目录
260 关系: AP微积分,加托導數,型 (模型论),偏导数,博苏克-乌拉姆定理,博雷尔可测函数,半連續性,卢津定理,卷绕数,单位圆盘,单位阶跃函数,反常積分,反例,反餘弦,反餘切,可均群,可微函数,可忽略函数,可分空间,史瓦西度規,右连左极函数,叶戈罗夫定理,取整函数,同倫,同倫群,同调,同胚,同态,向量空间,多元微积分,复数 (数学),奇点 (数学),存在性定理,实函数,实数,完备空间,对偶空间,对偶范数,层 (数学),局部可积函数,巴拿赫空间,巴拿赫极限,上纤维化,不动点定理,不定积分,中位數,中值定理,常數函數,主丛,希尔伯特空间,... 扩展索引 (210 更多) »
AP微积分
大学先修课程微积分 (又称AP微积分, AP Calc AB / AP Calc BC, 或 AP Calc)是美国大学理事会提供的两门大学先修课程中的微积分科目:AP微积分AB和AP微积分BC。.
查看 连续函数和AP微积分
加托導數
数学上,加托导数(英文: Gâteaux derivative)是微分学中的-方向-导数的概念的推广。它以勒內·加托命名,他是一位法国数学家,年青时便死于第一次世界大战。它定义于局部凸的拓扑向量空间上,可以和巴拿赫空间上的弗雷歇导数作对比。二者都经常用于形式化泛函导数的概念,常见于變分法和物理学,特别是量子场论。和其他形式的导数不同,加托导数是非线性的。.
查看 连续函数和加托導數
型 (模型论)
在模型論中,型是一階邏輯中的一個相容的公式集合。一個完備型是這類集合中的一個極大元素。.
查看 连续函数和型 (模型论)
偏导数
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为f_x^或\frac。偏导数符号\partial是全导数符号 d的变体,这个符号是阿德里安-马里·勒让德引入的,并在雅可比的重新引入后得到普遍接受。.
查看 连续函数和偏导数
博苏克-乌拉姆定理
博苏克-乌拉姆定理表明,任何一个从n维球面到欧几里得''n''维空间的连续函数,都一定把某一对对蹠点映射到同一个点。 n.
博雷尔可测函数
博雷尔可测函数是测度论中的概念.
查看 连续函数和博雷尔可测函数
半連續性
在數學分析中,半連續性是實值函數的一種性質,分成上半連續與下半連續,半連續性較連續性弱。.
查看 连续函数和半連續性
卢津定理
卢津(Лузин)定理是实分析的定理。約略來說,這定理指可測函數差不多是連續函數。.
查看 连续函数和卢津定理
卷绕数
平面上的闭曲线关于某个点的卷绕数,是一个整数,它表示了曲线绕过该点的总次数。卷绕数与曲线的定向有关,如果曲线依顺时针方向绕过某个点,则卷绕数是负数。 卷绕数在代数拓扑中是基本的概念,在向量分析、复分析、几何拓扑、微分几何和物理学中也扮演了重要的角色。.
查看 连续函数和卷绕数
单位圆盘
数学中,绕平面上给定点 P 的开单位圆盘(open unit disk),是与 P 的距离小于 1 的点集合: 绕 P 的闭单位圆盘(closed unit disk)是与 P 的距离小于或等于 1 的点集合: 单位圆盘是圆盘与单位球体的特例。 若无其它修饰语,术语单位圆盘用于绕原点关于标准欧几里得度量的开单位圆盘 D_1(0)。它是以原点为中心的半径为 1 的圆周的内部。这个集合可以与所有绝对值小于 1 的复数等价。当视为复平面 C 的一个子集时,开单位圆盘经常记作 \mathbb。.
查看 连续函数和单位圆盘
单位阶跃函数
單位階躍函數,又称赫维赛德阶跃函数,定義如下: 另一种定义为: 或 它是個不連續函數,其「微分」是狄拉克δ函數。它是一個幾乎必然是零的隨機變數的累積分布函數。 事實上,x.
查看 连续函数和单位阶跃函数
反常積分
反常积分又叫广义积分(“广义积分”为较早教科书的称呼,现在中国大陆已弃用),是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又叫无界函数的反常积分)。.
查看 连续函数和反常積分
反例
在逻辑学中,反例是相对于某个全称命题的概念。反例在数学、哲学和自然科学中都有重要的应用。举例来说,对一个命题:所有的天鹅都是白色的。这是一个全称命题,声明对于某类事物全体(所有的天鹅),都有某个性质(是白色的)。为了说明这个命题不是真的,只需要举出一个例子,其对象属于这类事物,但不具有命题中声称的性质就可以了。这样的例子称为反例:一只不是白色的天鹅就是这个命题的反例。.
查看 连续函数和反例
反餘弦
反餘弦(arccosine,arccos,cos-1)是一種反三角函數,也是高等數學中的一種基本特殊函數。在三角學中,反餘弦被定義為一個角度,也就是餘弦值的反函數,然而餘弦函數是雙射且不可逆的而不是一個對射函數(即多個值可能只得到一個值,例如1和所有同界角),故無法有反函數,但我們可以限制其定義域,因此,反餘弦是單射和滿射也是可逆的,另外,我們也需要限制值域,且限制值域時,不能和反正弦定義相同的區間,因為這樣會變成一對多,而不構成函數,所以我們將反餘弦函數的值域定義在 ,\left。另外,在原始的定義中,若輸入值不在區間,是沒有意義的,但是三角函數擴充到複數之後,若輸入值不在區間,將傳回複數。.
查看 连续函数和反餘弦
反餘切
反餘切(arccotangent,記為:arccotAbramowitz, M. and Stegun, I. A. (Eds.). "Inverse Circular Functions." §4.4 in. New York: Dover, pp. 79-83, 1972.Harris, J. W. and Stocker, H.. New York: Springer-Verlag, p. 311, 1998.Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 in.
查看 连续函数和反餘切
可均群
可均群是數學上一個特別的局部緊拓撲群G,具備了一種為在G上的有界函數取平均的操作,而且G在函數上的群作用,不會改變所取得的平均。.
查看 连续函数和可均群
可微函数
在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。 一般来说,若X0是函数f定义域上的一点,且f′(X0)有定义,则称f在X0点可微。这就是说f的图像在(X0, f(X0))点有非垂直切线,且该点不是间断点、尖点。.
查看 连续函数和可微函数
可忽略函数
那么我们说这个函数是可忽略的(negligible)。通常我们把“存在一个N_c>0,使得对于所有的x>N_c”简化为“对于所有足够大的x”。.
查看 连续函数和可忽略函数
可分空间
在数学中,一个拓扑空间被称为可分空间当它包含一个可数的稠密子集,也就是说,存在一个序列\_^ ,使得此空间中的每个非空的开子集都有这个序列中的至少一个元素。 如可数性公理一样,可分性是一种对空间“大小”的“限制”,虽然这个限制并不一定就是对空间中元素多少的限制(然而在豪斯多夫公理成立的时候这两者是一样的)。特别地,可分空间中的每个连续函数,只要其图像是某个豪斯多夫空间的子集的话,就会被其在某个可数的稠密子集上的取值所确定。 一般来说,对于经典分析学和几何学中的空间来说,可分性是一个很有用的技术性假设,也被认为是比较弱的假设。.
查看 连续函数和可分空间
史瓦西度規
史瓦西度規(Schwarzschild metric),又稱史瓦西幾何、史瓦西解,是卡爾·史瓦西於1915年針對广义相对论的核心方程——愛因斯坦場方程式——关于球状物质分布的解。根據伯考夫定理(Birkhff`s theorem),史瓦西解可說是愛因斯坦方程最一般的真空解。這樣的解又可被稱作史瓦西黑洞,他所對應的幾何是一個是靜止不旋轉、不帶電荷之黑洞。在物理上他可以對應任何球對稱星球外部的的時空幾何。因此常常用於近似於不同旋轉緩慢(遠小於光速)的天體的重力場,例如恆星、行星等。 在史瓦西解中,只有一個刻劃該解的參數,可以看成是史瓦西黑洞的質量。因此某方面來說,一個史瓦西黑洞只能用他的質量來區別,兩質量相等的史瓦西黑洞在物理上是完全一樣的。史瓦西解有個很重要的超曲面叫做事件視界,在事件視界內發生的事件無法被事件視界外的觀測者觀測到。它並非任何物理上實際存在的介面,事實上,如果有一觀測者通過事件世界,他不會感受到任何異狀。但是一旦通過事件視界,觀測者將無法回到黑洞外部。 此外史瓦西解另一個重要的特徵是它包含了奇異點。在奇異點時空的曲率發散,古典的廣義相對論並不適用在奇異點上,故實如何在物理上詮釋奇異點並不明確。可能需要一個可以考慮量子效應的量子重力理論才能給出好的解釋。任何通過事件視界的類時(time-like)的觀測者都會碰到奇異點。.
查看 连续函数和史瓦西度規
右连左极函数
在数学中,右连左极函数(càdlàg,RCLL)是指定义在实数集或其子集上的处处右连续且有左极限的函数。这类函数在研究有跳跃甚至是需要跳跃的随机过程时很重要,这类随机过程不像布朗运动具有连续的样本轨道。给定定义域上的右连左极函数的集合称为斯科罗霍德空间(Skorokhod space)。.
查看 连续函数和右连左极函数
叶戈罗夫定理
在测度论中,叶戈罗夫定理确立了一个可测函数的逐点收敛序列一致连续的条件。这个定理以俄国物理学家和几何学家德米特里·叶戈罗夫命名,他在1911年出版了该定理。 叶戈罗夫定理与紧支撑连续函数在一起,可以用来证明可积函数的卢津定理。.
查看 连续函数和叶戈罗夫定理
取整函数
在数学和计算机科学中,取整函数是一类将实数映射到相近的整数的函数。 常用的取整函数有两个,分别是下取整函数和上取整函数。 下取整函数即為取底符號,在数学中一般记作\lfloor x \rfloor或者E(x),在计算机科学中一般记作floor(x),表示不超过x的整数中最大的一个。 举例来说,\lfloor 3.633 \rfloor.
查看 连续函数和取整函数
同倫
在數學中,同倫(Homotopy)的概念在拓撲上描述了兩個對象間的「連續變化」。.
查看 连续函数和同倫
同倫群
在數學中,同倫群是拓撲空間的一種同倫不變量。同倫群的研究是同倫理論的基石之一,一般空間的同倫群極難計算,即使對球面 S^n 的情形,至今也沒有完整結果。.
查看 连续函数和同倫群
同调
数学上(特别是代数拓扑和抽象代数),同调 (homology,在希腊语中homos.
查看 连续函数和同调
同胚
在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.
查看 连续函数和同胚
同态
抽象代数中,同态是两个代数结构(例如群、环、或者向量空间)之间的保持结构不变的映射。英文的同态(homomorphism)来自希腊语:ὁμός (homos)表示"相同"而μορφή (morphe)表示"形态"。注意相似的词根ὅμοιος (homoios)表示"相似"出现在另一个数学概念同胚的英文(homeomorphism)中。.
查看 连续函数和同态
向量空间
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
查看 连续函数和向量空间
多元微积分
在微积分学中,多元微积分(也称为多变量微积分,Multivariable calculus,multivariate calculus)是涉及多元函數的微積分學的統稱。相较于只有单个变量的一元微积分,多元微积分在函数的求导和积分等运算中含有至少两个变量。例如微分多元函數時,就引申出偏微分、全微分,對多元函數進行積分計算時,又會涉及多重積分。.
查看 连续函数和多元微积分
复数 (数学)
複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.
查看 连续函数和复数 (数学)
奇点 (数学)
在數學中,奇--異點(singularity)或奇點,是數學物件中無法處理的點。一般來說,可以分成兩種狀況:.
查看 连续函数和奇点 (数学)
存在性定理
在数学中,存在性定理是一类以“存在……”开头的定理的总称。有时前面也会加上一些限定,比如说“对于所有的……,存在……”。形式上来说,存在性定理是指在定理的命题叙述中涉及存在量词的定理。实际中,许多存在性定理并不会明确地用到“存在”这个字眼,比如说“正弦函数是连续的。”这个定理中并没有出现“存在”一词,但仍是一个存在性定理。因为“连续性”的定义是一个存在性的定义。 二十世纪初期曾经有过关于纯粹的存在性定理的争论。在数学结构主义的角度上,如果承认此种定理的存在,那么数学的实用性将会降低。而与之相反的观点认为抽象的手段可以达到数值分析所无法达到的目的。.
查看 连续函数和存在性定理
实函数
实函数(Real function),指定义域和值域均为实数集的子集的函数。實函數的特性之一是可以在坐標平面上畫出圖形。.
查看 连续函数和实函数
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
查看 连续函数和实数
完备空间
完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。.
查看 连续函数和完备空间
对偶空间
在數學裡,任何向量空間V都有其對應的對偶向量空間(或簡稱為對偶空間),由V的線性泛函組成。此對偶空間俱有一般向量空間的結構,像是向量加法及純量乘法。由此定義的對偶空間也可稱之為代數對偶空間。在拓撲向量空間的情況下,由連續的線性泛函組成的對偶空間則稱之為連續對偶空間。 对偶空間是 行向量(1×n)與列向量(n×1)的關係的抽象化。這個結構能夠在無限維度空間進行並為测度,分佈及希爾伯特空間提供重要的觀點。对偶空間的應用是泛函分析理論的特徵。傅立叶變換亦內蘊对偶空間的概念。.
查看 连续函数和对偶空间
对偶范数
对偶范数是数学中泛函分析里的概念。考虑一个赋范向量空间的对偶空间时,常常需要给对偶空间赋以合适的几何架构。对偶范数是一种自然的赋范方式。.
查看 连续函数和对偶范数
层 (数学)
数学上,在给定拓扑空间X上的一个层(sheaf)(或译束、捆)F对于X的每个开集给出一个集合或者一个更丰富的结构F(U)。这个结构F(U)和把开集限制(restricting)到更小的子集的操作相容,并且可以把小的开集粘起来得到更大的。一个预层(presheaf)和一个层相似,但它可能不可以粘起来。事实上,层使得我们可以用一种细致的方式讨论什么是局部性质,就像应用在函数上的层。.
查看 连续函数和层 (数学)
局部可积函数
在数学中,局部可积函数是指在定义域内的所有紧集上都可积的函数。.
查看 连续函数和局部可积函数
巴拿赫空间
在數學裡,尤其是在泛函分析之中,巴拿赫空間是一個完備賦範向量空間。更精確地說,巴拿赫空間是一個具有範數並對此範數完備的向量空間。 巴拿赫空間有兩種常見的類型:「實巴拿赫空間」及「複巴拿赫空間」,分別是指將巴拿赫空間的向量空間定義於由實數或複數組成的--之上。 許多在數學分析中學到的無限維函數空間都是巴拿赫空間,包括由連續函數(緊緻赫斯多夫空間上的連續函數)組成的空間、由勒貝格可積函數組成的Lp空間及由全純函數組成的哈代空間。上述空間是拓撲向量空間中最常見的類型,這些空間的拓撲都自來其範數。 巴拿赫空間是以波蘭數學家斯特凡·巴拿赫的名字來命名,他和漢斯·哈恩及愛德華·赫麗於1920-1922年提出此空間。.
查看 连续函数和巴拿赫空间
巴拿赫极限
在数学分析中,巴拿赫极限(Banach limit)指的是定义在全体有界复序列组成的巴拿赫空间\ell^\infty上,对每个\ell^\infty中的序列x.
查看 连续函数和巴拿赫极限
上纤维化
在数学裡,特别是同伦论中,一个连续映射 这里 A 和 X 是拓扑空间,是一个上纤维化(cofibration)如果它关于所有空间 Y 满足同伦延拓性质。因其对偶条件定义了纤维化,故有此名。上纤维化更一般的概念参见模型范畴一文。.
查看 连续函数和上纤维化
不动点定理
在数学中,不动点定理是一個結果表示函数F在某種特定情況下,至少有一個不动点存在,即至少有一个点x能令函数F(x).
查看 连续函数和不动点定理
不定积分
在微积分中,一个函数f.
查看 连续函数和不定积分
中位數
中位數(又稱中值,Median),統計學中的專有名詞,代表一個樣本、種群或概率分佈中的一個數值,其可將數值集合劃分爲相等的上下兩部分。對於有限的數集,可以通過把所有觀察值高低排序後找出正中間的一個作爲中位數。如果觀察值有偶數個,則中位數不唯一,通常取最中間的兩個數值的平均數作爲中位數。 一個數集中最多有一半的數值小於中位數,也最多有一半的數值大於中位數。如果大於和小於中位數的數值個數均少於一半,那麽數集中必有若干值等同於中位數。 设连续随机变量X的分布函数为F(X),那么满足条件P(X≤m).
查看 连续函数和中位數
中值定理
在實分析中,中值定理(mean value theorem)描述了連續光滑曲線在兩點之間的光滑性: 中值定理包括微分中值定理和积分中值定理。.
查看 连续函数和中值定理
常數函數
在数学中,常数函数(也称常值函数)是指值不发生改变(即是常数)的函数。例如,我们有函数f(x).
查看 连续函数和常數函數
主丛
数学上,一个G主丛(principal G-bundle)是一种特殊的纤维丛,其纤维为拓扑群G的作用的扭子(torsor)(也称为主齐性空间)。主G丛是G丛,因为群G也是丛的结构群。 主丛在拓扑学和微分几何中有重要应用。他们在物理学中也有应用,他们组成了规范理论的基础框架的一部分。主丛为纤维丛的理论提供了一个统一的框架,因为所有纤维丛及其结构群G决定了一个唯一的主G丛,从该主丛可以重建原来的那个丛。.
查看 连续函数和主丛
希尔伯特空间
在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。.
查看 连续函数和希尔伯特空间
布勞威爾不動點定理
在数学中,布勞威爾不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间并构成了一般不动点定理的基石。布勞威爾不动点定理得名于荷兰数学家魯伊茲·布勞威爾()。 布劳威尔不动点定理说明:对于一个拓扑空间中满足一定条件的连续函数f,存在一个点x_0,使得f(x_0).
三角函数
三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.
查看 连续函数和三角函数
三次方程
三次方程是未知项總次数最高为3的整式方程,一元三次方程一般形式為 其中\ a, \ b,\ c和\ d (a \neq 0)是屬於一個域的數字,通常這個域為R或C。 本條目只解釋一元三次方程,而且簡稱之為三次方程。.
查看 连续函数和三次方程
一阶常微分方程
一阶常微分方程是数学中常见而基础的一类微分方程,通常写成如下的形式: 其中的是要解的未知函数,是函数的自变量,是一个已知的连续函数。 一阶常微分方程在物理学、生物学、化学以及各种自然与社会科学都能见到,是常见的数学模型的重要构成部分。.
查看 连续函数和一阶常微分方程
一致连续
一致连续性描述定义在一定度量空间上的函数的性质。与连续性刻画函数在局部的性质不同,一致连续刻画的是函数的整体性质。一致连续是比连续更苛刻的条件。一个函数在某度量空间上一致连续,则其在此度量空间上必然连续,但反之未必成立。直观上,一致连续可以理解为,当自变量x在足够小的范围内变动时,函数值y的变动也会被限制在足够小的范围内。.
查看 连续函数和一致连续
一致收斂
在數學中,--性(或稱--)是函數序列的一種收斂定義。其概念可敘述為函數列 一致收斂至函數 代表所有的 , 收斂至 有相同的收斂速度。由於它較逐點收斂更強,故能保持一些重要的分析性質,例如連續性、黎曼可積性。.
查看 连续函数和一致收斂
平稳过程
在数学中,平稳过程(Stationary process),又稱严格平稳过程(Strict(ly) stationary process)或強平穩過程()是一種特殊的隨機過程,在其中任取一段期間或空間(t.
查看 连续函数和平稳过程
平面图 (图论)
在圖論中,平面圖是可以画在平面上并且使得不同的邊可以互不交疊的圖。而如果一个图无论怎样都无法画在平面上,并使得不同的边互不交叠,那么这样的图不是平面图,或者称为非平面图。完全图K5和完全二分图K3,3是最“小”的非平面图。.
平方平均数
平方平均数(Quadratic mean),簡稱方均根(Root Mean Square,縮寫為 RMS),是2次方的廣義平均數的表达式,也可叫做2次冪平均數。其計算公式是: 在連續函數\beginf(x)\end的區間\begin\end內,其均方根定義為: f_.
查看 连续函数和平方平均数
幾乎處處
在測度論(數學分析的一個分支)裡,若說一個性質為幾乎處處成立,即表示不符合此性質的元素組成的集合為一零測集,即其測度等於零的集合。當使用在實數的性質上時,若沒有另外提起則假定為勒貝格測度。幾乎處處(almost everywhere)可以被縮寫為「a.
查看 连续函数和幾乎處處
幂级数
在数学中,幂级数(power series)是一类形式简单而应用广泛的函数级数,变量可以是一个或多个(见“多元幂级数”一节)。单变量的幂级数形式为: 其中的c和a_0,a_1,a_2 \cdots a_n \cdots是常数。a_0,a_1,a_2 \cdots a_n \cdots称为幂级数的系数。幂级数中的每一项都是一个幂函数,幂次为非负整数。幂级数的形式很像多项式,在很多方面有类似的性质,可以被看成是“无穷次的多项式”。 如果把(x-c)看成一项,那么幂级数可以化简为\sum_^\infty a_n x^n 的形式。后者被称为幂级数的标准形式。一个标准形式的幂级数完全由它的系数来决定。 将一个函数写成幂级数\sum_^\infty a_n \left(x-c \right)^n的形式称为将函数在c处展开成幂级数。不是每个函数都可以展开成幂级数。 幂级数是分析学研究的重点之一,然而在组合数学中,幂级数也占有一席之地。作为母函数,由幂级数概念发展出来的形式幂级数是许多组合恒等式的来源。在电力工程学中,幂级数则被称为Z-变换。实数的小数记法也可以被看做幂级数的一种,只不过这里的x被固定为\frac。在p-进数中则可以见到x被固定为10的幂级数。.
查看 连续函数和幂级数
交换环
在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.
查看 连续函数和交换环
交比
数学上,複平面上四点的交比是 这个定义可以连续延拓至整个黎曼球面,即複平面加上无穷远点。 一般来说,交比可以定义在射影直线(黎曼球面就是複射影直線)。在任何仿射坐标卡中,交比由上式给出。交比是射影几何的不变量,就是说射影变换保持交比不变。 从前人们注意到如果四条直线穿过一点P,第五条直线L不穿过P,分别与四条直线交于四点,那么在L上按序取四点的有向长度,所算出的交比是独立于L。它是这四直线系的不变量。 四个複数的交比为实数当且唯当四点共线或共圆。.
查看 连续函数和交比
度量空间
在数学中,度量空间是个具有距離函數的集合,該距離函數定義集合內所有元素間之距離。此一距離函數被稱為集合上的度量。 度量空间中最符合人们对于现实直观理解的為三维欧几里得空间。事实上,“度量”的概念即是欧几里得距离四个周知的性质之推广。欧几里得度量定义了两点间之距离为连接這兩點的直线段之长度。此外,亦存在其他的度量空間,如橢圓幾何與雙曲幾何,而在球體上以角度量測之距離亦為一度量。狭义相對論使用雙曲幾何的雙曲面模型,作為速度之度量空間。 度量空间还能導出开集與闭集之類的拓扑性质,这导致了对更抽象的拓扑空间之研究。.
查看 连续函数和度量空间
庫拉托夫斯基閉包公理
庫拉托夫斯基閉包公理可來定義一個集上的拓扑結構,它和以開集作定義拓樸結構的公理等價。.
康威十三进制函数
康威十三进制函数,或简称为康威函数,是由英国数学家约翰·康威构造的一个实函数(实变实值).
二阶导数的对称性
数学中,二阶导数的对称性(也称为混合导数的相等)指取一个n元函数 的偏导数可以交换。如果关于x_的偏导数用一个下标i表示,则对称性断言二阶偏导数f_满足等式 从而它们组成一个n×n 对称矩阵。有时这也称为杨定理(Young's theorem)。.
互协方差
在统计学中,互协方差表示两个随机向量 X 与 Y 之间的协方差 cov(X, Y),以区别于随机向量 X 的“协方差”即 X 的各个标量元素之间的协方差矩阵。 在信号处理领域,互协方差是两个信号 (信息论)之间相似性的度量,它也称为“互相关”。互协方差通常用于通过与已知信号做比较从来寻找未知信号的特点。它是信号之间相对于时间的函数,有时也称为滑动点积,在模式识别与密码分析学中都有应用。 离散函数 fi 与 gi 的互协方差定义为 其中累计和是在一个合适的整数 j 上进行计算,星号表示是共轭复数。 连续函数 f (x) 与 g i 的互协方差定义为 其中积分在合适的 t 上进行。 互协方差本质上类似于两个函数的卷积。.
查看 连续函数和互协方差
互信息
在概率论和信息论中,两个随机变量的互信息(Mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度。不同于相关系数,互信息并不局限于实值随机变量,它更加一般且决定着联合分布 p(X,Y) 和分解的边缘分布的乘积 p(X)p(Y) 的相似程度。互信息是(PMI)的期望值。互信息最常用的单位是bit。.
查看 连续函数和互信息
代数基本定理
代数基本定理说明,任何一个一元複系数方程式都至少有一个複数根。也就是说,複数域是代数封闭的。 有时这个定理表述为:任何一个非零的一元n次複系数多项式,都正好有n个複数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。 尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或複系数多项式方程,所以才被命名为代数基本定理。 高斯一生总共对这个定理给出了四个证明,其中第一个是在他22岁时(1799年)的博士论文中给出的。高斯给出的证明既有几何的,也有函数的,还有积分的方法。高斯关于这一命题的证明方法是去证明其根的存在性,开创了关于研究存在性命题的新途径。 同时,高次代数方程的求解仍然是一大难题。伽罗瓦理論指出,对于一般五次以上的方程,不存在一般的代数解。.
查看 连续函数和代数基本定理
代数拓扑
代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。.
查看 连续函数和代数拓扑
代數 (環論)
在數學中,交換環上的代數或多元環是一種代數結構,上下文不致混淆時通常逕稱代數。 本頁面中的環都是指有單位的環,並使用么環一詞表示則是不一定有單位的環。.
查看 连续函数和代數 (環論)
任意子
任意子是数学和物理学中的一个概念。它描述一类只在二维--系统中出现的粒子。它是对费米子和玻色子概念的广义化。.
查看 连续函数和任意子
介值定理
在数学分析中,介值定理(intermediate value theorem)(又稱中間值定理)描述了連續函數在兩點之間的連續性: 直觀地比喻,這代表在區間上可以畫出一個連續曲線,而不讓筆離開紙面。如果這個連續函數是光滑曲線,其任二點間的光滑性可由均值定理來描述。 介值定理首先由伯纳德·波尔查诺在1817年提出和证明,在這個證明中,他附帶證明了波爾查諾-魏爾斯特拉斯定理。.
查看 连续函数和介值定理
弧长
曲线的弧长也称曲线的长度,是曲线的特征之一。不是所有的曲线都能定义长度,能够定义长度的曲线称为可求长曲线。最早研究的曲线弧长是圆弧的长度。为了计算圆周的长度,数学家发明了用直线段近似的方法,并应用到其他的曲线上。微积分出现后,数学家开始用积分的方式计算曲线的弧长,得出了许多特殊曲线的弧长的精确表达式。.
查看 连续函数和弧长
伯納德·波爾查諾
伯納德·普拉西德·約翰·內波穆克·波爾查諾(Bernhard Placidus Johann Nepomuk Bolzano,)是波希米亞的數學家、神學家、哲學家、邏輯學家、和反軍國主義者。他在数学方面的知名成就有二分法和波爾查諾-魏爾斯特拉斯定理。他以母语(德文)进行写作,多数贡献都是在死后才获得世人赞誉。.
弱*拓撲
弱*拓撲是賦範向量空間的對偶空間上的一種拓撲。弱*拓撲的的重要性,在於它使得單位球是緊集(巴拿赫-阿拉奧盧定理);相反地在線性算子範數誘發的拓撲中,單位球未必緊緻。(結果成立當且僅當賦範向量空間為有限維。).
查看 连续函数和弱*拓撲
开放句子
开放句子是「在用特定的数,替代其中的变量的时候,将使得结果的表达式被求值为真的一个句子」。 数学家没有接受这种术语,而是称之为带有自由变量的方程式或不等式等。 这种替代也叫做对句子的解。恒等式是所有数都是解的开放句子。 开放句子的例子包括:.
查看 连续函数和开放句子
循序可测过程
在数学中,循序可测是随机过程的一种性质。循序可测性质是随机过程研究中用到的一种重要性质,能够保证停过程的可测性。循序可测性比随机过程的适应性更加严格。循序可测过程在伊藤积分理论中有重要应用。.
查看 连续函数和循序可测过程
微元法
微元法(differential element method),也叫元素法、微元素法、无穷小元素的求和法,是数学和物理中常用的一种求解数学和物理问题的方法。.
查看 连续函数和微元法
微积分基本定理
微积分基本定理描述了微积分的两个主要运算──微分和积分之间的关系。 定理的第一部分,称为微积分第一基本定理,表明不定积分是微分的逆运算。這一部分定理的重要之處在於它保證了某連續函數的原函數的存在性。 定理的第二部分,称为微积分第二基本定理或“牛顿-莱布尼茨公式”,表明定积分可以用无穷多个原函数的任意一个来计算。这一部分有很多实际应用,这是因为它大大简化了定积分的计算。 该定理的一个特殊形式,首先由詹姆斯·格里高利(1638-1675)证明和出版。定理的一般形式,则由艾萨克·巴罗完成证明。 微积分基本定理表明,一个变量在一段时间之内的无穷小变化之和,等于该变量的净变化。 我们从一个例子开始。假设有一个物体在直线上运动,其位置为x(t),其中t为时间,x(t)意味着x是t的函数。这个函数的导数等于位置的无穷小变化dx除以时间的无穷小变化dt(当然,该导数本身也与时间有关)。我们把速度定义为位置的变化除以时间的变化。用莱布尼兹记法: 整理,得 根据以上的推理,x的变化──\Delta x,是dx的无穷小变化之和。它也等于导数和时间的无穷小乘积之和。这个无穷的和,就是积分;所以,一个函数求导之后再积分,得到的就是原来的函数。我们可以合理地推断,这个运算反过来也成立,积分之后再求导,得到的也是原来的函数。.
查看 连续函数和微积分基本定理
微积分学
微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.
查看 连续函数和微积分学
修辭學 (亞里斯多德)
西方的修辭學由柏拉圖學生亚里士多德發展起來,在其著作《修辭的藝術》中的首句,描述了修辭為辯證法的相對物,即是說辯證方法是找尋真理的要素,修辭方法便用作交流真理。.
利普希茨連續
在數學中,特別是實分析,利普希茨連續(Lipschitz continuity)以德國數學家魯道夫·利普希茨命名,是一個比通常連續更強的光滑性條件。直覺上,利普希茨連續函數限制了函數改變的速度,符合利普希茨條件的函數的斜率,必小於一個稱為利普希茨常數的實數(該常數依函數而定)。 在微分方程,利普希茨連續是皮卡-林德洛夫定理中確保了初值問題存在唯一解的核心條件。一種特殊的利普希茨連續,稱為壓縮應用於巴拿赫不動點定理。 利普希茨連續可以定義在度量空間上以及賦范向量空間上;利普希茨連續的一種推廣稱為赫爾德連續。.
查看 连续函数和利普希茨連續
刘维尔公式
刘维尔公式(Liouville's Formula)是一个关于多重积分和欧拉积分(\Gamma函数)的公式,其形式如下:.
查看 连续函数和刘维尔公式
分布 (数学分析)
数学分析中的分布是广义函数的一种,由法国数学家洛朗·施瓦茨首先于二十世纪五十年代引入。分布推广了普通意义上的函数概念。对于普通意义上不可导甚至不连续的函数,可以具备分布意义上的导数。事实上,任意局部可积的函数都有分布意义上的弱导数。在偏微分方程的研究中,常常使用分布来表示方程的广义解函数,因为很多时候传统意义上的解函数不存在或难以求出。分布理论在物理学和工程学中都十分有用,因为在应用中常会出现解或初始条件是分布的微分方程,例如初始条件可能是一个狄拉克δ分布。 广义函数的概念最早由谢尔盖·索伯列夫在1935年提出。1940年代末,施瓦茨等人开始建立分布理论,首次提出了一个系统清晰的广义函数理论。.
分形
分形(Fractal),又稱--、殘形,通常被定義為「一個粗糙或零碎的幾何形狀,可以分成數個部分,且每一部分都(至少近似地)是整體縮小後的形狀」,即具有自相似的性質。 碎形思想的根源可以追溯到公元17世紀,而對碎形使用嚴格的數學處理則始於一個世紀後卡爾·魏爾施特拉斯、格奧爾格·康托爾和費利克斯·豪斯多夫對連續而不可微函數的研究。但是碎形(fractal)一詞直到1975年才由本華·曼德博創造出來,字源來自拉丁文 frāctus,有「零碎」、「破裂」之意。一個數學意義上碎形的生成是基於一個不斷迭代的方程式,即一種基於遞歸的反饋系統。碎形有幾種類型,可以分別依據表現出的精確自相似性、半自相似性和統計自相似性來定義。雖然碎形是一個數學構造,它們同樣可以在自然界中被找到,這使得它們被劃入藝術作品的範疇。碎形在醫學、土力學、地震学和技术分析中都有应用。.
查看 连续函数和分形
分部積分法
分部積分法是種積分的技巧。它是由微分的乘法定則和微積分基本定理推導而來的。其基本思路是将不易求得结果的积分形式,转化为等价的但易于求出结果的积分形式。.
查看 连续函数和分部積分法
切比雪夫多项式
切比雪夫多项式是与棣莫弗定理有关,以递归方式定义的一系列正交多项式序列。 通常,第一类切比雪夫多项式以符号Tn表示, 第二类切比雪夫多项式用Un表示。切比雪夫多项式 Tn 或 Un 代表 n 阶多项式。 切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。 在微分方程的研究中,切比雪夫提出切比雪夫微分方程 和 相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。 这些方程是斯图姆-刘维尔微分方程的特殊情形。.
查看 连续函数和切比雪夫多项式
嵌入 (数学)
數學上,嵌入是指一個數學結構經映射包含到另一個結構中。某個物件X稱為嵌入到另一個物件Y中,是指有一個保持結構的單射f: X→Y,這個映射f就給出了一個嵌入。上述「保持結構」的準確意思,需由所討論的結構而定。一個保持結構的映射,在範疇論中稱為態射。 要表達f: X→Y是一個嵌入,有時會使用帶鉤箭號f\colon X\hookrightarrow Y。但這個帶鉤箭號有時只留作表示包含映射時用。.
查看 连续函数和嵌入 (数学)
哈密顿力学
哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.
查看 连续函数和哈密顿力学
冪
幂運算(Exponentiation),又稱指數運算,是一種數學運算,表示為 bn。其中,b 被稱為底數,而 n 被稱為指數,其結果為 b 自乘 n 次。同樣地,把 b^n 看作乘方的结果,稱為「 b 的 n 次幂」或「 b 的 n 次方」。 通常指數寫成上標,放在底數的右邊。當不能用上標時,例如在編程語言或電子郵件中,b^n通常寫成b^n或b**n,也可視為超運算,記為bn,亦可以用高德納箭號表示法,寫成b↑n,讀作“ b 的 n 次方”。 當指數為 1 時,通常不寫出來,因為運算出的值和底數的數值一樣;指數為 2 時,可以讀作“ b 的平方”;指數為 3 時,可以讀作“ b 的立方”。 bn 的意義亦可視為: 起始值 1(乘法的單位元)乘上底數(b)自乘指數(n)這麼多次。這樣定義了後,很易想到如何一般化指數 0 和負數的情況:除 0 外所有數的零次方都是 1 ;指數是負數時就等於重複除以底數(或底數的倒數自乘指數這麼多次),即: 以分數為指數的冪定義為b^.
查看 连续函数和冪
内积空间
内积空间是数学中的线性代数裡的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“夹角”和“长度”,并进一步谈论向量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作--空间,但这个词现在已经被淘汰了。在将内积空间称为--空间的著作中,“内积空间”常指任意维(可数或不可数)的欧几里德空间。.
查看 连续函数和内积空间
内部代数
在抽象代数中,内部代数是采用了集合的拓扑内部概念的特定类型的代数结构。内部代数之对于拓扑和模态逻辑 S4 如同布尔代数之对于集合论和普通命题逻辑。内部代数形成了模態代數的一个簇。.
查看 连续函数和内部代数
几何数论
在数论中,几何数论研究凸体和在n维空间整数点向量问题。几何数论于1910由赫尔曼·闵可夫斯基创立。几何数论和数学其它领域有密切的关系,尤其研究在函数分析和丢番图逼近中,对有理数向无理数逼近问题。.
查看 连续函数和几何数论
凸函数
凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,如果在其定义域C上的任意两点x,y,以及t\in ,有 也就是说,一个函数是凸的当且仅当其上境图(在函数图像上方的点集)为一个凸集。 如果对于任意的t\in (0,1)有 若對於任意的x,y,z,其中x\le z\le y,都有f(z)\leq \max\, \,\,\, \forall x,y,z \,\,\, x\leq z\leq y,則稱函數f是幾乎凸的。.
查看 连续函数和凸函数
凹函数
在數學當中,凹函數是和凸函数相對的函數。.
查看 连续函数和凹函数
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 连续函数和函数
全微分方程
全微分方程是常微分方程的一种,它在物理学和工程学中广泛使用。.
查看 连续函数和全微分方程
全期望公式
全期望公式,即设X,Y,Z为随机变量,g(·)和h(·)为连续函数,下列期望和条件期望均存在,则.
查看 连续函数和全期望公式
具體範疇
在數學裡,具體範疇一般被認為是這樣的一種範疇,其物件為結構性的集合,態射為結構保持的函數,而態射複合則為函數複合。其形式定義並不和此直觀完全吻合。 集合與函數的範疇'''Set''' 當然為一具體範疇,因為每個集合都可以被認為戴有一個「當然結構」。更重要的例子還包括了拓樸空間和連續函數的範疇'''Top'''與群和同態的範疇'''Grp'''。.
查看 连续函数和具體範疇
光滑函数
光滑函数(smooth function)在数学中特指无穷可导的函数,也就是说,存在所有有限阶导数。若一函数是连续的,则称其为C^0函数;若函数存在导函数,且其導函數連續,則稱為连续可导,記为C^1函数;若一函数n阶可导,并且其n阶导函数连续,则为C^n函数(n\geq 1)。而光滑函数是对所有n都属于C^n函数,特称其为C^\infty函数。 例如,指数函数显然是光滑的,因为指数函数的导数是指数函数本身。.
查看 连续函数和光滑函数
前推
前推(pushforward),在数学中是和拉回“对偶”的概念,可以表示一些不同但相关的一些事物。.
查看 连续函数和前推
勒内-路易·贝尔
勒内-路易·贝尔(René-Louis Baire,)是一个法国数学家。他生于法国巴黎,逝于法国尚贝里。他最有名的是贝尔纲定理,是他在1899年论文中证明的结论。 他一生疾病相伴,交替在公立中学(lycée)里教书与在大学中工作,他只能在有限的时间内对数学作出贡献。他的研究兴趣包括连续性与无理数。.
勒貝格微分定理
數學上,勒貝格微分定理是實分析的一條定理。這條定理大致是說,一個局部可積函數在幾乎每點的值,都是函數在該點為中心的無限小的球上的平均。換言之,該函數的定義域上幾乎處處都是勒貝格點。.
查看 连续函数和勒貝格微分定理
動態管理學派
傅麗德(Mary Parker Follett)。最早有系統深入研究組織有關「人」的問題的學者,公元1920年發表「新國家」(The New State),公元1924年發表「創造性的經驗」(Creative Experience),這些重要的論述後來被麥卡福(H. Metcalf)、尤偉克合編成-動態的行政一書。是少數注意行政心理因素的先驅學者。.
查看 连续函数和動態管理學派
四元數
四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0.
查看 连续函数和四元數
四色定理
四色定理是一个著名的数学定理:如果在平面上劃出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样;另一个通俗的说法是:每个无外飞地的地图都可以用不多於四种颜色来染色,而且不會有两个邻接的区域颜色相同。被称为邻接的两个区域是指它们有一段公共的边界,而不仅仅是一个公共的交点。例如右图左下角的圆形中,红色部分和绿色部分是邻接的区域,而黄色部分和红色部分则不是邻接区域。 “是否只用四种颜色就能为所有地图染色”的问题最早是由一位英国制图员在1852年提出的,被称为“四色问题”或“四色猜想”。人们发现,要证明宽松一点的“五色定理”(即“只用五种颜色就能为所有地图染色”)很容易,但四色问题却出人意料地异常困难。曾经有许多人发表四色问题的证明或反例,但都被证实是错误的。 1976年,数学家凱尼斯·阿佩爾和沃夫冈·哈肯借助电子计算机首次得到一个完全的证明,四色问题也终于成为四色定理。这是首个主要借助计算机证明的定理。这个证明一开始并不为许多数学家接受,因为不少人认为这个证明无法用人手直接验证。尽管随着计算机的普及,数学界对计算机辅助证明更能接受,但仍有数学家希望能够找到更简洁或不借助计算机的证明。.
查看 连续函数和四色定理
C (消歧義)
C是拉丁字母中的第3個字母。 在其他的領域,C可以代表:.
查看 连续函数和C (消歧義)
Continuous function
#重定向 连续函数.
皮亚诺存在性定理
在数学中, 特别是在常微分方程的研究中,皮亚诺存在定理(又称为皮亚诺定理、柯西-皮亚诺定理)是以数学家朱塞佩·皮亚诺的名字命名的一个定理。这个定理是常微分方程研究中的基本定理之一,保证了微分方程在一定的初始条件下的解的存在性。.
矩阵指数
矩阵指数是方块矩阵的一种矩阵函数,与指数函数类似。矩阵指数给出了矩阵李代数与对应的李群之间的关系。 设X为n×n的实数或复数矩阵。X的指数,用eX或exp(X)来表示,是由以下幂级数所给出的n×n矩阵: 以上的级数总是收敛的,因此X的指数是定义良好的。注意,如果X是1×1的矩阵,则X的矩阵指数就是由X的元素的指数所组成的1×1矩阵。.
查看 连续函数和矩阵指数
离散信号
离散信号是在连续信号上采样得到的信号。与连续信号的自变量是连续的不同,离散信号是一个序列,即其自变量是“离散”的。这个序列的每一个值都可以被看作是连续信号的一个采样。由于离散信号只是采样的序列,并不能从中获得采样率,因此采样率必须另外存储。以时间为自变量的离散信号为离散时间信号。 离散信号并不等同于数字信号。数字信号不仅是离散的,而且是经过量化的。即,不仅其自变量是离散的,其值也是离散的。因此离散信号的精度可以是无限的,而数字信号的精度是有限的。而有着无限精度,亦即在值上连续的离散信号又叫抽样信号。所以离散信号包括了数字信号和抽样信号。 实际的离散信号都是从连续信号采样而来,由此引出了采样定理。.
查看 连续函数和离散信号
离散化
在数学中,离散化关注连续模型和等式转化为离散形式的过程。离散化通常是处理对象使其易于数值计算机进行数值评估和处理的第一步。为适合计算机处理,额外还需要名为量化的过程。.
查看 连续函数和离散化
离散数学
离散数学(Discrete mathematics)是数学的几个分支的总称,研究基于离散空间而不是连续的数学结构。与連續变化的实数不同,离散数学的研究对象——例如整数、图和数学逻辑中的命题——不是連續变化的,而是拥有不等、分立的值。因此离散数学不包含微积分和分析等「连续数学」的内容。离散对象经常可以用整数来枚举。更一般地,离散数学被视为处理可数集合(与整数子集基数相同的集合,包括有理数集但不包括实数集)的数学分支。 。但是,“离散数学”不存在准确且普遍认可的定义。实际上,离散数学经常被定义为不包含连续变化量及相关概念的数学,甚少被定义为包含什么内容的数学。 离散数学中的对象集合可以是有限或者是无限的。有限数学一词通常指代离散数学处理有限集合的那些部分,特别是在与商业相关的领域。 隨著電腦科學的飛速發展,離散數學的重要性則日益彰顯。它為許多資訊科學課程提供了數學基礎,包括資料結構、演算法、資料庫理論、形式語言與作業系統等。如果沒有離散數學的相關數學基礎,學生在學習上述課程中,便會遇到較多的困難。此外,離散數學也包含了解決作業研究、化學、工程學、生物學等眾多領域的數學背景。由於運算對象是離散的,所以電腦科學的數學基礎基本上也是離散的。我們可以說電腦科學的數學語言就是離散數學。人們會使用離散數學裡面的槪念和表示方法,來研究和描述電腦科學下所有分支的對象和問題,如電腦運算、程式語言、密碼學、自動定理証明和軟件開發等。相反地,计算机的應用使離散數學的概念得以應用於日常生活當中(如運籌學)。 虽然离散数学的主要研究对象是离散对象,但是连续数学的分析方法往往也可以采用。数论就是离散和连续数学的交叉学科。同样的,有限拓扑(对有限拓扑空间的研究)从字面上可看作离散化和拓扑的交集。.
查看 连续函数和离散数学
积分
积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.
查看 连续函数和积分
积分第一中值定理
积分第一中值定理的内容为: 设 f:\rightarrow \mathbf R 为一连续函数,g:\rightarrow \mathbf R 不改变符号,那么存在一点 \xi\in 使得 事实上,可以证明,上述的中值点\xi必能在开区间(a,b)内取得,见下方中值点在开区间内存在的证明。.
科赫曲線
科赫曲線是一種zh:分形; zh-hans:分形; zh-hant: 碎形-。其形態似雪花,又稱科赫雪花、雪花曲線。其豪斯多夫維是\log 4/\log 3。 它最早出現在海里格·冯·科赫的論文《關於一條連續而無切線,可由初等幾何構作的曲線》(1904年,法語原題:Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire)。 科赫曲線是de Rham曲線的特例。 給定線段AB,科赫曲線可以由以下步驟生成:.
查看 连续函数和科赫曲線
空集
集是不含任何元素的集合,數學符號為\empty、\varnothing或\。.
查看 连续函数和空集
等度连续
在数学分析中,一个函数集合被称为等度连续的,如果其中的函数都是连续的并且当自变量变动时,它们的取值都在“相同程度”的范围中浮动。一般来说,集合里的函数是有限个或可数无限个。 等度连续最早出现在阿尔泽拉-阿斯科利定理中Arzelà, Cesare (1895), "Sulle funzioni di linee", Mem.
查看 连续函数和等度连续
等价类
在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).
查看 连续函数和等价类
等值曲面
等值曲面是一種曲面。在空間裏,假若,每一點都有一個設定的值。這值可能是壓力、溫度、速度、密度。那麼,一個等值曲面所包含的每一個點,其設定值是一樣的。換句話說,以三維空間為定義域的連續函數,其每一個水平集都是一個等值曲面。 應用計算機圖形學,我們可以簡易地顯示出等值曲面的線框圖或明暗圖。在計算流體力學裏,數據視覺化方法時常會用等值曲面來表示流體(液體或氣體)流過物體時的瞬時狀態。這是工程師研究發展新科技的一個利器。他們可以觀察一個系統在任何時間的狀態,從而發現其中奧秘。例如,等值曲面可以代表超音速飛行的單獨震波。或者,我們可以製造幾個等值曲面來代表,當空氣流過飛機翅膀時,隨著時間演變的一系列壓力值。 面對著一大堆三維空間的數據,一個明智又受歡迎的選擇,就是採用等值曲面為數據視覺化的主要形式。簡單的多邊形造型渲染的等值曲面,不需要用到很多的中央處理單元的資源,就能夠迅速的計算出所要顯示的圖形。 在醫學影像裏,三維的電腦斷層掃描用等值曲面來代表一個密度值區的部位。這樣,我們可以將內部器官、骨頭、等等,這些結構視覺化。.
查看 连续函数和等值曲面
索伯列夫空间
数学上,一个索伯列夫空间是一个由函数组成的賦範向量空間,对于某个给定的p ≥ 1,它对一个函数f和它的直到某个k阶导数加上有限''Lp''范数的这个条件。它以前苏联数学家舍蓋·索伯列夫來命名。.
查看 连续函数和索伯列夫空间
索霍茨基-魏尔斯特拉斯定理
The Sokhatsky–Weierstrass 定理 (亦作Sokhotsky–Weierstrass 定理, Sokhotski–Plemelj formula, 或 Weierstrass theorem(勿与 various other theorems called the "Weierstrass theorem"混淆)是複分析中的一个定理,用于计算很多问题中出现的柯西主值。物理学问题中很多见,但鲜有其命名的引用。该定理源自Yulian Sokhotski, Karl Weierstrass和Josip Plemelj。.
紧空间
在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.
查看 连续函数和紧空间
紧致开拓扑
在数学中,紧致开拓扑是定义在两个拓扑空间之间的所有连续映射的集合上的一种拓扑。紧致开拓扑是函数空间上的常用拓扑之一,在同伦理论和泛函分析中有应用。.
查看 连续函数和紧致开拓扑
累积分布函数
累积分布函数,又叫分布函数,是概率密度函數的积分,能完整描述一個實随机变量X的概率分佈。一般以大寫“CDF”(Cumulative Distribution Function)标记。 對於所有實數x ,累积分布函数定義如下:.
查看 连续函数和累积分布函数
線性泛函
在線性代數中,線性泛函是指由向量空間到對應純量域的線性映射。在 \mathbbR^n ,若向量空間的向量以列向量表示;線性泛函則會以行向量表示,在向量上的作用則為它們的矩陣積。一般地,如果 V 是域 k 上的向量空間,線性泛函 f 是一个从 V 到 k 的函数,它有以下的线性特性: 所有從 V 到 k 的線性泛函集合, 記為 \operatorname_k(V,k), 本身即為一向量空間,稱為 V 的 (代數)對偶空間。.
查看 连续函数和線性泛函
縱深作戰
縱深作戰(Deep battle),指的是陸戰上一種以攻擊為主要目標的戰術。對前線及後方的敵方部隊發動同時且連續的攻擊,以突破敵方防禦為目標,並在那之後包圍殲滅敵軍,便是其主要理論。此一戰術需要大量的戰力,以足夠的縱長對前線敵方部隊進行全方面的進攻,同時火炮與轟炸機對後方的敵方部隊展開轟炸,另外在可能的情況下,空降部隊則空投至後方要道處來切斷敵方退路。蘇聯的圖哈切夫斯基元帥便是縱深戰術(另譯:縱深戰略)得以理論化的重要人物。.
查看 连续函数和縱深作戰
纤维丛
纖維--束(fiber bundle 或 fibre bundle)又稱纖維--叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射 \pi:E\rightarrow B E 和乘積空間 B × F 的局部類似性可以用映射 \pi 來說明。也就是說:在每個 E 的局部空間 U,都存在一個相同的F(F 稱作纖維空間),使得 \pi 限制在 U 上時 與直积空间 B × F 的投影 P:B\times F\mapsto B,\quad P(b, f).
查看 连续函数和纤维丛
纤维化 (数学)
数学中,尤其是代数拓扑,一个纤维化(fibration)是一个连续映射 对任何空间满足同伦提升性质。纤维丛(在仿紧底上)构成一类重要例子。在同伦论中任何映射和纤维化“一样好”——即任何映射可以分解为到“映射道路空间”的同伦等价复合一个纤维化(参见同伦纤维)。 对 CW复形(或等价地,只用多方体 In)有同伦提升性质的纤维化称为塞尔纤维化,让-皮埃尔·塞尔在其博士论文中部分提出了这个概念。这篇论文牢固地在代数拓扑学中建立了谱序列的使用,并将纤维丛与纤维化的概念从层中清晰地分离出来(这两个概念在早期让·勒雷的处理中是不清晰的)。因为一个层(想象为一个艾达尔空间)可以视为一个局部同胚,那时候这些概念是密切相连的。 “纤维”由定义是 E 的子空间,是 B 中一个点 b 的逆像。如果底空间 B 是道路连通的,有定义可以推出 B 中两个不同点 b1 和 b2 的纤维是同伦等价的。从而我们通常就说纤维 F。纤维化不必有定义更受限的纤维丛时的局部笛卡儿乘积结构,但弱一点仍可从纤维到纤维移动。塞尔谱序列的一个主要令人满意的性质是说明了底 B 的基本群在全空间 E 的同调上的作用。 乘积空间的投影映射容易看出是一个纤维化。纤维丛有局部平凡化性质——这样的笛卡儿乘积结构在 B 上局部存在,就通常足够证明一个纤维丛是一个纤维化。更确切地,如果在 B 一个可数开覆盖上有局部平凡化,则丛是纤维化。仿紧空间上任何覆盖——比如任何度量空间,有一个棵树加细,所以任何这样空间上的纤维丛是纤维化。局部平凡化也蕴含了良定义的“纤维”的存在性(差一个同胚),至少在 B 的每个连通分支上。.
级数
在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.
查看 连续函数和级数
纳维-斯托克斯方程
纳维尔-斯托克斯方程(Navier-Stokes equations),以克劳德-路易·纳维(Claude-Louis Navier)和乔治·斯托克斯命名,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。 因为纳维尔-斯托克斯方程可用于描述大量对学术研究和经济生活中重要现象的物理过程,它们是有很重要的研究价值。它们可以用于模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。 纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量(譬如速度和壓力)的关系,而寻求建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。 这表示对于给定的物理问题,比如用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其速度很小(低雷诺数)。 对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。 虽然紊流是日常经验中就可以遇到的,但这类非线性问题极难求解。克雷数学学院于2000年5月21日设立了一个$1,000,000的大奖,奖励任何对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。.
绝对连续
在数学中,绝对连续是一个光滑性质,比连续和一致连续都要严格。函数的绝对连续和测度的绝对连续都有定义。.
查看 连续函数和绝对连续
维纳过程
数学中,维纳过程(Wiener process)是一种连续时间随机过程,得名于诺伯特·维纳。由于与物理学中的布朗运动有密切关系,也常被称为“布朗运动过程”或简称为布朗运动。维纳过程是莱维过程(指左极限右连续的平稳独立增量随机过程)中最有名的一类,在纯数学、应用数学、经济学与物理学中都有重要应用。 维纳过程的地位在纯数学中与在应用数学中同等重要。在纯数学中,维纳过程导致了对连续鞅理论的研究,是刻画一系列重要的复杂过程的基本工具。它在随机分析、扩散过程和位势论领域的研究中是不可或缺的。在应用数学中,维纳过程可以描述高斯白噪声的积分形式。在电子工程中,维纳过程是建立噪音的数学模型的重要部分。控制论中,维纳过程可以用来表示不可知因素。 维纳过程和物理学中的布朗运动有密切关系。布朗运动是指悬浮在液体中的花粉微小颗粒所进行的无休止随机运动。维纳运动也可以描述由福克-普朗克方程和郎之万方程确定的其他随机运动。维纳过程构成了量子力學的严谨路徑積分表述的基础(根据费曼-卡茨公式,薛定谔方程的解可以用维纳过程表示)。金融数学中,维纳过程可以用于描述期权定价模型如布莱克-斯科尔斯模型。.
查看 连续函数和维纳过程
罗尔定理
罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,叙述如下:如果函数f(x)满足.
查看 连续函数和罗尔定理
群
在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.
查看 连续函数和群
環圈
數學中的環圈(loop)是拓扑空间X上的连续函数f,其定義域為单位区间I.
查看 连续函数和環圈
点集拓扑学
点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。它研究拓扑空间以及定义在其上的数学结构的基本性质。这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。它的表述形式大概在1940年左右就已经成文化了。通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。.
查看 连续函数和点集拓扑学
熵 (信息论)
在信息论中,熵(entropy)是接收的每条消息中包含的信息的平均量,又被稱為信息熵、信源熵、平均自信息量。这里,“消息”代表来自分布或数据流中的事件、样本或特征。(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大。)来自信源的另一个特征是样本的概率分布。这里的想法是,比较不可能发生的事情,当它发生了,会提供更多的信息。由于一些其他的原因,把信息(熵)定义为概率分布的对数的相反数是有道理的。事件的概率分布和每个事件的信息量构成了一个随机变量,这个随机变量的均值(即期望)就是这个分布产生的信息量的平均值(即熵)。熵的单位通常为比特,但也用Sh、nat、Hart计量,取决于定义用到对数的底。 采用概率分布的对数作为信息的量度的原因是其可加性。例如,投掷一次硬币提供了1 Sh的信息,而掷m次就为m位。更一般地,你需要用log2(n)位来表示一个可以取n个值的变量。 在1948年,克劳德·艾尔伍德·香农將熱力學的熵,引入到信息论,因此它又被稱為香农熵。.
查看 连续函数和熵 (信息论)
特徵標理論
在數學裡,尤其是在群表示理論裡,一個群表示的特徵標(character)是指一個將群的每個元素連結至表示空間這個域內的每個元素之函數。特徵標蘊藏著群的許多重要性質,且因此可以用來做群的研究。 特徵標理論是對有限簡單群分類的一個有重要的工具。在范特-湯普遜定理證明接近一半的地方會有一個用到特徵標的複雜計算。另外還有一些較簡單但一樣重要的結論需用在特徵標理論,如伯恩賽德定理及理查·布勞爾和鈴木通夫所證出之定理,此定理表示有限簡單群不會有一個為廣義四元群的西洛2-子群。.
查看 连续函数和特徵標理論
狄利克雷卷積
在算術函數集上,可以定義一種二元運算,使得取這種運算為乘法,取普通函數加法為加法,使得算術函數集為一個交換環。其中一種這樣的運算便是狄利克雷卷積。它和一般的卷積有不少相類之處。 對於算術函數f,g,定義其狄利克雷卷積(f * g)(n).
查看 连续函数和狄利克雷卷積
狄利克雷函数
利克雷函数(Dirichlet function)是一个定义在实数范围上、值域为的函数,是處處不連續函數。 当.
查看 连续函数和狄利克雷函数
狄利克雷问题
数学中,狄利克雷问题(Dirichlet problem)是寻找一个函数,使其为给定区域内一个指定的偏微分方程(PDE)的解,且在边界上取预定值。 对许多偏微分方程,狄利克雷问题都可解,但最初是对拉普拉斯方程提出来的。在这种情形下问题可如下表述: 这个条件称为狄利克雷边界条件。最主要的问题是证明解的存在性,因惟一性可利用证明。.
查看 连续函数和狄利克雷问题
狄拉克δ函数
在科學和數學中,狄拉克函數或簡稱函數(譯名德爾塔函數、得耳他函數)是在實數線上定義的一個廣義函數或分佈。它在除零以外的點上都等於零,且其在整個定義域上的積分等於1。函數有時可看作是在原點處无限高、无限细,但是总面积为1的一個尖峰,在物理上代表了理想化的質點或点电荷的密度。 從純數學的觀點來看,狄拉克函數並非嚴格意義上的函數,因為任何在擴展實數線上定義的函數,如果在一個點以外的地方都等於零,其總積分必須為零。函數只有在出現在積分以內的時候才有實質的意義。根據這一點,函數一般可以當做普通函數一樣使用。它形式上所遵守的規則屬於的一部分,是物理學和工程學的標準工具。包括函數在內的運算微積分方法,在20世紀初受到數學家的質疑,直到1950年代洛朗·施瓦茨才發展出一套令人滿意的嚴謹理論。嚴謹地來說,函數必須定義為一個分佈,對應於支撐集為原點的概率測度。在許多應用中,均將視為由在原點處有尖峰的函數所組成的序列的極限(),而序列中的函數則可作為對函數的近似。 在訊號處理上,函數常稱為單位脈衝符號或單位脈衝函數。δ函數是對應於狄拉克函數的離散函數,其定義域為離散集,值域可以是0或者1。.
查看 连续函数和狄拉克δ函数
白雜訊
白噪声,是一種功率譜密度為常數的隨機信號或随机过程。即,此信號在各個频段上的功率是一樣的。由于白光是由各種頻率(颜色)的单色光混合而成,因而此信号的這種具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。相对的,其他不具有这一性质的噪声信号被称为有色噪声。 理想的白噪声具有無限頻寬,因而其能量是無限大,這在现实世界是不可能存在的。实际上,我們常常將有限頻寬的平整訊號視為白噪声,以方便进行數學分析。.
查看 连续函数和白雜訊
Davenport–Schinzel序列
在组合数学中,Davenport–Schinzel 序列是指对任意两个符号交替出现的次数作出限制的序列。Davenport–Schinzel 序列其最大长度的界等于序列中不同符号的数目乘以一个渐近意义上很小但并非常数的因子,该因子取决于前述的交替次数上限。Davenport–Schinzel 序列最早是由和于 1965 年为研究线性微分方程而定义的。该序列及其长度的渐近界继 一文之后成为了离散几何与几何算法分析领域的标准工具。.
随机变量
給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.
查看 连续函数和随机变量
随机变量的收敛
概率论中有若干关于随机变量收敛的定义。研究一列随机变量是否会收敛到某个极限随机变量是概率论中的重要内容,在统计概率和随机过程中都有应用。在更广泛的数学领域中,随机变量的收敛被称为随机收敛,表示一系列本质上随机不可预测的事件所发生的模式可以在样本数量足够大的时候得到合理可靠的预测。各种不同的收敛定义实际上是表示预测时不同的刻画方式。.
查看 连续函数和随机变量的收敛
芽 (数学)
数学上,一个芽(germ),或称芽胚,是从一个拓扑空间到另一个的连续函数的一个等价类(例如从实直线到自身),其中定义域中的一个点x0被特别选出。两个函数f和g是等价的,当且仅当存在一个x0的开邻域U,使得对所有x ∈ U,等式f(x).
查看 连续函数和芽 (数学)
莎湖陆棚
莎湖陆棚(Sahul Shelf;),又譯萨赫尔陆棚或萨赫勒陆棚,是澳大利亚洲的延伸,位處於澳大利亚大陆海岸以外,新几内亚及其附属岛屿是这个陆棚的一部分。 这核心周围,本地区的其馀部分则是陆棚外缘一系列连续褶皱运动逐步形成的,更强烈和广泛的造山幕发生于中生代时期。位于许多板块的会合处,故而地质运动颇为剧烈,火山活动相当的活跃,整個地区各处散布著二百多座火山,其中约七十座在印度尼西亚,过去一百五十年间曾喷发过。在四个主要冰期,当时海平面比现在低过一百公尺(300呎),巽他与莎湖两陆棚露出海面,陆棚地面大河奔流,当时的动物和古人类可藉陆桥穿越此处。当一萬七千年前冰盖融解後,巽他陆棚一部分被淹没,山脉和较高的地方成了浅海浸入的岛屿或半岛。 莎湖陆棚的主體又名帝汶海莎湖陸棚,面積有31萬平方公里,從澳大利亚往西北方延伸,形成現時帝汶海的海床,直達帝汶島,直到帝汶海槽為止開始向下沉。莎湖陆棚的另一部分阿拉弗拉陸棚的面積有93萬平方公里,從澳大利亞的北岸延伸,形成了阿拉弗拉海的海床,直到新畿內亞。莎湖陆棚有時亦包括羅雷依陸棚,面積有31萬平方公里,從澳大利亞的西北岸往印度洋延伸,最南直到西北峽。.
查看 连续函数和莎湖陆棚
莫雷拉定理
莫雷拉定理是一个用来判断函数是否全纯的定理。 如果f是一个连续的--值函数,定义在复平面上的开集D内,且对于所有D内的闭曲线C,都满足 则f在D内是全纯的。 莫雷拉定理的假设等于是说f在D内具有原函数。 该定理的逆命题不一定成立。全纯函数在定义域内并不一定有原函数,除非加上更多条件。例如,柯西积分定理说明全纯函数沿着一条闭曲线的路径积分为零,只要函数的定义域是单连通的。.
查看 连续函数和莫雷拉定理
螺旋曲面
螺旋曲面可視為一個線段沿著垂直於其中點的直線,勻速螺旋上升時掃過的曲面,可視為是螺旋線的立體版本,是在平面及懸鏈曲面後,第三個已知的极小曲面。.
查看 连续函数和螺旋曲面
非線性系統
在物理科學中,如果描述某個系統的方程其輸入(自變數)與輸出(應變數)不成正比,則稱為非線性系統。由於自然界中大部分的系統本質上都是非線性的,因此許多工程師、物理學家、數學家和其他科學家對於非線性問題的研究都極感興趣。非線性系統和線性系統最大的差別在於,非線性系統可能會導致混沌、不可預測,或是不直觀的結果。 一般來說,非線性系統的行為在數學上是用一組非線性聯立方程來描述的。非線性方程裡含有由未知數構成的非一次多項式;換句話說,一個非線性方程並不能寫成其未知數的線性組合。而非線性微分方程,則是指方程裡含有未知函數及其導函數的乘冪不等於一的項。在判定一個方程是線性或非線性時,只需考慮未知數(或未知函數)的部分,不需要檢查方程中是否有已知的非線性項。例如在微分方程中,若所有的未知函數、未知導函數皆為一次,即使出現由某個已知變數所構成的非線性函數,我們仍稱它是一個線性微分方程。 由於非線性方程非常難解,因此我們常常需要以線性方程來近似一個非線性系統(線性近似)。這種近似對某範圍內的輸入值(自變數)是很準確的,但線性近似之後反而會無法解釋許多有趣的現象,例如孤波、混沌和奇點。這些奇特的現象,也常常讓非線性系統的行為看起來違反直覺、不可預測,或甚至混沌。雖然「混沌的行為」和「隨機的行為」感覺很相似,但兩者絕對不能混為一談;也就是說,一個混沌系統的行為絕對不是隨機的。 舉例來說,許多天氣系統就是混沌的,微小的擾動即可導致整個系統產生各種不同的複雜結果。就目前的科技而言,這種天氣的非線性特性即成了長期天氣預報的絆腳石。 某些書的作者以非線性科學來代指非線性系統的研究,但也有人不以為然:.
查看 连续函数和非線性系統
行列式
行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
查看 连续函数和行列式
西莫恩·德尼·泊松
西莫恩·德尼·泊松男爵(Siméon Denis Poisson,法语,),法国数学家、几何学家和物理学家。.
覆疊空間
在拓撲學中,拓撲空間X的覆疊空間是一對資料(Y,p),其中Y是拓撲空間,p: Y \to X是連續的滿射,並存在X的一組開覆盖 使得對每個U \in \mathcal,存在一個離散拓撲空間F及同胚:\phi_U: U \times F \simeq p^(U),而且p \circ \phi_U: U \times F \to U是對第一個坐標的投影。 滿足上述性質的p: Y \to X稱為覆疊映射。當X連通時,F的基數是個常數,稱為覆疊的次數或重數。 空間X的覆疊構成一個範疇\mathbf_X,其對象形如p: Y \to X,從p: Y \to X到q: Z \to X態射是連續映射f: Y \to Z,且q \circ f.
查看 连续函数和覆疊空間
马来群岛
來群島(Malay Archipelago)過去曾有「東印度」、「印度群島」、「印度尼亞西群島」等名稱。是一组散布于印度洋和太平洋上,位於东南亚大陸和澳大利亚之间的群島。該群島由2万多个岛屿组成,是世界上面积最大的群岛。群岛上的国家有印度尼西亚、菲律宾、马来西亚(东马) 、文莱、新加坡、东帝汶"." Encyclopedia Britannica.
查看 连续函数和马来群岛
諾特環
諾特環是抽象代數中一類滿足升鏈條件的環。希爾伯特首先在研究不變量理論時證明了多項式環的每個理想都是有限生成的,隨後埃米·諾特從中提煉出升鏈條件,諾特環由此命名。.
查看 连续函数和諾特環
魏尔斯特拉斯函数
在数学中,魏尔斯特拉斯函数(Weierstrass function)是一类处处连续而处处不可导的实值函数。魏尔斯特拉斯函数是一种无法用笔画出任何一部分的函数,因为每一点的导数都不存在,画的人无法知道每一点该朝哪个方向画。魏尔斯特拉斯函数的每一点的斜率也是不存在的。魏尔斯特拉斯函数得名于十九世纪的德国数学家卡尔·魏尔斯特拉斯(Karl Theodor Wilhelm Weierstrass; 1815–1897)。 历史上,魏尔斯特拉斯函数是一个著名的数学反例。魏尔斯特拉斯之前,数学家们对函数的连续性认识并不深刻。许多数学家认为除了少数一些特殊的点以外,连续的函数曲线在每一点上总会有斜率。魏尔斯特拉斯函数的出现说明了所谓的“病态”函数的存在性,改变了当时数学家对连续函数的看法。.
魏尔斯特拉斯逼近定理
魏尔斯特拉斯逼近定理有两个:.
變數
在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.
查看 连续函数和變數
调和测度
數學中,調和測度是調和函數理論中出現的一個概念。给定了一个解析函数的模在一个区域 D 边界上的界,能用调和测度去估计函数在区域内部的模。在一个非常相关的领域,一个伊藤扩散 X 的调和测度描绘了 X 撞击 D 边界的分布。.
查看 连续函数和调和测度
賦範向量空間
在数学中,赋范向量空间是具有“长度”概念的向量空间。是通常的欧几里得空间 Rn 的推广。Rn中的长度被更抽象的范数替代。“长度”概念的特征是:.
查看 连续函数和賦範向量空間
賦環空間
賦環空間 (ringed space) 在數學上係指一個拓撲空間配上一個交換環層,其中特別重要的一類是局部賦環空間。此概念在現代的代數幾何學佔重要角色。.
查看 连续函数和賦環空間
费曼-卡茨公式
费曼-卡茨公式是一个数学公式与定理,得名于理查德·费曼和马克·卡茨,将随机过程和抛物型偏微分方程结合在一起。使用费曼-卡茨公式可以通过将某些抛物型偏微分方程的解写成随机过程的条件期望的方式,从而将求此类微分方程的数值解转化为模拟随机过程的路径。反过来,此一类随机过程的期望可以通过确定性的计算(偏微分方程求解)得到。考虑偏微分方程: 其中的 \mu,\ \sigma,\ \psi, V 是已知的函数, \ T 是给定的参数, u:\mathbb\times\to\mathbb 是所求的解函数。费曼-卡茨公式声明,这个偏微分方程的解函数可以写成某个随机过程的(条件)期望: 其中\ X.
查看 连续函数和费曼-卡茨公式
黎曼-勒贝格定理
在数学分析中,黎曼-勒贝格定理(或黎曼-勒贝格引理、黎曼-勒贝格积分引理)是一个傅里叶分析方面的结果。这个定理有两种形式,分别是关于周期函数(傅里叶理论中关于傅里叶级数的方面)和关于在一般实数域\mathbb上定义的函数(傅里叶变换的方面)。在任一种形式下,定理都说明了可积函数在傅里叶变换后的结果在无穷远处趋于0。这个结果也可以适用于局部紧致的阿贝尔群。.
黎曼积分
在实分析中,由黎曼创立的黎曼积分(Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。.
查看 连续函数和黎曼积分
黑林格-特普利茨定理
黑林格-特普利茨定理是數學泛函分析的定理,以德國數學家恩斯特·黑林格和奧托·特普利茨命名。.
达布定理
在实分析中,达布定理得名于让·加斯东·达布。达布定理说明所有的实导函数(是某个实值函数的导数的函数)都具有介值性质:任一个区间关于实导函数的值域仍是区间。即是说,若 f 为可导函数,则对任意区间I,f′(I) 仍为区间。 当函数 f 是一阶连续可导函数(C1)时,由介值定理,达布定理显然成立。当导函数 f′ 不连续时,达布定理说明 f′ 仍具有介值性质。.
查看 连续函数和达布定理
连续映射定理
在概率论中,连续映射定理指出,连续函数是具有保持极限的性质的,即使他们的参数是一列随机变量。 一个海涅定义下的连续函数是指将收敛数列映为收敛数列的函数:如果 x_n\rightarrow x 那么 (x_n)\rightarrow g(x)。连续映射定理指出,如果我们把确定的数列\替换为一列随机变量\,把通常的收敛定义替换为某种随机变量的收敛定义,那么这个命题依然成立。 这个定理第一次由证明,因此有时又被称作Mann–Wald定理。.
查看 连续函数和连续映射定理
迪尼定理
在数学中,迪尼定理叙述如下:设 X 是一个紧致的拓扑空间, f(n) 是 X 上的一个单调递增的连续实值函数列(即使得对任意 n 和 X 中的任意 x 都有\scriptstyle f_n(x) \leq f_(x))。如果这个函数列逐点收敛到一个连续的函数 f ,那么这个函数列一致收敛到 f 。这个定理以意大利数学家乌利塞·迪尼命名。 对于单调递减的函数列,定理同样成立。这个定理是少数的由逐点收敛可推出一致收敛的例子之一,原因是由单调性这个更强的条件。 注意定理中的 f 一定要是连续的,否则可以构造反例。比如说在区间 上的函数列 。这是一个单调递减函数,逐点收敛到函数 f :当 x 属于.
查看 连续函数和迪尼定理
迷你影集
迷你影集(),又稱迷你劇集或電視連續短劇,是一種在設定上集數甚少的連續性電視劇。迷你影集之下又衍生出「限定劇」()及「事件劇」()等電視劇種類。 迷你影集與電視連續劇最大的不同是其集數已預先設定,且播出日期通常不會延續超過一年。.
查看 连续函数和迷你影集
霍普夫不变量
在数学特别是代数拓扑学中,霍普夫不变量(Hopf invariant)是球面之间某些映射的一个同伦不变量。 __toc__.
查看 连续函数和霍普夫不变量
范畴论
疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.
查看 连续函数和范畴论
阻碍理论
在数学中,阻碍理论(obstruction theory)是两个不同数学理论的名字,两者都导出了上同调不变量。.
查看 连续函数和阻碍理论
閉圖像定理
閉圖像定理是數學中泛函分析的一條定理。.
查看 连续函数和閉圖像定理
開映射和閉映射
在數學的拓撲學中,開映射是兩個拓撲空間之間的映射,使得任何開集的像都是開集;閉映射是兩個拓撲空間之間的映射,使得任何閉集的像都是閉集。所以f: X → Y是開映射(閉映射),如果X中的開集(閉集)在f下的像都為Y的開集(閉集)。 開映射和閉映射的定義中,並不要求映射連續。與之比較,映射f: X → Y為連續映射的定義,是所有Y的開集的原像為X的開集,也可等價地定義為所有Y的閉集的原像為X的閉集。雖然開映射和閉映射的定義,似較連續映射為自然,但在拓撲學中其重要性不及連續映射。.
查看 连续函数和開映射和閉映射
關係子句
係子句(relative clause),又叫关系从句、关系分句或定语从句,是关系词(relative word)引导的子句,其句法功能主要是做名词的定语,但也可以起其他作用,如相当于状语从句等。 在不同的語言中,關係子句可透過不同的方式來構造,像在英語等許多歐洲語言中,關係子句是透過關係代詞(relative pronoun)這一類特殊的代詞來構造的;在日語、滿語等一些東北亞語言中,關係子句可透過主動詞的詞形變化來構造;像希伯來語等一些語言則可透過所謂的關係詞(relativizer)來構造關係子句;此外,有些語言則可直接藉由語序來構造關係子句。另像英語等一些語言則可透過不只一種方法來構造關係子句。.
查看 连续函数和關係子句
蒼空騎士~飛向CODA~
《蒼空騎士~飛向CODA~》(Solatorobo それからCODAへ,Solatorobo: Red the Hunter),是由日本遊戲廠商南夢宮萬代(前身BANDAI)於2010年10月所發行的一款全3D動作角色扮演遊戲,使用的平台為Nintendo DS,與之前在SONY的PlayStation平台上所發行的《貓犬協奏曲》一樣同屬於以獸人做為種族以及角色設定的遊戲,且兩個遊戲的世界觀完全相同。而很多購入本遊戲的愛好者中有一大部分即為當年接觸過貓犬協奏曲的老玩家。 本款遊戲也是開發公司日本CyberConnect2的十五週年紀念作品,從開始構思到完成共計花費了十年的時間,其中光是相關開發就花去三年。三年的開發中用於遊戲企劃的時間就有整整一年。另外使用於遊戲中的相關人物、背景、種族、機械、城市、怪物等相關設定插畫與原畫就佔了1000張以上。 除了遊戲自身所登場的角色群之外,於1998年同一家公司所開發,一樣由BANDAI所發行的前作品《貓犬協奏曲》,裡面之重要角色以及世界設定均有再次的出現於主要劇情中或分支委託任務,成為本作主角冒險故事和世界中的一部分。 另外,本作品亦承續了前一部同屬性的獸人RPG作品「貓犬協奏曲」中的主要系統架構及相關要素,並利用現今容量更加龐大的任天堂DS作為遊戲平台,使其遊戲可玩度和內容大幅上升。 在日本地區,該款遊戲的售出後顧客滿意程度高達百分之九十七點四,且遊戲上市時於電視上所播放的一系列宣傳廣告小短篇還獲得金氏世界紀錄的認證,成為日本第一款廣告被世界紀錄承認的作品而名留歷史。.
量 (物理)
量,是作为幅度和重复次数出现的一种属性。它和品质、实质、变化、关系一样是事物的一种基本类别。数量的概念始于份额,也就是可以带有数量的实体。作为一个基本的詞彙,数量被用于指代事物的任何量化的属性或特征。有些量由其本质决定(譬如,数),而另外一些是作為對状态的描述(属性,尺寸,特征),譬如重和轻,长和短,宽和窄,大和小,多和少。 量的两个基本分类,幅度和重次(或者数字),蘊涵了连续和离散的重大区别。 属于重次的量是离散的,可以分解成不可再分的单位,譬如集合名詞:军队,舰队,羊群,政府,公司,聚会,人群,合唱团,数。属于幅度的是连续的,可以一直分解下去,包括所有非集合名词:宇宙,物质,能量,液体,材料。 和对其本质和分类的分析一起,量的问题涉及很多密切相关的课题,譬如幅度和重次的关系,量纲,等式,比例,测量,测量单位,数和數系,数的类型和它们的关系。 这样,量是存在于幅度和重次的范围内的一种属性。质量、时间、距离、热和角度都是量化属性的常见例子。连续量的两个幅度,可以互相用一个比例表达,而它是一个实数。.
查看 连续函数和量 (物理)
量子態
在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.
查看 连续函数和量子態
量化 (数理逻辑)
在语言和逻辑中,量化是指定一个谓词的有效性的广度的构造,就是说指定谓词在一定范围的事物上成立的程度。产生量化的语言元素叫做量词。结果的句子是量化的句子,我们称我们已经量化了这个谓词。量化在自然语言和形式语言中都使用。在自然语言中,量词的例子有“所有”、“某些”;“很多”、“少量”、“大量”也是量词。在形式语言中,量化是从旧公式产生新公式的公式构造子(constructor)。语言的语义指定了如何把这个构造子解释为一个有效性的广度。量化是变量约束操作的实例。 在谓词逻辑的两类基本量化是全称量化和存在量化。这些概念被更详细的叙述于在单独文章中;下面我们讨论适用于二者的特征。其他种类的量化包括唯一量化。.
自反空间
自反空间是泛函分析中的概念。如果一个巴拿赫空间(或更一般地,一个局部凸拓扑向量空间)的连续对偶空间的连续对偶空间“是”其自身,就称这个空间为自反空间。其中的“是”表示两者无论作为线性向量空间还是作为拓扑空间都是等价的。自反的巴拿赫空间常常可以通过它们的集合特性来刻画。.
查看 连续函数和自反空间
里斯表示定理
在泛函分析中有多个有名的定理冠以里斯表示定理(Riesz representation theorem),它们是为了纪念匈牙利数学家弗里杰什·里斯。.
查看 连续函数和里斯表示定理
良态
良态是数学(以及其他相关学科)中对数学对象相对性质的一种描述。它并没有固定和规范的定义,使用时往往取决于相应数学研究的关注范围、所使用的数学工具和手段、甚至是各学科偏好,以表示对象的性质好到适合研究的程度。在不同的数学分支中,良态代表着不同的意义。通过区分哪些数学对象是“良态的”,哪些数学对象是“病态的”,有助于缩小研究范围和降低分析的难度,但是也相应的限制了所得结论的一般性。.
查看 连续函数和良态
離散
離散(Discrete)与连续相对,离散量是指分散开来的、不存在中间值的量。離散可以是指:.
查看 连续函数和離散
雙曲坐標系
在數學裏,雙曲坐標系(Hyperbolic coordinates)是一種二維坐標系統。它可以用來表達一個點在二維平面的第一象限的位置。從雙曲坐標 (u,\ v) 變換到直角坐標 (x,\ y) : 有時候,參數 u 稱為雙曲角,v 稱為幾何平均。 反映射為 這是一個連續函數,但不是一個解析函數。.
查看 连续函数和雙曲坐標系
逐點收斂
在数学中,逐点收敛(或称简单收敛)描述的是一列函数向一个特定函数趋近的现象中的一种。简单来说,就是对定义域里的每一点,这个函数列在这点上的取值都趋于一个极限值。这时,被趋近的这个特定函数称作函数列的逐点极限。在各种收敛中,逐点收敛最为直观,容易想象,但不能很好地保持函数的一些重要性质,比如说连续性等等。.
查看 连续函数和逐點收斂
連續函數 (拓撲學)
在拓撲學和數學的相關領域裡,連續函數是指在拓撲空間之間的一種態射。直觀上來說,其為一個函數f,其中每一群在f(x)附近的點都會含有在x附近的一群點之值。對一個一般的拓撲空間來說,這是指f(x)的鄰域總會包含著x之鄰域的值。 在一個度量空間(如實數)裡,這是指在f(x)一定距離內的點總會包含著在x某些距離內的所有點。.
陈类
数学上,特别是在代数拓扑和微分几何中,陈类(Chern class,或稱陳氏類)是一类复向量叢的示性类, 类比于斯蒂弗尔-惠特尼类(Stiefel-Whitney class)作为实向量叢的示性类。 陈类因陈省身而得名,他在1940年代第一个给出了它们的一般定义。.
查看 连续函数和陈类
Gouraud着色法
Gouraud着色法是计算机图形学中的一种插值方法,可以为多边形网格表面生成连续的明暗变化。实际使用时,通常先计算三角形每个顶点的光照,再通过双线性插值计算三角形区域中其它像素的颜色。 Gouraud着色法的名称来自于发明者(Henri Gouraud),因此又称高洛德着色法或高氏着色法。.
Horofunction
數學上,horofunction是定義在一個完備度量空間X上的函數,是X上的距離函數的極限。horofunction是米哈伊爾·格羅莫夫將推廣而引入的概念。.
K類函數
\mathcal類函數(Class kappa function)也稱為是在控制理論中判斷非自治系統(nonautonomous system)是否穩定時會用到的一類函數,會將其他函數和\mathcal類函數比較,以確認系統的穩定性。 連續函數\alpha.
查看 连续函数和K類函數
N维球面
n维球面是普通的球面在任意维度的推广。它是(n + 1)维空间内的n维流形。特别地,0维球面就是直线上的两个点,1维球面是平面上的圆,2维球面是三维空间内的普通球面。高于2维的球面有时称为超球面。中心位于原点且半径为单位长度的n维球面称为单位n维球面,记为Sn。用符号来表示,就是: n维球面是(n + 1)维球体的表面或边界,是n维流形的一种。对于n ≥ 2,n维球面是单连通的n维流形,其曲率为正的常数。.
查看 连续函数和N维球面
P进数分析
进数分析是研究变量为p进数的函数之分析性质的数学分支,属于数论研究中的领域。.
查看 连续函数和P进数分析
抖動 (數位訊號處理)
抖動(Dither),是在數位訊號處理領域的中一項用于降低量化误差的技术。通过在較低位元中加入雜訊,藉此破壞諧波的排序,使諧波的影響受到壓制,並減少量化誤差在低頻的影響。抖动常用于音视频处理,且是CD压制过程的最后一步。經過抖动處理過的音樂,將聽起來更柔順、背景更黑;而經過抖动處理過的影像,也會更加地柔順耐看。 抖动最重要的用途之一是将灰阶图像转为黑白。通过使用抖动算法,可以令黑白图案的黑点密度接近原图案的大致灰度。.
投射模
在交換代數中,一個環 R 上的投射模是自由模的推廣,它有多種等價的定義;就幾何的觀點,投射模之於自由模一如向量叢之於平凡向量叢。在範疇論的語言中,投射模可以推廣為一個阿貝爾範疇中的投射對象。 投射模首見於昂利·嘉當與塞繆爾·艾倫伯格的重要著作 Homological Algebra,由此定義的投射分解是同調代數的基本概念之一。.
查看 连续函数和投射模
查找表
在计算机科学中,查找表(Lookup Table)是用简单的查询操作替换运行时计算的数组或者关联数组这样的数据结构。由于从内存中提取数值经常要比复杂的计算速度快很多,所以这样得到的速度提升是很显著的。 一个经典的例子就是三角函數表。每次计算所需的正弦值在一些应用中可能会慢得无法忍受,为了避免这种情况,应用程序可以在刚开始的一段时间计算一定数量的角度的正弦值,譬如计算每个整数角度的正弦值,在后面的程序需要正弦值的时候,使用查找表从内存中提取临近角度的正弦值而不是使用数学公式进行计算。 在计算机出现之前,人们使用类似的表格来加快手工计算的速度。非常流行的表格有三角、对数、统计density函数。另外一种用来加快手工计算的工具是计算尺。 一些折衷的方法是同时使用查找表和插值这样需要少许计算量的方法,这种方法对于两个预计算的值之间的部分能够提供更高的精度,这样稍微地增加了计算量但是大幅度地提高了应用程序所需的精度。根据预先计算的数值,这种方法在保持同样精度的前提下也减小了查找表的尺寸。 在图像处理中,查找表将索引号与输出值建立联系。'''颜色表'''作为一种普通的 LUT 是用来确定特定图像中每一像素所要显示的颜色和强度。 另外需要注意的一个问题是,尽管查找表经常效率很高,但是如果所替换的计算相当简单的话就会得不偿失,这不仅仅因为从内存中提取结果需要更多的时间,而且因为它增大了所需的内存并且破坏了高速缓存。如果查找表太大,那么几乎每次访问查找表都会导致高速缓存缺失,这在处理器速度超过内存速度的时候愈发成为一个问题。在编译器优化的(rematerialization)过程中也会出现类似的问题。在一些环境如Java编程语言中,由于强制性的边界检查带来的每次查找的附加比较和分支过程,所以查找表可能开销更大。 如何构建查找表有两个基本的约束条件,一个是可用内存的数量;不能构建一个超过能用内存空间的表格,尽管可以构建一个以查找速度为代价的基于磁盘的查找表。另外一个约束条件是初始计算查找表的时间——尽管这项工作不需要经常做,但是如果耗费的时间不可接受,那么也不适合使用查找表。.
查看 连续函数和查找表
柯西-施瓦茨不等式
數學上,柯西-施瓦茨不等式,又稱施瓦茨不等式或柯西-布尼亞科夫斯基-施瓦茨不等式,是一條很多場合都用得上的不等式;例如線性代數的矢量,數學分析的無窮級數和乘積的積分,和概率論的方差和協方差。它被认为是最重要的数学不等式之一。它有一些推广,如赫尔德不等式。 不等式以奧古斯丁·路易·柯西(Augustin Louis Cauchy),赫爾曼·阿曼杜斯·施瓦茨(Hermann Amandus Schwarz),和(Виктор Яковлевич Буняковский)命名。.
柯西函數方程
柯西函數方程是以下的函數方程: 此方程的解被稱為加性函數。.
查看 连续函数和柯西函數方程
极值定理
在微积分中,极值定理说明如果实函数f在闭区间上是连续函数,则它一定取得最大值和最小值,至少一次。也就是说,存在内的c和d,使得: 一个相关的定理是有界性定理,它说明闭区间内的连续函数f在该区间上有界。也就是说,存在实数m和M,使得: 极值定理强化了有界性定理,它表明函数不仅是有界的,而且它的最小上界就是最大值,最大下界就是最小值。.
查看 连续函数和极值定理
极限 (数学)
极限是现代数学特别是分析学中的基础概念之一。极限可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势。极限也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。作为微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念都是通过极限来定义的。 “函数的极限”这个概念可以更一般地推广到网中,而“序列的极限”则与范畴论中的极限和有向极限的概念密切相关。.
查看 连续函数和极限 (数学)
极限序数
极限序数是非零非后继序数的序数。直觉的说,有不能通过后继运算 S 触及的序数。使用严格的术语,我们称 λ 是极限序数,当且仅当存在 α Thomas Jech 的《Set Theory》Third Millennium edition.
查看 连续函数和极限序数
极限集合
在数学领域,特别是对于动力系统的研究中,极限集合(或称极限集、极限点集)是一个动力系统在时间趋于无穷的时候的极限点的集合。极限集合有两种,分别是时间正向流动至正无穷时的极限点集合和时间反向流动回溯至负无穷时的极限点集合。在动力系统研究中,极限集合可以用来理解动力系统的长期性态。动力系统中的极限集合的种类包括有奇点,周期轨线,极限环和吸引子。 一般情况下的极限集合可能随着奇异吸引子的出现而变得非常复杂,但是在二维的动力系统中,庞加莱-本迪克松定理提供了一个极限集合的简洁的刻画:这时的动力系统的极限集合只可能是不动点或周期轨线。.
查看 连续函数和极限集合
插值
数学的数值分析领域中,內插或稱插值(interpolation)是一種通过已知的、离散的数据點,在範圍內推求新數據點的过程或方法。求解科学和工程的问题時,通常有許多數據點藉由采样、实验等方法获得,这些数据可能代表了有限個數值函數,其中自變量的值。而根据这些数据,我们往往希望得到一个连续的函数(也就是曲线);或者更密集的离散方程与已知数据互相吻合,这个过程叫做拟合。 與插值密切相關的另一個問題是通過簡單函數逼近複雜函數。假設給定函數的公式是已知的,但是太複雜以至於不能有效地進行評估。來自原始函數的一些已知數據點,或許會使用較簡單的函數來產生插值。當然,若使用一個簡單的函數來估計原始數據點時,通常會出現插值誤差;然而,取決於該問題领域和所使用的插值方法,以簡單函數推得的插值數據,可能會比所導致的精度損失更大。 內插是曲线必须通过已知点的拟合。参见拟合条目。 例如,已知数据:.
查看 连续函数和插值
李雅普诺夫稳定性
在数学和自动控制领域中,李雅普诺夫稳定性(Lyapunov stability,或李亞普诺夫稳定性)可用來描述一個动力系统的穩定性。如果此动力系统任何初始條件在 x_0 附近的軌跡均能維持在 x_0 附近,那么该系统可以称为在x_0處李雅普诺夫稳定。 若任何初始條件在 x_0 附近的軌跡最後都趨近x_0,那么该系统可以称为在x_0處漸近稳定。指數穩定可用來保證系統最小的衰減速率,也可以估計軌跡收斂的快慢。 李雅普诺夫稳定性可用在線性及非線性的系統中。不過線性系統的穩定性可由其他方式求得,因此李雅普诺夫稳定性多半用來分析非線性系統的穩定性。李亞普诺夫稳定性的概念可以延伸到無限維的流形,即為結構穩定性,是考慮微分方程中一群不同但「接近」的解的行為。輸入-狀態穩定性(ISS)則是將李雅普诺夫稳定性應用在有輸入的系統。.
杨氏不等式
在数学上,Young's不等式,指出:假设 a, b, p 和q 是正实数 ,且有1/p + 1/q.
查看 连续函数和杨氏不等式
格林函數
在數學中,格林函數(點源函數、影響函數)是一種用來解有初始条件或邊界條件的非齐次微分方程的函數。在物理学的多体理论中,格林函数常常指各种,有时并不符合数学上的定义。 格林函數的名稱是來自於英國數學家喬治·格林(George Green),早在1830年代,他是第一個提出這個概念的人。.
查看 连续函数和格林函數
格林公式
在物理學與數學中,格林定理给出了沿封閉曲線 的線積分與以 為邊界的平面區域 上的雙重積分的联系。格林定理是斯托克斯定理的二維特例,以英國數學家喬治·格林(George Green)命名。.
查看 连续函数和格林公式
格朗沃尔不等式
在数学中,格朗沃尔引理或格朗沃尔不等式说明了对于满足一定的微分方程或积分方程的函数,有相应的关于此微分方程或积分方程的不等式。格朗沃尔不等式有两种形式,分别是积分形式和微分形式。积分形式下的不等式可以有几种不同的写法。 格朗沃尔不等式常常被用来估计常微分方程的解的取值范围。比如,它可以用来证明初值问题的解的唯一性(见柯西-利普希茨定理)。 格朗沃尔不等式的名称来自多玛·哈肯·格朗沃尔。格朗沃尔是一位瑞典的数学家,后来移居美国。 格朗沃尔不等式的微分形式首先由格朗沃尔在1919年证明T.
查看 连续函数和格朗沃尔不等式
概周期函数
在数学中,概周期函数(或殆周期函数)是一类有近似于周期性质的函数,是连续週期函數的推廣。不同的周期函数由于周期不尽相同,其和、差或乘积不一定再是周期函数。概周期函数尽管未必有严格的周期性,但可拥有一些比周期函数更好的性质。这一概念首先于1925年被丹麦数学家哈那德·玻尔引進,后来赫曼·外尔、等人也有研究和推广。因概周期函数方面的贡献获得了1931年剑桥大学的。.
查看 连续函数和概周期函数
模擬信號
模拟信号(analog signal),是指在时域上数学形式为连续函数的信号。与模拟信号对应的是数字信号,后者采取分立的逻辑值,而前者可以取得连续值。模拟信号的概念常常在涉及电的领域中被使用,不过经典力学、气动力学(pneumatic)、水力学等学科有时也会使用模拟信号的概念。.
查看 连续函数和模擬信號
模拟电路
模拟电路(analogue electronics,美式:analog electronics)是涉及连续函数形式模拟信号的电子电路,与之相对的是数字电路,后者通常只关注0和1两个逻辑电平。“模拟”二字主要指电压(或电流)对于真实信号成比例的再现,它最初来源于希腊语词汇ανάλογος,意思是“成比例的”。.
查看 连续函数和模拟电路
機率密度函數
在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.
查看 连续函数和機率密度函數
正规族
在数学中,特别是应用于复分析,一个正规族(normal family)是连续函数的一个预紧族。非正式地讲,这意味着这一族中的函数不能扩展得太广;它们以一种相对“紧致”地方式集中在一起。理解函数空间中的紧子集是有广泛意义的,因为它们通常自然是无穷维的。 更正式地,定义在某个完备度量空间 X 上取值于另一个完备度量空间 Y 的连续函数 f 的一个集合(有时称为族) F 称为正规的,如果 F 中每个函数序列包含一个子序列紧收敛到一个从 X 到 Y 的连续函数。.
查看 连续函数和正规族
武卡谢维奇逻辑
在数学中,Łukasiewicz 逻辑是非经典、多值逻辑。它最初由扬·武卡谢维奇定义为叫做“三价逻辑”的三值逻辑Łukasiewicz J., 1920, O logice trojwartosciowej (Polish, On three-valued logic).
查看 连续函数和武卡谢维奇逻辑
毛球定理
在代数拓扑中,毛球定理(英語:Hairy ball theorem)证明了偶数维单位球上的连续而又处处不为零的切向量场是不存在的。具体来说,如果f是定义在一个单位球上的连续函数,并且对球上的每一点P,其函数值是一个与球面在该点相切的向量,那么总存在球上的一点,使得f在该点的值为零。直观上(三维空间)可以想象为一个被“抚平”的“毛球”。这个定理最著名的陈述也正是“永远不可能抚平一个毛球”。这个定理首先在1912年被布劳威尔证明。 实际上,根据庞加莱-霍普夫定理,三维空间中的向量场的零点处的指数和为2,即二维球面的欧拉示性数,因此零点必然存在。对于二维环面,其欧拉特征数为0,因此“长满毛的甜甜圈”是有可能被“抚平”的。推广来说,对于任意的正则的偶数维紧流形,若其欧拉示性数不为0,则其上的连续的切向量场必然存在零点。.
查看 连续函数和毛球定理
求根算法
在數學和電腦運算中,對於一個已知的從實數集合映射到實數集合,或者從複數集合映射到複數集合的連續函數f(x),搜索變量x使得f(x).
查看 连续函数和求根算法
沈榮
沈榮(),字公甫,是一位出身臺南新營的律師及政治人物。他曾在臺灣日治時期為農民及地主爭取權益,也曾於二二八事件後為被告辯護。.
查看 连续函数和沈榮
泛函分析
泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.
查看 连续函数和泛函分析
洗牌
洗牌(Shuffling)是一種牌類遊戲的專用術語,是指將遊戲牌的排列順序打亂,使紙牌充分的混合,使每一張牌被抽到的機率都相等的過程,以便開始遊戲或進行下一個牌局。洗牌一般會伴隨著切牌以幫助確保洗牌的過程中沒有人為操作的結果。.
查看 连续函数和洗牌
洛必达法则
羅必達法則(Règle de L'Hôpital,L'Hôpital's rule)是利用導數來計算具有不定型的極限的方法,由瑞士數學家約翰·伯努利所發現。.
查看 连续函数和洛必达法则
渲染
渲染(render,或称为绘制)在電腦繪圖中,是指以软件由模型生成图像的过程。模型是用语言或者数据结构进行严格定义的三维物体或虚拟场景的描述,它包括几何、视点、纹理、照明和阴影等信息。图像是数字图像或者位图图像。彩現用于描述:计算视频编辑软件中的效果,以生成最终视频的输出过程。 渲染是三维计算机图形学中的最重要的研究课题之一,并且在实践领域它与其它技术密切相关。在图形流水线中,渲染是最后一项重要步骤,通过它得到模型与动画最终显示效果。自从二十世纪七十年代以来,随着计算机图形的不断复杂化,渲染也越来越成为一项重要的技术。 渲染的应用领域有:计算机与视频游戏、模拟、电影或者电视特效以及可视化设计,每一种应用都是特性与技术的综合考虑。作为产品来看,现在已经有各种不同的渲染工具产品,有些集成到更大的建模或者动画包中,有些是独立产品,有些是开放源代码的产品。从内部来看,渲染工具都是根据各种学科理论,经过仔细设计的程序,其中有:光学、视觉感知、数学以及软件开发。 三维计算机图形的预渲染(Pre-rendering 或 Offline rendering)或者实时渲染(Real-time rendering 或 Online rendering)的速度都非常慢。预渲染的计算强度很大,需要大量的服务器运算完成,通常被用于电影制作;实时渲染经常用于三维视频游戏,通常依靠图形处理器(GPU)完成这个过程。.
查看 连续函数和渲染
溫度梯度
溫度梯度(Temperature Gradient),是描述溫度在特定的區域環境內最迅速的變化會向何方向,以及是何種速率的物理量。溫度梯度是一維的數量,單位是度/每單位長度(在特定的溫度範圍內),以SI單位是每米K(K/m)。 在大氣層的溫度梯度在大氣科學(氣象、氣候學及相關領域)中是很重要.
查看 连续函数和溫度梯度
滑動模式控制
滑動模式控制(sliding mode)簡稱SMC,是一種的技術,利用不連續的控制信號來調整非線性系統的特性,強迫系統在二個系統的正常狀態之間滑動,最後進入穩態。其狀態-反饋控制律不是時間的連續函數。相反的,控制律會依目前在狀態空間中的位置不同,可能從一個連續的控制系統切換到另一個連續的控制系統。因此滑動模型控制屬於。已針對滑動模型控制設計了許多的控制結構,目的是讓相空間圖中的軌跡可以前往和另一個控制結構之間相鄰的區域,因此最終的軌跡不會完全脫離某個控制結構。相反的,軌跡會在控制結構的邊界上「滑動」。這種沿著控制結構之間邊界滑動的行為稱為「滑動模式」而包括邊界在內的幾何轨迹稱為滑動曲面(sliding surface)。在現代控制理論的範圍中,任何變結構系統(例如滑動模式控制)都可以視為是的特例,因為系統有些時候會在連續的狀態空間中移動,也時也會在幾個離散的控制模式中切換。.
查看 连续函数和滑動模式控制
朗斯基行列式
在数学中,朗斯基行列式(Wronskian)名自波兰数学家约瑟夫·侯恩·朗斯基,是用于计算微分方程的解空间的函数。 对于给定的 n 个n-1 次连续可微函数,f1、...、fn,它们的朗斯基行列式 W(f1,..., fn) 为: W(f_1, \ldots, f_n).
查看 连续函数和朗斯基行列式
有界函数
定义在集合X上的函数称为有界的,如果它所有的值所组成的集合是有界的。也就是说,存在一个数M>0,使得对于X中的所有x,都有 有时,如果对于X中的所有x,都有f(x)\le A,则函数称为上有界的,A就是它的上界。另一方面,如果对于X中的所有x,都有f(x)\ge B,则函数称为下有界的,B就是它的下界。 一个特例是有界数列,其中X是所有自然数所组成的集合N。所以,一个数列f.
查看 连续函数和有界函数
有限位勢壘
在量子力學裏,有限位勢壘是一種位勢。在壘外,位勢為 0 ,在壘內,位勢為有限值 。有限位勢壘問題專門研討在這種位勢的作用中,一個粒子的量子行為。如圖右,最簡單的有限位勢壘是方形壘,壘高是一個常數。在這條目裏,只研討這種位勢壘。 通常,在經典力學裏,一維的有限位勢壘問題會設定一個粒子,從位勢壘的左邊,往位勢壘移動。假若,粒子的能量大於位勢壘的位勢。則這粒子,在經過位勢壘的時候,因為動能的轉換為位能,速度會降低,但方向不會改變。當移動至位勢壘外時,速度又會回復至原本值。假若,粒子的能量小於位勢壘的位勢,則在與位勢壘彈性碰撞之後,這粒子會改變方向,以同樣的速率,往回移動。粒子絕對無法存在於位勢壘內或越過位勢壘。 在量子力學裏,粒子的量子行為,是取決於其波函數。由於粒子沒有被有限位勢壘束縛,粒子的能量不是離散能量譜的特殊容許值,而是大於 0 的任意值,因此不需要求算粒子的能量。在這裏,主要研究的是粒子的一維散射 。這是一個很有意思的領域。假若,粒子的能量大於位勢壘的位勢。由於往位勢壘傳播的波函數,並不是完全地透射過位勢壘,仍舊有一部分反射回來。所以,反射的機率幅大於 0 ,粒子被反射回來的機率大於 0 。假若,粒子的能量小於位勢壘的位勢,雖然波函數會呈指數地遞減,在位勢壘內,機率幅仍舊大於 0 。所以,這粒子存在於位勢壘內的機率大於 0。不止這樣,機率幅在位勢壘外的另一邊也大於 0 。假若,位勢壘的位勢並不大大的超過粒子的能量,位勢壘的壘寬也並不很寬,則粒子穿越位勢壘的機率會是很顯著的,稱這效應為量子穿隧效應。透射的可能性,稱為透射係數;反射的可能性,則稱為反射係數。.
查看 连续函数和有限位勢壘
有限深方形阱
在量子力學裏,有限深方形阱,又稱為有限深位勢阱,是無限深方形阱的延伸。有限深方形阱是一個阱內位勢為0,阱外位勢為有限值的位勢阱。關於一個或多個粒子,在這種位勢作用中的量子行為的問題,稱為有限深位勢阱問題。與無限深方形阱問題不同的是,在阱外找到粒子的機率大於0。 在經典力學裏,假若,粒子的能量小於阱壁的位勢,則粒子只能移動於阱內,無法存在於阱外。截然不同地,在量子力學裏,雖然粒子的能量小於阱壁的位勢,在阱外找到粒子的機率大於0。.
查看 连续函数和有限深方形阱
最大似然估计
在统计学中,最大似然估计(maximum likelihood estimation,缩写为MLE),也称最大概似估计,是用来估计一个概率模型的参数的一种方法。.
查看 连续函数和最大似然估计
截面 (纤维丛)
在数学之拓扑学领域中,拓扑空间 B 上纤维丛 π: E → B 的一个截面或横截面(section 或 cross section),是一个连续映射 s: B → E,使得对 x 属于 B 有 π(s(x)).
映射
映射,或者射影,在数学及相关的领域经常等同于函数。基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。 在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等。.
查看 连续函数和映射
流 (数学)
在数学中, 一个流用数学方式形式化了“取决于时间的变化”的一般想法,这经常出现在工程学, 物理学和常微分方程的研究中。非正式地说,如果 x(t) 是某一系统的坐标连续表现为一个 t 的函数,那么x(t) 是一个流。更形式地说,流是单参数群在一个集合上的群作用。 向量流的概念,即由一个向量场确定的流,出现于微分拓扑、黎曼流形和李群诸多领域。向量流的特例包括测地流、哈密顿流、里奇流、平均曲率流以及 Anosov 流。.
查看 连续函数和流 (数学)
流形
流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.
查看 连续函数和流形
流体力学
流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.
查看 连续函数和流体力学
海涅-博雷尔定理
在数学分析中,海涅-博雷尔定理(Heine–Borel theorem)或有限覆盖定理、博雷尔-勒贝格定理(),以 和埃米尔·博雷尔命名,斷言: 对于欧几里得空间 Rn 的子集 S,下列两个陈述是等价的.
海涅-康托尔定理
海涅-康托尔定理,以爱德华·海涅和乔治·康托尔命名,说明如果M是一个紧度量空间,则每一个连续函数 其中N是度量空间,都是一致连续的。 例如,如果f: → R是一个连续函数,则它是一致连续的。.
方向导数
方向導數是分析学特别是多元微积分中的概念。一个标量场在某点沿着某个向量方向上的方向导数,描绘了该点附近标量场沿着该向量方向变动时的瞬时变化率。方向導數是偏导数的概念的推广,也是加托导数的一个特例。.
查看 连续函数和方向导数
擬等距同構
擬等距同構是數學上度量空間之間的等價關係,著重在度量空間上的粗結構,而忽略掉小尺寸上的細節。這樣有如從遠處觀看度量空間,看到其大概,而察看不出細處的分別。.
查看 连续函数和擬等距同構
擬牛頓法
擬牛頓法是一種以牛頓法為基礎設計的,求解非線性方程組或連續的最優化問題函數的零點或極大、極小值的算法。當牛頓法中所要求計算的雅可比矩陣或Hessian矩陣難以甚至無法計算時,擬牛頓法便可派上用場。.
查看 连续函数和擬牛頓法
懸鏈曲面
懸鏈曲面(又名懸垂曲面)是一个曲面,是將懸鏈線繞其準線旋轉而得(見右側動畫),故為一旋轉曲面。除了平面以外,懸鏈曲面也是第一個被发现的最小曲面,在1744年被萊昂哈德·歐拉发现且證明。Jean Baptiste Meusnier也做了些早期的研究。只有兩個曲面既為旋轉曲面又是最小曲面,即為平面與懸鏈曲面。 懸鏈曲面可被以下參數式所定義: 其中u \in \times (-\infty, \infty),且變換參數\theta滿足-\pi , 其中 \theta.
查看 连续函数和懸鏈曲面
應力
在連續介質力學裏,應力定義為單位面積所承受的作用力。以公式標記為 其中,\sigma \,表示應力;\Delta F_j\,表示在j\,方向的施力;\Delta A_i \,表示在i\,方向的受力面積。 假設受力表面與施力方向正交,則稱此應力分量為正向應力(normal stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,,都是正向應力;假設受力表面與施力方向互相平行,則稱此應力分量為剪應力(shear stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,,都是剪應力。 「內應力」指組成單一構造的不同材質之間,因材質差異而導致變形方式的不同,繼而產生的各種應力。 採用國際單位制,应力的单位是帕斯卡(Pa),等於1牛頓/平方公尺。應力的單位與壓強的單位相同。兩種物理量都是單位面積的作用力的度量。通常,在工程學裏,使用的單位是megapascals(MPa)或gigapascals(GPa)。採用英制單位,應力的單位是磅力/平方英寸(psi)或千磅力/平方英寸(ksi)。.
查看 连续函数和應力
数字信号处理
数字信号处理(digital signal processing),简称DSP,是指用数学和数字计算来解决问题。大学里,数字信号处理常指用数字表示和解决问题的理论和技巧;而DSP也是数字信号处理器(digital signal processor)的简称,是一种可编程计算机芯片,常指用数字表示和解决问题的技术和芯片。 数字信号处理的目的是对真实世界的模拟信号进行加工和处理。因此在数字信号处理前,模拟信号要用模数转换器(A-D轉換器)变成数字信号;经数字信号处理后的数字信号往往要用数模转换器(D-A轉換器)变回模拟信号,才能适应真实世界的应用。 数字信号处理的算法需要用计算机或专用处理设备如数字信号处理器、专用集成电路等来实现。处理器是用乘法、加法、延时来处理信号,是0和1的数字运算,比模拟信号处理的电路稳定、准确、抗干扰、灵活。.
查看 连续函数和数字信号处理
扎里斯基拓扑
在代数几何和交换代数中,扎里斯基拓扑是定義在代数簇上的拓扑。其由奥斯卡·扎里斯基首先提出,及後用作給出一般交换环的素理想集的拓撲結構,稱為環的谱。 有了扎里斯基拓扑,無論一個代數簇的基域是否一個拓撲域(即一個域,其上可定義一個拓撲,使得加法和乘法都是連續函數),都可應用拓扑学的工具到代数簇的研究上。这是概形论的基本思想,有了它才允许將多個仿射簇黏合,而成一個一般的代數簇,正如流形理论中,流形由多個坐标卡(實仿射空间的開集)黏合而成一樣。 將一個代數簇的代數子集定義為閉集,就得到該代數簇的扎里斯基拓扑。若該代數簇定義在复数上,則扎里斯基拓扑比通常的拓扑结构更粗糙,因为每一个代数集在通常的拓撲中也都是闭集。 扎里斯基拓撲在交換環的素理想集上的推廣可從希尔伯特零点定理得到,因為該定理說,代數閉域上的仿射簇的點,與該仿射簇的坐標環的极大理想一一對應。因此可如下定義一個交換環的極大理想集上的扎里斯基拓撲:若干極大理想的集合是閉集,當且僅當該些極大理想就是包含某一理想的所有極大理想。格罗滕迪克的概形論中還有另一個基本思想,就是不單考慮對應某個極大理想的點,還要考慮任意(不可約的)代數簇,即對應素理想的點。 所以交換環的素理想集(稱為「譜」)上的扎里斯基拓撲滿足:若干素理想的集合為閉集,當且僅當該些素理想就是包含某一理想的所有素理想。.
查看 连续函数和扎里斯基拓扑
拓撲向量空間
拓撲向量空間是泛函分析研究中的一個基本結構。顧名思義就是要研究具有拓撲結構的向量空間。 拓撲向量空間主要都是函數空間,在上面定義的拓撲結構就是函數列收歛的條件。 希爾伯特空間及巴拿赫空間是典型的例子。.
查看 连续函数和拓撲向量空間
拓撲學術語
這裡列出的是在數學領域中的一分支拓撲學所常使用的一些術語。雖然在拓撲學的許多子類中,術語上的使用差異並不是很大,但是這裡主要是針對一般拓撲學(或稱點集拓撲)來編寫。這些術語也是其它學門如代數拓扑、微分拓扑和幾何拓扑中的基本術語。 關於一些基本的定義,請參閱拓扑空間的條目,關於拓撲學的簡史,請參閱拓撲學。關於集合以及函數的基本定義,請參閱樸素集合論、公理集合論,和函數。下面所列出的條目對拓撲學的瞭解也有幫助,這些文章中包含了某些一般拓撲學中的特別字彙,我們所列出的有些術語將在以下做更詳盡的解釋。一般拓撲學專題列表和一般拓撲學的例子列表也非常有用。.
查看 连续函数和拓撲學術語
拓撲空間範疇
在數學裡,拓撲空間範疇(通常標記為Top)是一個範疇,其物件為拓撲空間,態射為連續函數。拓撲空間範疇符合範疇的公理,因為兩個連續函數的複合函數依然是連續的。研究拓撲空間範疇及運用範疇論的技術來研究拓撲空間的性質之類的學科稱為「範疇拓撲學(categorical topology)」。 注意,有些作者會將Top這個標記用來指物件為拓撲流形,態射為連續函數的範疇。.
查看 连续函数和拓撲空間範疇
拓撲熵
在數學裡,拓撲熵是指在一個拓撲動力系統中的一個非負實數,可以用來測量此系統的複雜度。拓撲熵這個概念最先是於1965年由阿德勒、孔翰和麥克安德魯所提出來的。其定義是由測度熵中導出來的。之後,汀那伯格和洛福斯·鮑恩另給出了一個不同但等價的定義,將其延伸至豪斯多夫維。第二個定義釐清了拓撲熵的意義:對一個由迭代函數給出的系統,拓撲熵表示迭代不同軌道數的指數成長率。變分原理此一重要原理將拓撲及測度熵兩種概念相關連了起來。.
查看 连续函数和拓撲熵
拓扑学
在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.
查看 连续函数和拓扑学
拓扑不变量
在拓樸學之中,並不拘泥於一個拓樸空間所包含的體積、面積、長度等等量,而是在乎這個拓樸空間所擁有的内稟性質,如虧格(虧數)云云。 而所謂的内稟性質是指那些不能用度量方式去求得的各種量,也就是說,這些量是不能使用因次分析來表達出的。 而拓樸學的也因為這種不在乎那些跟大小、位置、形狀的性質而被稱做一門「定性」的科學。 而拓樸不變量的定義是:兩個同構的拓樸空間之間相同的內秉性質。 舉個例子,一個拓樸空間的連通性,假如一個拓樸空間不能被描述成兩個非空不相交開集的聯集,我們就叫這個拓樸空間為連通空間,而我們現在將這個連通空間隨意伸縮、平移或甚至變形,這個拓樸空間是連通空間的性質是不會變的,我們就稱拓樸空間的連通性是一個拓樸不變量。 白話地說,以簡易凡,假設我們現在有一顆球,但我們不能限制這顆球中的任何一點不能畫一條連續的線到同在這顆球中的任何另外一點,那麼,我們稱做這個球有連通性。 而現在,我們將這顆球拉長、亂丟、甚至把他在拉長之後打成一個結,但只要我們不做會讓這顆球破洞或被壓爆的動作,而依然地,我們不能限制這顆變形球裏頭的任何一點不能畫一條連續的線到同在這顆球中的任何一點,那麼,我們就稱這個連通性是一種拓樸不變量。 學術點說這些拉長打結之類的動作:一個操作,而這個操作使得這個拓樸空間和被操作過後的拓樸空間是同構的。 當然,這裡就先不提局部連通性的概念。 著名的咖啡杯和甜甜圈對拓樸學數學家是一樣的,就是上文提過的虧數概念,像將咖啡杯扭曲成一個甜甜圈就是一個典型的拓樸學上的變形,而這個虧數,不嚴謹的說,也就是它有幾個洞,就是一個典型的拓樸不變量。 經典的拓樸不變量還有著名的歐拉示性數等等。 Category:拓扑学.
查看 连续函数和拓扑不变量
拓扑空间
拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.
查看 连续函数和拓扑空间
拉克斯-米爾格拉姆定理
拉克斯-米爾格拉姆定理是數學泛函分析的定理,以彼得·拉克斯和阿瑟·米爾格拉姆命名。这定理可用來藉弱形式求解偏微分方程,因此主要用作有限元法的理論基礎。.
拉回 (范畴论)
在范畴论中,一个数学分支,拉回(也称为纤维积或笛卡尔方块)是由具有公共上域的两个态射f: X → Z与g: Y → Z组成的图表的极限。拉回经常写作.
拉格朗日中值定理
拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。拉格朗日中值定理也叫做有限增量定理。.
拉普拉斯变换
拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.
查看 连续函数和拉普拉斯变换
曲線擬合
曲線擬合(fit theory),俗稱拉曲線,是一種把現有數據透過數學方法來代入一條數式的表示方式。科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合 (fitting)。 本條目講述如何透過拉曲線的方法來進行插值法運算及遞歸分析的基礎。.
查看 连续函数和曲線擬合
曲线
曲线的普通定义就是在几何空间中的“弯曲了的线”。而直线是一种特殊的曲线,只不过它的曲率为零。在《解析几何》中,曲线用一组连续函数的方程组来表示。 曲线和直线都是指欧几里得几何所定义的欧几里得空间中的相关概念。此外,还存在多种不为多数人所知的非欧几里得几何,其中的直线和曲线的定义和欧几里得几何的定义有很大差别,甚至不能类比。想深入学习数学的人切忌将不同几何空间中的同名概念相互混淆。.
查看 连续函数和曲线
态射
数学上,态射(morphism)是两个数学结构之间保持结构的一种过程抽象。 最常见的这种过程的例子是在某种意义上保持结构的函数或映射。例如,在集合论中,态射就是函数;在群论中,它们是群同态;而在拓扑学中,它们是连续函数;在泛代数(universal algebra)的范围,态射通常就是同态。 对态射和它们定义于其间的结构(或对象)的抽象研究构成了范畴论的一部分。在范畴论中,态射不必是函数,而通常被视为两个对象(不必是集合)间的箭头。不像映射一个集合的元素到另外一个集合,它们只是表示域(domain)和陪域(codomain)间的某种关系。 尽管态射的本质是抽象的,多数人关于它们的直观(事实上包括大部分术语)来自于具体范畴的例子,在那里对象就是有附加结构的集合而态射就是保持这种结构的函数。.
查看 连续函数和态射
总变差
在数学领域总变差就是一函数其数值变化的差的总和。.
查看 连续函数和总变差
亦称为 不連續函數,函数的连续性,连续,连续性,連續 (拓撲學)。
,布勞威爾不動點定理,三角函数,三次方程,一阶常微分方程,一致连续,一致收斂,平稳过程,平面图 (图论),平方平均数,幾乎處處,幂级数,交换环,交比,度量空间,庫拉托夫斯基閉包公理,康威十三进制函数,二阶导数的对称性,互协方差,互信息,代数基本定理,代数拓扑,代數 (環論),任意子,介值定理,弧长,伯納德·波爾查諾,弱*拓撲,开放句子,循序可测过程,微元法,微积分基本定理,微积分学,修辭學 (亞里斯多德),利普希茨連續,刘维尔公式,分布 (数学分析),分形,分部積分法,切比雪夫多项式,嵌入 (数学),哈密顿力学,冪,内积空间,内部代数,几何数论,凸函数,凹函数,函数,全微分方程,全期望公式,具體範疇,光滑函数,前推,勒内-路易·贝尔,勒貝格微分定理,動態管理學派,四元數,四色定理,C (消歧義),Continuous function,皮亚诺存在性定理,矩阵指数,离散信号,离散化,离散数学,积分,积分第一中值定理,科赫曲線,空集,等度连续,等价类,等值曲面,索伯列夫空间,索霍茨基-魏尔斯特拉斯定理,紧空间,紧致开拓扑,累积分布函数,線性泛函,縱深作戰,纤维丛,纤维化 (数学),级数,纳维-斯托克斯方程,绝对连续,维纳过程,罗尔定理,群,環圈,点集拓扑学,熵 (信息论),特徵標理論,狄利克雷卷積,狄利克雷函数,狄利克雷问题,狄拉克δ函数,白雜訊,Davenport–Schinzel序列,随机变量,随机变量的收敛,芽 (数学),莎湖陆棚,莫雷拉定理,螺旋曲面,非線性系統,行列式,西莫恩·德尼·泊松,覆疊空間,马来群岛,諾特環,魏尔斯特拉斯函数,魏尔斯特拉斯逼近定理,變數,调和测度,賦範向量空間,賦環空間,费曼-卡茨公式,黎曼-勒贝格定理,黎曼积分,黑林格-特普利茨定理,达布定理,连续映射定理,迪尼定理,迷你影集,霍普夫不变量,范畴论,阻碍理论,閉圖像定理,開映射和閉映射,關係子句,蒼空騎士~飛向CODA~,量 (物理),量子態,量化 (数理逻辑),自反空间,里斯表示定理,良态,離散,雙曲坐標系,逐點收斂,連續函數 (拓撲學),陈类,Gouraud着色法,Horofunction,K類函數,N维球面,P进数分析,抖動 (數位訊號處理),投射模,查找表,柯西-施瓦茨不等式,柯西函數方程,极值定理,极限 (数学),极限序数,极限集合,插值,李雅普诺夫稳定性,杨氏不等式,格林函數,格林公式,格朗沃尔不等式,概周期函数,模擬信號,模拟电路,機率密度函數,正规族,武卡谢维奇逻辑,毛球定理,求根算法,沈榮,泛函分析,洗牌,洛必达法则,渲染,溫度梯度,滑動模式控制,朗斯基行列式,有界函数,有限位勢壘,有限深方形阱,最大似然估计,截面 (纤维丛),映射,流 (数学),流形,流体力学,海涅-博雷尔定理,海涅-康托尔定理,方向导数,擬等距同構,擬牛頓法,懸鏈曲面,應力,数字信号处理,扎里斯基拓扑,拓撲向量空間,拓撲學術語,拓撲空間範疇,拓撲熵,拓扑学,拓扑不变量,拓扑空间,拉克斯-米爾格拉姆定理,拉回 (范畴论),拉格朗日中值定理,拉普拉斯变换,曲線擬合,曲线,态射,总变差。