合论和统计学中。.

查看 逻辑或和逻辑代数

逻辑异或

在--邏輯中,逻辑算符互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XOR或EOR或⊕。与一般的邏輯或OR不同,當兩兩數值相同為否,而數值不同時為真。 两个运算元(命题):A与B的异或一般写成A异或B,或者写成A \quad \mathrm \quad B、A \oplus B、A \neq B等等。在C语言中,写作A^B。.

查看 逻辑或和逻辑异或

逻辑符号表

在逻辑中,经常使用一组符号来表达逻辑结构。因为逻辑学家非常熟悉这些符号,他们在使用的时候没有解释它们。所以,给学逻辑的人的下列表格,列出了最常用的符号、它们的名字、读法和有关的数学领域。此外,第三列包含非正式定义,第四列给出简短的例子。 要注意,在一些情况下,不同的符号有相同的意义,而同一个符号,依赖于上下文,有不同的意义。.

查看 逻辑或和逻辑符号表

逻辑运算符

在形式逻辑中,逻辑运算符或逻辑联结词把语句连接成更复杂的复杂语句。例如,假设有两个逻辑命题,分别是“正在下雨”和“我在屋里”,我们可以将它们组成复杂命题“正在下雨,并且我在屋里”或“没有正在下雨”或“如果正在下雨,那么我在屋里”。一个将两个语句组成的新的语句或命题叫做复合语句或复合命题。.

查看 逻辑或和逻辑运算符

逻辑或非

在布尔逻辑运算中,逻辑或非(NOR)的结果是逻辑或的反面。也就是说,p NOR q真,当且仅当p与q都假时才成立。 逻辑或非是对于命题之间的运算,两个参数均假时结果才真;反之,两个参数中至少有一个为真时,结构就为假。.

查看 逻辑或和逻辑或非

选言三段论

选言三段论(Disjuctive Syllogism),也叫做析取三段论或拒取式(modus tollendo ponens,字面意思:通过否定来肯定)是有效的简单的论证形式: 在逻辑运算符记号中: 这里的\vdash表示逻辑断言。 粗略的,我们可以说一个或另一个是真;接着我们可以说一个不是真;那么我们可以推导出另一个必须是真。这种推理叫做"选言三段论",就是说,首先它是三段论--三个步骤的论证--其次它包含一个析取式,它简单的意味着一个"或"陈述。"要么P要么Q"是一个析取式;P和Q叫做这个陈述的离析项(disjunct)。 一个例子: 另一个例子:.

查看 逻辑或和选言三段论

OR

Or ,OR,O.R. 及 or 可以指:.

查看 逻辑或和OR

XML与HTML字符实体引用列表

在SGML、 HTML与XML文档,如果某些Unicode字符在文档的当前编码方式(如ISO-8859-1)中不能直接表示,那么可以通过字符值引用或者字符实体引用两种转义序列来表示这些不能直接编码的字符。 下文列出在HTML与XML文档中有效的字符实体引用。.

查看 逻辑或和XML与HTML字符实体引用列表

析取范式

在布尔逻辑中,析取范式(DNF)是逻辑公式的标准化(或规范化),它是合取子句的析取。作为规范形式,它在自动定理证明中有用。一个逻辑公式被认为是 DNF 的,当且仅当它是一个或多个文字的一个或多个合取的析取。同合取范式(CNF)一样,在 DNF 中的命题算子是与、或和非。非算子只能用做文字的一部分,这意味着它只能领先于命题变量。例如,下列公式都是 DNF: 但如下公式不是 DNF: 把公式转换成 DNF 要使用逻辑等价,比如双重否定除去、德·摩根定律和分配律。注意所有逻辑公式都可以转换成析取范式。但是,在某些情况下转换成 DNF 可能导致公式的指数性爆涨。例如,在 DNF 形式下,如下逻辑公式有 2n 个项:.

查看 逻辑或和析取范式

林登鲍姆-塔斯基代数

在数理逻辑中,逻辑理论T的林登鲍姆-塔斯基代数A由这个理论的句子p的等价类构成,其等价关系~定义为 就是说,在T中句子q能演绎自p,p能演绎自q。 在A中的运算继承自T中能获得的那些运算,典型的是合取和析取,在这里它们在这些类上是良定的。当T中存在否定的时候,A是布尔代数,假定逻辑是经典逻辑。反或来说,对于所有布尔代数A,有(经典)句子逻辑的一个理论T使得T的林登鲍姆-塔斯基代数同构于A。换句话说,所有布尔代数都是(不別同构之異)林登鲍姆-塔斯基代数。 在直觉逻辑的情况下,林登鲍姆-塔斯基代数是海廷代数。 有时简称为林登鲍姆代数,这个构造得名于阿道夫·林登鲍姆(1904年-1941或1942年)和阿尔弗雷德·塔斯基。.

查看 逻辑或和林登鲍姆-塔斯基代数

排中律

在逻辑中,排中律(tertium non datur)声称对于任何命题 P,(P ∨ ¬P) 为真。 符号 '¬' 读作“非”,∨ 读作“或”,∧ 读作“与”。 例如,如果 P 是 则包含式析取 为真。 这不完全同于二值原理,它陈述的是 P 必须要么是真要么是假。它也不同于无矛盾律,它陈述的是 ¬(P ∧ ¬P) 是真。排中律只是说 (P ∨ ¬P) 整体是真。不提及 P 自身可以采用什么真值。在任何情况下,任何二值逻辑的语义都将为 P 和 ¬P 指派对立的真值(就是说,如果 P 是真,则 ¬P 是假),所以在二值逻辑中排中律会等价于二值原理。但是,对于非二值逻辑或多值逻辑就不能这么说。 特定的逻辑系统可能通过允许多于两个真值(比如:真、假、中;真、假、非真非假、亦真亦假)而拒绝二值原理,但接受排中律。在这种逻辑中,(P ∨ ¬P) 可以为真,而 P 和 ¬P 不被分别指派为对立的真值。 一些逻辑不接受排中律,最著名的是直觉逻辑。文章《二值和有关规律》中详细地讨论了这个问题。 排中律可能被误用,导致排中律的逻辑谬论,这也叫做假两难推理。.

查看 逻辑或和排中律

次协调逻辑

次协调逻辑是尝试处理矛盾的逻辑。 次协调逻辑是不瑣碎的(non-trivial)逻辑,它允许矛盾。更加特殊的,它允许断言一个陈述和它的否定,而不导致谬论。在标准逻辑中,从矛盾中可以推导出任何东西;这叫做ex contradictione quodlibet(ECQ),也叫做爆炸原理。次协调逻辑就是ECQ不成立的逻辑系统。 次协调逻辑可以用来建模有矛盾的信仰系统,但不是任何东西都能从它推导出来的。在标准逻辑中,必须小心的防止形成说谎者悖论的陈述;次协调逻辑由于不需要排除这种陈述而更加简单(尽管它仍然必须排除Curry悖论)。此外,次协调逻辑可以潜在的克服哥德尔不完备定理蕴涵的算术限制,而是完备的。.

查看 逻辑或和次协调逻辑

欧拉图

欧拉图,部分文稿也称欧氏图,是类似文氏图的一种图,但是不必须包含所有的区(这里的区定义为两个或更多轮廓线的交集区域)。所以欧拉图可以定义论域,就是说它可以定义一个系统,其中有特定交集是不可能的或不考虑的。 所以,包含“动物”、“矿石”和“四足”这些性质的文氏图,必须包含在其中有同时是动物、矿石和四足的某种东西的那个交集。因此文氏图展示了所有可能的合取组合。 可以构造出欧拉图,使得在其中这些无意义的交集不存在,以此为这个主题定义了论域。换句话说,欧拉图可以表示简并之后的那些合取。 对欧拉图的一个现代扩展是蜘蛛图,它向欧拉图增加了可以连接的存在点。这给予欧拉图析取特征。欧拉图原先已有合取特征(就是说区定义了,在該区中存在的对象,都有着合取起来的那些性质)。所以蜘蛛图允许使用欧拉图配備逻辑或的条件。.

查看 逻辑或和欧拉图

正则表达式

正则表达式(Regular Expression,在代码中常简写为regex、regexp或RE),又称--、正規表示法、正規運算式、規則運算式、常規表示法,是计算机科学的一个概念。正则表达式使用单个字符串来描述、匹配一系列符合某个句法规则的字符串。在很多文本编辑器裡,正則表达式通常被用来检索、替换那些符合某个模式的文本。 许多程序设计语言都支持利用正則表达式进行字符串操作。例如,在Perl中就内建了一个功能强大的正則表达式引擎。正則表达式这个概念最初是由Unix中的工具软件(例如sed和grep)普及开的。正则表达式通常缩写成regex,单数有regexp、regex,复数有regexps、regexes、regexen。.

查看 逻辑或和正则表达式

波兰表示法

波兰表示法(Polish notation,或波兰记法),是一种逻辑、算术和代数表示方法,其特点是操作符置于操作数的前面,因此也称做前缀表示法。如果操作符的元数(arity)是固定的,则语法上不需要括号仍然能被无歧义地解析。波兰记法是波兰数学家扬·武卡谢维奇1920年代引入的,用于简化命题逻辑。 扬·武卡谢维奇本人提到: 阿隆佐·邱奇在他的经典著作《数理逻辑》中提出该表达方法是一种值得被关注的记法系统,甚至将它与阿弗烈·諾夫·懷海德和伯特兰·罗素在《数学原理》中的逻辑表达式相提并论。.

查看 逻辑或和波兰表示法

戈特弗里德·莱布尼茨

戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz, 或 ;Godefroi Guillaume Leibnitz,,),德意志哲学家、数学家,歷史上少見的通才,獲誉为十七世纪的亚里士多德。他本人是律師,經常往返於各大城鎮;他許多的公式都是在顛簸的馬車上完成的,他也自稱具有男爵的貴族身份。 莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发明了微积分,而且他所使用的微積分的数学符号被更廣泛的使用,萊布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还对二进制的发展做出了贡献。 在哲学上,莱布尼茨的乐观主义最为著名;他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。 莱布尼茨对物理学和技术的发展也做出了重大贡献,并且提出了一些后来涉及广泛——包括生物学、医学、地质学、概率论、心理学、语言学和信息科学——的概念。莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。 莱布尼茨对如此繁多的学科方向的贡献分散在各种学术期刊、成千上万封信件、和未发表的手稿中,其中約四成為拉丁文、約三成為法文、約一成五為德文。截至2010年,莱布尼茨的所有作品还没有收集完全。 2007年,戈特弗里德·威廉·莱布尼茨图书馆暨下薩克森州州立圖書舘的莱布尼茨手稿藏品被收入联合国教科文组织编写的世界记忆项目。 由於莱布尼茨曾在汉诺威生活和工作了近四十年,并且在汉诺威去世,为了纪念他和他的学术成就,2006年7月1日,也就是萊布尼茨360周年诞辰之际,汉诺威大学正式改名为汉诺威莱布尼茨大学。.

查看 逻辑或和戈特弗里德·莱布尼茨

#重定向 逻辑或.

查看 逻辑或和或

或非门

或非门(NOR gate)是数字逻辑中实现逻辑或非的逻辑门,功能见右侧真值表。若输入均为低电平(0),则输出为高电平(1);若输入中至少有一个为高电平(1),则输出为低电平(0)。或非是逻辑或加逻辑非得到的结果。或非是一种具有函数完备性的运算,因此其他任何逻辑函数都能用或非门实现。相比之下,逻辑或运算器是一种单调的运算器,其只能将低电平变为高电平,但不能将高电平变为低电平。 在绝大多数但不是所有的电路设计中,逻辑非的功能本身就包含在结构中,如CMOS和TTL等。在这样的逻辑系列中,要实现或门,唯一的方法是用2个或更多的逻辑门来实现,如一个或非门加一个反相器,但一个重要的例外是,因为其结构中本身就没有反相逻辑。.

查看 逻辑或和或非门

或门

或门(OR gate)是数字逻辑中实现逻辑或的逻辑门,功能见右侧真值表。只要两个输入中至少有一个为高电平(1),则输出为高电平(1);若两个输入均为低电平(0),输出才为低电平(0)。换句话说,或门的功能是得到两个二进制数的最大值,而与门的功能是得到两个二进制数的最小值。.

查看 逻辑或和或门

1位元

1位元的计算机系统结构是指一種處理器的指令集架構,其数据宽度和及寄存器寬度都是1位元(1/8字节)宽。 商業用CPU中有用到1位元系统结构的有摩托罗拉的工業控制單元,在學術上有不少1位元系统结构的設計研究,對應的一元邏輯也可以在程式中找到。 大部份的計算機在使用四位元系统结构之前,是使用一位元序列的設計架構。 另外1位元系统结构的例子是可编程逻辑控制器。 以下是一個1位元系统结构下編程的例子:.

查看 逻辑或和1位元

亦称为 析取,逻辑析取。

戈特弗里德·莱布尼茨或非门或门1位元