目录
古埃及
古埃及(مصر القديمة)是位於非洲东北部尼罗河中下游地区的一段时间跨度近3000年的古代文明,开始于公元前32世纪左右时美尼斯统一上下埃及建立第一王朝,终止于公元前343年波斯再次征服埃及,雖然之後古埃及文化還有少量延續,但到公元以後的時代,古埃及已經徹底被異族文明所取代,在連象形文字也被人們遺忘後,古代史前社會留給後人的是宏偉的建築與無數謎團,1798年,拿破仑远征埃及,发现罗塞塔石碑,1822年法国学者商博良解读象形文字成功,埃及学才诞生,古埃及文明才重见天日。直到今日都還不斷被挖掘出來。 古埃及的居民是由北非的土著居民和来自西亚的遊牧民族塞姆人融合形成的多文化圈。約西元前6000年,因為地球軌道的運轉規律性變化、間冰期的高峰過去等客觀氣候因素,北非茂密的草原開始退縮,人們放棄游牧而開始尋求固定的水源以耕作,即尼羅河河谷一帶,公元前4千年后半期,此地逐渐形成国家,至公元前343年为止,共经历前王朝、早王朝、古王国、第一中间期、中王国、第二中间期、新王国、第三中间期、后王朝9个时期31个王朝的统治(参见“古埃及歷史”一节)。其中古埃及在十八王朝时(公元前15世纪)达到鼎盛,南部尼罗河河谷地带的上埃及的領域由現在的蘇丹到埃塞俄比亞,而北部三角洲地区的下埃及除了現在的埃及和部份利比亚以外,其東部邊界越過西奈半島直達迦南平原。杨洪强编著,《古埃及文明-全球史之四》,2005年 在社會制度方面,古埃及有自己的文字系统,完善的行政体系和多神信仰的宗教系统,其统治者称为法老,因此古埃及又称为法老时代或法老埃及江晓原,12宫与28宿:世界历史上的星占学,辽宁教育出版社,2005年5月,45-64 ISBN 7-5382-7184-8。古埃及的国土紧密分布在尼罗河周围的狭长地带,是典型的水力帝国。古埃及跟很多文明一樣,具有保存遺體的喪葬習俗,透過這些木乃伊的研究能一窺當時人們的日常生活,对古埃及的研究在学术界已经形成一门专门的学科,称为“埃及学”。 古埃及文明的产生和发展同尼罗河密不可分,如古希腊历史学家希罗多德所言:“埃及是尼罗河的赠礼。”古埃及时,尼罗河几乎每年都泛滥,淹没农田,但同时也使被淹没的土地成为肥沃的耕地。尼罗河还为古埃及人提供交通的便利,使人们比较容易的来往于河畔的各个城市之间。古埃及文明之所以可以绵延数千年而不间断,另一个重要的原因是其相对与外部世界隔绝的地理环境,古埃及北面和东面分别是地中海和红海,而西面则是沙漠,南面是一系列大瀑布,只有东北部有一个通道通过西奈半岛通往西亚。这样的地理位置,使外族不容易进入埃及,从而保证古埃及文明的穩定延续。相比较起来,周围相对开放的同时代的两河流域文明则经常被不同民族所主宰,兩者對後世所帶來的價值觀也完全不同。.
查看 莱因德数学纸草书和古埃及
古埃及数学
古埃及数学指古埃及的書吏所使用的数学风格和方法,主要从稀有的古代纸草的发现而推断出来:特别是,兰德纸草书,大约作于第二中间期(虽然它是已经失传的中王国时期的纸草的一份复本),以及莫斯科纸草书,二者都似乎是数学教科书。.
布鲁克林博物馆
布鲁克林博物馆(Brooklyn Museum)位于美国纽约布鲁克林区,是一座综合性的艺术、历史博物馆。佔地,本博物馆的實際容量是紐約市第三大,大約收藏一百五十萬件藝術品。其著名藏品包括古埃及艺术品和许多现代艺术品,其建筑风格为布雜藝術。.
平方根
在數學中,一個數x的平方根y指的是滿足y^2.
查看 莱因德数学纸草书和平方根
二进制
在數學和數字電路中,二進制(binary)數是指用二進制記數系統,即以2為基數的記數系統表示的數字。這一系統中,通常用兩個不同的符號0(代表零)和1(代表一)來表示。以2為基數代表系統是二進位制的。數字電子電路中,邏輯門的實現直接應用了二進制,因此現代的計算機和依赖計算機的設備裡都用到二進制。每個數字稱為一個位元(二進制位)或比特(Bit,Binary digit的縮寫)。.
查看 莱因德数学纸草书和二进制
代数
代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.
查看 莱因德数学纸草书和代数
圓周率
圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.
查看 莱因德数学纸草书和圓周率
圓周率計算年表
下面這個表格簡要地展現了歷史上圓周率的計算,也包括一部份數學史上關於認識圓周率的重大事件。 與圓周率的計算無直接關係的事件會以淺紅色背景表示,世界紀錄會以淺青色背景表示,在表述圓周率的近似值小數以及其計算正確位數時無特別說明皆為用十進制。.
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
查看 莱因德数学纸草书和几何学
算术
算術(arithmetic)是数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常生活上簡單的算數到高深的科学及工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法、減法、乘法、除法,有时候,更复杂的运算如指数和平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。 自然数、整数、有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器,计算机或者算盘来进行数学计算。 專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。.
查看 莱因德数学纸草书和算术
棱锥
在幾何學上,棱锥又稱角錐,是三维多面体的一種,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的稱呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。 从棱锥的定义可以推知,一个以边形为底面的棱锥,一共有+1个顶点,+1个面以及2条边。棱锥的对偶多面体是同样形状的棱锥。例如一个方锥的对偶形是(倒立的)方锥。 棱锥的对称性取决于底面多边形的形状和多边形以外那个顶点的位置。如果底面的多边形是正多边形,而且另外一个顶点在底面上的投影是多边形的中心,那么棱锥和正多边形有相同的对称结构(同构的对称群)。 棱锥和棱柱、棱台、帐塔一样,都是擬柱體中的一类。.
查看 莱因德数学纸草书和棱锥
数学史
数学史的主要研究对象是历史上的数学发现,以及调查它们的起源,或更广义地说,数学史就是对过去的数学方法与数学符号的探究。 数学起源于人类早期的生产活动,为古中国六艺之一,亦被古希腊学者视为哲学之起点。數學最早用於人們計數、天文、度量甚至是貿易的需要。這些需要可以簡單地被概括為數學對結構、空間以及時間的研究;對結構的研究是從數字開始的,首先是從我們稱之為初等代數的——自然數和整數以及它們的算術關係式開始的。更深層次的研究是數論;對空間的研究則是從幾何學開始的,首先是歐幾里得幾何和類似於三維空間(也適用於多或少維)的三角學。後來產生了非歐幾里得幾何,在相對論中扮演著重要角色。 在进入知识可以向全世界传播的现代社会以前,有记录的新数学发现仅仅在很少几个地区重见天日。目前最古老的数学文本是《普林顿 322》(古巴比伦,约公元前1900年),《莱因德数学纸草书》(古埃及,约公元前2000年-1800年),以及《莫斯科数学纸草书》(古埃及,约公元前1890年)。以上这些文本都涉及到了如今被称为毕达哥拉斯定理的概念,后者可能是继简单算术和几何后,最古老和最广泛传播的数学发现。 在公元前6世纪后,毕达哥拉斯将数学作为一门实证的学科进行研究,他创造了古希腊语单词μάθημα(mathema),意为“(被人们学习的)知识学问”。希腊数学家在相当大的程度上改进了这些数学方法(特别引入了演绎推理和严谨的数学证明),并扩大了数学的主题。中国数学做了早期贡献,包括引入了位值制系统。如今大行于世的印度-阿拉伯数字系统和运算方法,很可能是在公元后1000年的印度逐渐演化,并被伊斯兰数学家通过花拉子米的著作将其传到了西方。伊斯兰数学则将以上这些文明的数学做了进一步的发展贡献。许多古希腊和伊斯兰数学著作随后被翻译成了拉丁文,引领了中世纪欧洲更深入的数学发展。 从16世纪文艺复兴时期的意大利开始,算术、初等代数及三角学等初等数学已大体完备。17世纪变数概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 从古代到中世纪,数学发展的历史时期都伴随着数个世纪的停滞,但从16世纪以来,新的数学发展伴随新的科学发展,让数学不断加速大步前进,直至今日。.
查看 莱因德数学纸草书和数学史
亦称为 林德數學手卷。