我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

辛群

指数 辛群

在數學中,辛群可以指涉兩類不同但關係密切的群。在本條目中,我們分別稱之為Sp(2n,F)與Sp(n)。後者有時也被稱作緊緻辛群以資區別。許多作者偏好不同的記法,通常是差個二的倍數。本條目採用的記法與矩陣的大小相稱。.

目录

  1. 21 关系: 一般线性群弦拓扑典型群第一型弦理論緊群特殊酉群西格爾模形式辛向量空间辛几何辛矩陣辛標記辛流形酉群G-结构SL₂(ℝ)模形式正交群正則變換漢彌爾頓矩陣旋量群托马斯·黑尔斯

一般线性群

在數學中,n 次一般線性群是 n×n 可逆矩陣的集合,和與之一起的普通矩陣乘法運算。這形成了一個群,因為兩個可逆矩陣的乘積也是可逆矩陣,而可逆矩陣的逆元還是可逆矩陣。叫這個名字是因為可逆矩陣的縱列是線性無關的,因此它們定義的向量/點是在一般線性位置上的,而在一般線性群中的矩陣把在一般線性位置上的點變換成在一般線性位置上的點。 为了使定义更明确,必需規定哪類對象可以成為矩陣的元素。例如,在 R(實數集)上的一般線性群是實數的 n×n 可逆矩陣的群,并指示為 GLn(R)或 GL(n, R)。 更一般的說,在任何域 F(比如複數集)或環 R(比如整數集的環)上的 n 次一般線性群是帶有來自 F(或 R)的元素的 n×n 可逆矩陣的群,帶有矩陣乘法作為群運算。這裡的環被假定為符合結合律和有乘法單位元的。典型符號是 GLn(F)或 GL(n, F),如果域是自明的也可簡寫為 GL(n)。 更一般的說,向量空間的一般線性群 GL(V)仍是抽象自同構群,不必需寫為矩陣。 '''特殊線性群''',寫為 SL(n, F)或 SLn(F),是由行列式.

查看 辛群和一般线性群

弦拓扑

弦拓扑是近几年来兴起的一个数学学科,概括地说,它是关于流形的路径空间(path space)上的拓扑性质及其在微分几何,同调代数和数学物理等领域的应用的研究。.

查看 辛群和弦拓扑

典型群

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“--”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“--”几何(classical geometry)的关系。 有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群 。 和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。.

查看 辛群和典型群

第一型弦理論

I型弦(Type I)是五種超弦之一,並且與O型雜弦具有S對偶聯繫。.

查看 辛群和第一型弦理論

緊群

在數學中,緊群是其拓撲為緊緻的的拓撲群。緊群是帶有離散拓撲的有限群的自然推廣,并以顯著方式延續了一些性質。緊群的理論已被人们深入研究,與群作用和群表示論有關。 下面我們假定所有群都是豪斯多夫空間,因為這個覆蓋了所有有價值的情況。.

查看 辛群和緊群

特殊酉群

在数学中,n 阶特殊酉群(special unitary group),记作 SU(n),是行列式为1 的 n×n -zh-hans:酉矩阵;zh-hant:么正矩阵-组成的群(一般酉矩阵的行列式是绝对值为1的复数)。群运算是矩阵乘法。特殊酉群是由 n×n 酉矩阵组成的酉群 U(n) 的一个子群,酉群又是一般线性群 GL(n, C) 的一个子群。 群 SU(n) 在粒子物理中标准模型中有广泛的应用,特别是 SU(2) 在电弱相互作用与 SU(3) 在量子色动力学中。 最简单的情形 SU(1),是平凡群,只有一个元素。群 SU(2) 同构于範數为 1 的四元数,从而微分同胚于三维球面。因为单位四元数可表示三维空间中的旋转(差一个符号),我们有一个满同态从 SU(2) 到旋转群 SO(3),其核为 \。.

查看 辛群和特殊酉群

西格爾模形式

在數學中,西格爾模形式是辛群上的自守形式。西格爾模形式是西格爾上半平面上的一類多變元全純函數,模形式是其特例。在模空間的意義下,若模形式對應到橢圓曲線,則西格爾模形式便對應更廣的阿貝爾簇。 卡爾·西格爾在1930年代引入這個概念,本意在以解析數論處理二次型的問題。西格爾模形式後來也用於代數幾何、橢圓上同調及某些物理學問題,例如共形場論。.

查看 辛群和西格爾模形式

辛向量空间

数学中,一个辛矢量空间是带有辛形式 ω 的向量空间 V,所谓辛形式即一个非退化斜对称的双线性形式。 确切地说,一个辛形式是一个双线性形式 ω :V × V → R 满足:.

查看 辛群和辛向量空间

辛几何

辛几何(Symplectic geometry),也叫辛拓扑(Symplectic topology),是微分几何的一个分支。其研究對象為辛流形,亦即带有闭非退化2-形式的微分流形。辛拓扑源于经典力学的哈密顿表述,其中特定经典系统的相空间有辛流形的结构。 辛拓扑和研究有非退化对称2阶张量(称为度量张量)的流形的黎曼几何有一些相似和不同之处。不像黎曼的情况,辛流形没有像曲率那样的局部不变量。这是达布定理的一个结果,表明每一对辛流形是局部同构的。另一个和黎曼几何的区别是不是所有的微分流形可以接受一个辛形式;有一些特定的拓扑限制。首先,流形必须是偶数维的。辛拓扑的很多工作就是以研究哪些流形可以有辛结构为中心的。 每个凯勒流形也是一个辛流形。直到1970年代,辛专家们还不确信是否有任何紧非Kähler辛流形存在,但从那以后又很多例子被构造出来(第一个由William Thurston给出);特别的,Robert Gompf证明每个有限表示群都可以作为辛4维流形的基本群出现,这和凯勒的情形完全不同。 可以说大部分辛流形都是非凯勒的;所以没有和辛形式相容的可积複结构。但是 Mikhail Gromov给出了一个重要的发现,就是辛流形可以接受很多相容的殆複结构,所以它们满足複流形的所有假设,"除了"坐标变换函数必须是全纯的这一条。 以几乎複结构相容的映射到辛流形的黎曼曲面称为伪全纯曲线,格罗莫夫证明了该类曲线的紧致性定理;这个结构导致了辛拓扑一个很大的子学科的发展。从格罗莫夫的理论产生的结果包括关于球到柱的辛嵌入的格罗莫夫非压缩定理,和关于哈密顿流的不动点的个数的阿尔诺德的一个猜想的证明。这是由从Andreas Floer开始的几个研究者(逐步推广到更一般的情形)所证明的,Floer用格罗莫夫的方法引入了现在称为Floer同调的概念。 伪全纯曲线也是辛不变量的一个来源,这种不变量称为Gromov-Witten不变量,原则上可以用来区分两个不同的辛流形。.

查看 辛群和辛几何

辛矩陣

在數學中,辛矩阵是指一個2n \times 2n的矩阵M(通常佈於實數或複數域上),使之滿足 其中M^T表M的轉置矩陣,而\Omega是一個固定的可逆斜對稱矩陣;這類矩陣在適當的變化後皆能表為 \begin 0 & I_n \\ -I_n & 0 \\ \end 或 \begin0 & 1\\ -1 & 0\end & & 0 \\ 0 & & \begin0 & 1 \\ -1 & 0\end \end 兩者的差異僅在於基的置換,其中I_n是n \times n 單位矩陣。此外,\Omega 行列式值等於一,且其逆矩陣等於-\Omega。.

查看 辛群和辛矩陣

辛標記

在哈密頓力學裏,因為哈密頓方程式對於廣義坐標 \mathbf\,\! 與廣義動量 \mathbf\,\! 的運算在正負號上並不對稱,必須用兩個方程式來表示: 這裏, \mathcal\,\! 是哈密頓量。 辛標記提供了一種既簡單,又有效率的標記方法來展示方程式及數學運算。辛標記的英文名 「Symplectic notation」 最先是德國著名數學家赫尔曼·外尔提出的。 Symplectic 這字原來在希臘文是糾纏或編結的意思;用在這裏主要是形容廣義坐標和廣義動量互相編結在一起的情況。 設定一個 2N\times 1\,\! 的豎矩陣 \boldsymbol\,\!: 此矩陣上半段是廣義坐標、下半段是廣義動量、T\,\! 代表轉置運算。我們也可以將 \boldsymbol\,\! 視為一個向量。 定義辛矩陣 \boldsymbol\,\! 為一個斜對稱的 2N\times 2N\,\! 方塊矩陣: 這裏,\boldsymbol\,\! 是由 4 個 N\times N\,\! 零矩陣\mathbf與單位矩陣\mathbf組成。 這樣,哈密頓方程式可以簡易的表.

查看 辛群和辛標記

辛流形

数学上,一个辛流形是一个装备了一个闭、非退化2-形式ω的光滑流形,ω称为辛形式。辛流形的研究称为辛拓扑。辛流形作为经典力学和分析力学的抽象表述中的流形的余切丛自然的出现,例如在经典力学的哈密顿表述中,该领域的一个主要原因之一:一个系统的所有组态的空间可以用一个流形建模,而该流形的余切丛描述了该系统的相空间。 一个辛流形上的任何实值可微函数H可以用作一个能量函数或者叫哈密顿量。和任何一个哈密顿量相关有一个哈密顿向量场;该哈密顿向量场的积分曲线是哈密顿-雅可比方程的解。哈密顿向量场定义了辛流形上的一个流场,称为哈密顿流场或者叫辛同胚。根据刘维尔定理,哈密顿流保持相空间的体积形式不变。.

查看 辛群和辛流形

酉群

酉群,又叫幺正群,是李群的一种。在群论中,n阶酉群(unitary group)是n×n 酉矩阵组成的群,群乘法是矩阵乘法。酉群记作U(n),是一般线性群GL(n, C)的一个子群。 在最简单情形n.

查看 辛群和酉群

G-结构

在微分几何中,对一个给定的结构群 G,n 维流形 M 上一个 G-结构是 M 的切标架丛 FM(或 GL(M))的一个 G-子丛。 G-结构的概念包括了许多流形上其它结构,其中一些是用张量场定义的。例如,对正交群,一个 O(n)-结构定义了一个黎曼度量;而对特殊线性群,一个 SL(n,R)-结构就是一个体积形式;对平凡群,一个 -结构由流形的一个绝对平行化组成。 一些流形上的结构,比如複结构,辛结构,或 凯勒结构,都是 G-结构带上附加的可积性条件。 物理学中的术语是规范群。.

查看 辛群和G-结构

SL₂(ℝ)

在数学中,特殊线性群  是行列式为  的  实矩阵组成的群: a & b \\ c & d \end: a,b,c,d\in\mathbb\right.\,,且 ad-bc.

查看 辛群和SL₂(ℝ)

模形式

模形式是數學上一個滿足一些泛函方程與增長條件、在上半平面上的(複)解析函數。因此,模形式理論屬於数论的範疇。模形式也出現在其他領域,例如代數拓撲和弦理論。 模形式理論是更廣泛的自守形式理論的特例。自守形式理論的發展大致可分成三期:.

查看 辛群和模形式

正交群

数学上,数域F上的n阶正交群,记作O(n,F),是F上的n×n 正交矩阵在矩阵乘法下构成的群。它是一般线性群GL(n,F)的子群,由 这里QT是Q的转置。实数域上的经典正交群通常就记为O(n)。 更一般地,F上一个非奇异二次型的正交群是保持二次型不变的矩阵构成的群。嘉当-迪奥多内定理描述了这个正交群的结构。 每个正交矩阵的行列式为1或−1。行列式为1的n×n正交矩阵组成一个O(n,F)的正规子群,称为特殊正交群SO(n,F)。如果F的特征为2,那么1.

查看 辛群和正交群

正則變換

在哈密頓力學裏,正則變換(canonical transformation)是一種正則坐標的改變,(\mathbf,\ \mathbf) \rightarrow (\mathbf,\ \mathbf),而同時維持哈密頓方程的形式,雖然哈密頓量可能會改變。正則變換是哈密頓-亞可比方程式與刘维尔定理的基礎。.

查看 辛群和正則變換

漢彌爾頓矩陣

在數學上,若一個階矩陣是一個漢彌爾頓矩陣,則對此矩陣而言,會是一個對稱矩陣,而其中這個矩陣具有以下的形式: \begin 0 & I_n \\ -I_n & 0 \\ \end 其中是階矩陣單位矩陣。也就是說,若是一個漢彌爾頓矩陣若且唯若,在此處表示矩陣的轉置.

查看 辛群和漢彌爾頓矩陣

旋量群

数学中,旋量群 Spin(n) 是特殊正交群 SO(n) 的二重覆叠,使得存在李群的短正合列: 对 n > 2, Spin(n) 单连通,从而是 SO(n) 的万有覆叠空间。作为李群 Spin(n) 及其李代数和特殊正交群 SO(n) 有相同的维数 n(n − 1)/2。 Spin(n) 可以构造为克利福德代数 Cℓ(n) 可逆元群的一个子群。Spin(n) 由所有写成个偶数个单位向量的克利福德乘积的元素生成。对应到 SO(n) 中恰是沿着垂直于这偶数个向量的超平面的反射的复合。.

查看 辛群和旋量群

托马斯·黑尔斯

托马斯·克里斯特尔·黑尔斯 (Thomas Callister Hales,),美国数学家,致力于朗兰兹纲领的研究工作。他在基本引理的研究方面是非常出名的,并且证明了Sp(4)的一种特殊情况。由于吴宝珠,他的许多构想被纳入了最后的证明。他因于1998年使用電腦協助證明克卜勒猜想而知名,开普勒猜想是几个世纪以来在离散几何方面的一个古老问题,该猜想说明了在一个锥体形状中最有效利用空间的方法为最密堆积。同时黑尔斯也证明了蜂窝猜想。.

查看 辛群和托马斯·黑尔斯