目录
向量分析
向量分析(或向量微積分)是數學的分支,关注向量場的微分和积分,主要在3维欧几里得空间 \mathbb^3 中。「向量分析」有时用作多元微积分的代名词,其中包括向量分析,以及偏微分和多重积分等更广泛的问题。向量分析在微分几何与偏微分方程的研究中起着重要作用。它被广泛应用于物理和工程中,特别是在描述电磁场、引力場和流体流动的时候。 向量分析从四元數分析发展而来,由约西亚·吉布斯和奧利弗·黑維塞於19世纪末提出,大多数符号和术语由吉布斯和黑維塞在他们1901年的书《向量分析》中提出。向量演算的常规形式中使用外积,不能推广到更高维度,而另一种的方法,它利用可以推广的外积,下文将会讨论。.
查看 螺線向量場和向量分析
向量勢
向量微積分中,向量勢(vector potential),或稱向量位,是一個向量場,其旋度為一給定向量場。這情形類比於純量勢為一純量場,其負值梯度為一給定向量場。 形式上,給定一向量場 v,則向量勢為一向量場 A 使得 若一向量場 v 具有向量勢 A,則從等式 可以得到 暗示了v必須是個螺線向量場(solenoidal vector field)。 一個有意思的問題是:是否任何螺線向量場都具有一向量勢?答案是肯定的,只要向量勢滿足一些特定條件。.
查看 螺線向量場和向量勢
不可壓縮流
在連續介質力學裏,不可壓縮流是流速的散度等於零的流動,更精確地稱為等容流。這理想流動可以用來簡化理論分析。實際而言,所有的物質多多少少都是可壓縮的。請注意「等容」這術語指的是流動性質,不是物質性質;意思是說,在某種狀況,一個可壓縮流體會有不可壓縮流的動作。由於做了不可壓縮這假設,物質流動的主導方程式能夠極大地簡化。 不可壓縮流遵守以下方程式: 其中,\mathbf\,\! 是物質流動的速度。 根據連續方程式, 其中,\rho\,\! 是物質密度。 以隨體導數(material derivative)表達, 由於 \rho > 0\,\! ,一個流動是不可壓縮流,若且唯若 也就是說,隨著物質元素的移動,質量密度是常數。.
查看 螺線向量場和不可壓縮流
亥姆霍兹分解
在物理学和数学中的向量分析中,亥姆霍兹定理, 或称向量分析基本定理, 指出对于任意足够光滑、快速衰减的三维向量场可分解为一个无旋向量场和一个螺线向量场的和,这个过程被称作亥姆霍兹分解。此定理以物理學家赫爾曼·馮·亥姆霍茲為名。 这意味着任何矢量场 ,都可以视为两个势场(純量勢 和向量勢 )之和。.
查看 螺線向量場和亥姆霍兹分解
保守力
假设一感受着某作用力的粒子,從初始位置移動到終結位置,而此作用力所做的功跟移動路徑無關,則稱此力為保守力(conservative force),又稱為守恆力。等價地說,假設一個粒子從某位置,移動經過一條閉合路徑後,又回到原本位置,則作用於這粒子的保守力所做的機械功(保守力對於整個閉合路徑的積分)等於零。假設在一個物理系統裏,所有的作用力都是保守力,則稱此物理系統為「保守系統」,又稱為「守恆系統」。對於這種系統,在空間裏每一個位置,都可以給定位勢一個唯一數值。假設粒子從某位置移動至另一位置,則由於保守力的作用,粒子的勢能可能會有所改變,但前後差值與移動經過的路徑無關。例如,重力是一種保守力,而摩擦力是一種非保守力。.
查看 螺線向量場和保守力
保守向量场
如果一个向量场是某个标量势的梯度,那么便称为保守向量场。有两个密切相关的概念:路径无关和无旋向量场。任何一个保守向量场的旋度都是零(因此是无旋的),也具有路径无关的性质。.
查看 螺線向量場和保守向量场
磁場
在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.
查看 螺線向量場和磁場
磁矢势
磁矢势,又稱磁位、磁勢(magnetic potential),通常標記為 \mathbf 。磁向量勢的旋度是磁場,以方程式表示 其中,\mathbf 是磁場。 直觀而言,磁向量勢似乎不及磁場來得「自然」、「基本」,而在一般電磁學教科書亦多以磁場來定義磁向量勢。以前,很多學者認為磁向量勢並沒有實際意義,只是人為的物理量,除了方便計算以外,別無其它用途。但是,詹姆斯·馬克士威頗不以為然,他認為磁向量勢可以詮釋為「每單位電荷儲存的能量」,就好像電勢被詮釋為「每單位電荷儲存的能量」。相關論述,稍後會有更詳盡解釋。 磁向量勢並不是唯一定義的;其數值是相對的,相對於某設定數值。因此,學者會疑問到底儲存了多少動量?不論如何,磁向量勢確實具有實際意義。尤其是在量子力學裏,於1959年,阿哈諾夫-波姆效應闡明,假設一個帶電粒子移動經過某零電場、零磁場、非零磁向量勢場區域,則此帶電粒子的波函數相位會有所改變,因而導致可觀測到的干涉現象 。現在,越來越多學者認為電勢和磁向量勢比電場和磁場更基本。不單如此,有學者認為,甚至在經典電磁學裏,磁向量勢也具有明確的意義和直接的測量值。 磁向量勢與電勢可以共同用來設定電場與磁場。許多電磁學的方程式可以以電場與磁場寫出,或者以磁向量勢與電勢寫出。較高深的理論,像量子力學理論,偏好使用的是磁向量勢與電勢,而不是電場與磁場。因為,在這些學術領域裏所使用的拉格朗日量或哈密頓量,都是以磁向量勢與電勢表達,而不是以電場與磁場表達。 開爾文男爵最先於1851年引入磁向量勢的概念,並且給定磁向量勢與磁場之間的關係。.
查看 螺線向量場和磁矢势
移動中的磁鐵與導體問題
移動中的磁鐵跟導體問題(moving magnet and conductor problem)是一個源自於19世紀的著名思想實驗,涉及到經典電磁學與狹義相對論(classical electromagnetism and special relativity)的交叉領域。在這問題裏,相對於磁鐵的參考系,導體以均勻速度 v 移動。從磁鐵的參考系與導體的參考系分別觀測,流動於導體的電流相同。這事實遵守基本「相對性原理」:沒有絕對靜止標準,只可以觀測到相對運動。但是,根據馬克士威方程組和勞侖茲力定律,導體的電荷,在磁鐵參考系會感受到磁場力,而在導體參考系會感受到電場力。從不同的參考系觀測,同樣的物理現象竟會出現大相逕庭的描述。這問題與邁克生-莫立實驗啟發了阿爾伯特·愛因斯坦的相對論。.
純量勢
純量勢或稱純量位,在向量分析與物理學中是一個基本概念(形容詞「純量」常被省略,只要不會與向量勢發生混淆)。給定一向量場F,其純量勢V為一純量場;對此純量場取負值梯度則得到F: 相反過來,給定一函數V,這個式子定義了一個向量場F,其純量勢為V。純量勢也常常標記為希臘字母Φ,比如在電動力學的場合。 純量勢的物理意義和場的類型有關。對一流體或氣體流的向量場,定義純量勢暗示了任一點的流向與該點純量勢的最陡降方向相同,而對於力場,在一點的加速度也是一樣的情況。力場的純量勢跟力場的勢能(或稱位能)密切相關。 不是每個向量場都有一純量勢;有純量勢的向量場稱作是保守向量場,相應於物理學中保守力的稱呼。在各種速度場中,任何的層狀場(lamellar field)皆有一純量勢,而一螺線向量場可有純量勢的情況只發生在拉普拉斯場(Laplacian field)。 C C Category:场论 fr:Champ de vecteurs#Champ de gradient.
查看 螺線向量場和純量勢
馬克士威方程組
克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.
高斯磁定律
在電磁學裏,高斯磁定律闡明,磁場的散度等於零。因此,磁場是一個螺線向量場。從這事實,可以推斷磁單極子不存在。磁的基本實體是磁偶極子,而不是磁荷。當然,假若將來科學家發現有磁單極子存在,那麼,這定律就必須做適當的修改,如稍後論述。高斯磁定律是因德國物理學者卡爾·高斯而命名。 在物理學界,很多學者使用「高斯磁定律」來指稱這定律,但並不是每一位學者都採用這名字。有些作者稱它為「自由磁單極子缺失」,或明確地表示這定律沒有取名字。還有些作者稱此定律為「橫向性要求」,因為在真空中或線性介質中傳播的電磁波必須是橫波。.
查看 螺線向量場和高斯磁定律
极向–环向分解
在向量分析中,极向–环向分解(英文:poloidal–toroidal decomposition)是亥姆霍兹分解的一个受限制的形式,常用于螺线向量场在球坐标系下的分析,如磁场和不可压缩流体等。考虑一个三维向量场F满足 可以被表示为一个轴矢量场(toroidal vector field)和一个极矢量场(poloidal vector field)的和: 其中 \mathbf 是球坐标 (r,\theta,\phi) 中的径向矢量,纵场 \mathbf 为 \Psi (r,\theta,\phi)为一标量场,2横场 \mathbf 为 \Phi (r,\theta,\phi)为一标量场。这一向量分解法是对称的,因为纵场的旋度是横场,而横场的旋度是纵场。纵场与球心在原点的球面相切 而横场的旋度同样地与这些球面相切 若标量场 \Psi 和 \Phi 的平均值在任意半径为 r 的球面上都等于零,则这一分解方式是唯一的。.
渦旋
流體動力學中,渦旋(Vortex,複數形Vortices或Vortexes)是指流體順著某個方向環繞直線或曲線軸的區域。這樣的運動模式即為渦流(Vortical flow)。 渦旋是由被擾動的流體,例如液體、氣體和電漿形成。渦旋的例子包含,船舶和尾流中的渦流,以及熱帶氣旋、龍捲風和塵捲風周圍的風。飛機的尾流中會形成渦旋,並且渦旋是木星大氣層中相當明顯的特徵。 渦旋是湍流的主要組成部分。在不存在外力和任何大尺度旋轉中,流體的黏性摩擦會將流動趨向非旋渦旋。這樣的渦旋中,流體速度最快的地方是緊鄰渦旋軸心的區域,並且速度隨距離成反比。流體速度場的旋度,即涡量,在接近渦旋軸的部分極高,但在渦旋的其他區域趨近於0,並且壓力在接近軸時明顯下降。 渦旋形成後可以移動、沿伸、扭曲,並且和其他的渦旋以複雜的方式交互作用。移動的渦旋會帶有角動量和線動量、能量和質量。在穩定流渦旋中,流線和跡線是封閉的。移動或變化中渦旋的流線和跡線經常形成螺线。.
查看 螺線向量場和渦旋