目录
色球
色球或色球層(字義就是有顏色的球)是太陽大氣層主要三層的第二層,厚度大約2,000公里,位於光球層的上方和過渡區的下方。 色球層的密度相當低,它起始處,也就是色球層的底部,密度只有光球的10−4倍;相較於地球的大氣層,更只有10−8。這使得它通常無法看見,只有在日全食的短暫時間可以看見它展現出略帶紅色的色調,顏色介於紅色和粉紅色之間 。 然而,若沒有特殊的設備,因為光球層壓倒性的明亮效果,通常是無法看見色球層。 色球層的密度隨著與太陽中心的距離增加而降低,從每立方公分1017顆微粒呈指數下降,或從大約到最外的邊界處為。溫度從內側邊界6,000K 到最低處大約是 3,800K,然後向外增加至外側與日冕過渡區交界處的溫度大約是35,000K。 圖1.呈現色球層的溫度和密度隨距離變化呈現的趨勢。 除了太陽,人類也觀察過其它恆星的色球層。.
查看 莫爾頓波和色球
耀斑
閃焰是在太陽的盤面或邊緣觀測到的突發的閃光現象,它會釋放出高達6 × 1025焦耳的巨大能量(大約是太陽每秒鐘釋放總能量的六倍,或相當於160,000,000,000百萬噸TNT,超過舒梅克-李維九號彗星撞木星能量的25,000倍)。它們通常,但並非總是,伴隨著發生日冕大量拋射的事件。閃焰會從太陽日冕拋射出電子、離子、和原子的雲進入太空。通常,在事件發生後的一兩天,這些雲就可能會到達地球。這個名詞也適用在發生類似現象的恆星,但通常會使用「恆星閃焰」來稱呼。 閃焰會影響到太陽所有的大氣層(光球、色球和日冕)。當電漿物質被加熱至數千萬K的溫度時,電子、質子和更重的離子都會被加速至接近光速。它們產生電磁頻譜中所有波長的電磁輻射,從無線電波到伽瑪射線,然而絕大部分的能量都在視覺範圍之外,因此絕大碩的閃焰都是肉眼看不見的,必須要用特別的儀器觀測不同的頻率。閃焰發生在圍繞著太陽黑子的活動區,強烈的磁場從那兒穿透光球聯接日冕和太陽內部的磁場。 閃焰會突然(時間的尺度在幾分鐘至幾十分鐘)釋放儲藏在日冕中的磁場能量;日冕大量拋射(CME)也可以釋放出相等的能量,但是這兩者之間的關係尚不明確。 閃焰發射的X射線和紫外線輻射會影響地球的電離層,擾亂遠距離的無線電通訊。在分米波長的電波輻射會直接干擾雷達和使用這些波長的儀器和設備的操作。 對太陽閃焰的首度觀測是理查·卡靈頓和理查·霍奇森在1859年獨立完成的"", Monthly Notices of the Royal Astronomical Society, v20, pp13+, 1859,在黑子群當中看見一個小範圍的明亮區域。觀察望遠鏡或衛星觀測到的恆星光度變化曲線,可以推斷其他恆星是否產生恆星閃焰。 太陽閃焰發的頻率隨著平均11年的活動週期,從太陽位於活躍期的一天數個,到寧靜期的一星期不到一個,有很大的變化(參見太陽週期)。大的閃焰出現的頻率遠低於小的閃焰。 根據NASA的觀測,在2012年7月23日,一個有著巨大和潛在破壞力的太陽超級風暴(閃焰、日冕大量拋射、和)與地球擦身而過。估計在2012年至2022年之間,有12%的機率會發生類似的事件.
查看 莫爾頓波和耀斑
日冕大量抛射
日冕物質拋射 (coronal mass ejection,CME)是太陽風和磁場突然噴發大量物質至太陽的日冕之上或進入行星際空間中。 日冕物質拋射往往與其他形式的太陽活動連結在一起,最引人注目的是閃焰,但並沒有因果關係。大多數的拋射起源於太陽的表面,像是與頻繁的閃焰相關聯的太陽黑子。在接近太陽極大期時,每天大約有三次的日冕物質拋射,而在太陽極小期,每五天也會有一次的日冕物質拋射。.
查看 莫爾頓波和日冕大量抛射
日震學
日震學(Helioseismology)是研究波振盪,特別是聲波壓力,在太陽上的傳播。不同於地球的地震波,太陽的波幾乎沒有剪力的成份 (S波)。太陽壓力波被認為是接近太陽表面的對流層中的湍流生成的。有些頻率被建設性的干涉放大,換言之,太陽振盪的環像是一個鐘,聲波傳輸到太陽更表面的光球層,這是從太陽中心的核融合輻射出的能量經由吸收生成可見光,離開太陽表面的區域。這些振盪幾乎在任何時間序列的的太陽影像上都能檢測得到,但觀測到最好的影像是測量都卜勒位移的光球吸收譜線。經由太陽振盪波的傳播的變化,揭露了太陽內部的結構,並讓天文物理學家發展出太陽內部剖面極為詳細的設定條件。 日震學可以排除太陽微中子問題是由於太陽內部模型不正確的可能性 日震學揭示的特性包括外側的對流層和內側的輻射層以不同的速度旋轉,這引發太陽發電機產生磁場效應的想法,和在太陽表面對流層下的數千公里有電漿"噴射氣流" (更明確的說,扭轉振盪) 。這些噴射氣流從赤道廣泛的散播,在高緯度地區分解成小旋風的風暴。扭轉振盪是太陽較差自轉時間的變化,它們的交錯影響旋轉快與慢的帶。這是我們在1980年就已經發現的,但到目前為止,還沒有理論能解釋並被普遍的接受,即使它們與太陽週期的密切關係很明顯,一樣有著11年的周期。 日震學也可以用來生成太陽背面的影像,包括從地球看不到的太陽黑子影像。簡單來說,太陽黑子會吸收日震波 。這種太陽黑子的吸收會在太陽黑子的對蹠點上造成震波虧損的影像。為方便太空氣象的預測,從2000年晚期,經由SOHO衛星就有部分太陽背面中央地區的日震影像圖不停的被產生,而從2001年起,全部的背面影像都被生成和進行資料分析。 日震学的名稱源自類似研究地震波以確定地球內部結構的地震学。日震学可以和星震學對照,后者是研究一般恆星振荡的学科。.
查看 莫爾頓波和日震學
數量級 (速率)
本列表比較多種數量級的差別,以每秒1 公尺到每秒3 公尺來介紹多種速率。粗體代表其為準確值。.