我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

药物代谢

指数 药物代谢

药物代谢(Drug metabolism)是生物对药物进行的代谢分解,通常这一过程通过生命体内的特定酶催化系统完成。广而言之,异形生物质代谢 (xenobiotic metabolism ,其中异形生物质语源自希腊语词汇xenos“陌生人”和biotic“与生命体相关的”)是指改变异形生物质化学结构的一系列代谢途径。这些异形生物质指并不存在于生命组织正常生化过程中的化合物,如药物与毒物。这些代谢途径作为生物转化方式广泛存在于在所有主要生命体类别内,在遗传学上被认为起源颇古。在代谢过程中发生的化学反应常为通过对毒物进行修饰而解毒(但在某些异形生物质代谢中产生的中间体本身也存在毒性)。研究药物代谢的学科称为药物代谢动力学 。 Category:药物 Category:代谢.

目录

  1. 8 关系: CYP3A4穹窿体RNA细胞色素P450生物学史药物基因组学苯丙胺氟化物

CYP3A4

细胞色素P450 3A4酶 (简称CYP3A4)(), 是身体中的一种重要的酶,主要存在于肝脏和小肠。 它可以氧化外源有机小分子(异型生物质),如毒素或药物,以便使其排出体外。 CYP3A4酶会使许多药物失活,但同时它也使一些药物活性增加。一些物质,诸如葡萄柚汁和某些药物,会被CYP3A4的作用所干扰。这些物质将增强或减弱药物的作用,由于CYP3A4的干扰作用。 CYP3A4 是细胞色素P450氧化酶家族成员之一。这个家族中的若干其它成员也涉及到药物的代谢,但CYP3A4是最常见和最多面的一个。与该家族所有成员类似,CYP3A4是一种血红蛋白——一种含有附带了一个铁原子的血红素基团的蛋白质。对人类而言,CYP3A4蛋白由CYP3A4基因所编码。 这个基因是细胞色素P450基因簇的一部分,位于人类的7号染色体长臂2区1带1子带(chromosome 7q21.1)上。 rCYP3A4,重组CYP3A4(Recombinant CYP3A4),是通过基因工程合成的CYP3A4蛋白。.

查看 药物代谢和CYP3A4

穹窿体RNA

穹窿体RNA(vault RNA,简称vRNA)是一种存在于穹窿体核糖核蛋白复合物中的非编码RNA,该类RNA于1986年被首次发现。作为一种核糖核蛋白复合物,穹窿体除了含有8-16条短链RNA外,还包含96个穹窿体主蛋白(major vault proteins,MVP),两个穹窿体少数蛋白(minor vault proteins,分别为VPARP和TEP1)。穹窿体被认为与抗药性有关。研究人员已利用冷冻显镜术揭示出vRNA位于穹窿体“帽”底部的内侧。vRNA在穹窿体中的位置可能暗示着穹窿体内外物质都可与其发生相互作用。另有研究发现vRNA需要TEP1以辅助维持自身结构稳定。.

查看 药物代谢和穹窿体RNA

细胞色素P450

细胞色素P450(cytochrome P450)超家族(官方缩写为CYP)是一大类多种多样的酶。大多数细胞色素P450酶的功能是催化氧化有机化合物。细胞色素P450的受質包括有:如脂质与甾体激素的代谢中间产物,亦有药物与其他毒性化学物质等非生物物质。细胞色素P450类是涉及药物代谢与生物激活作用的主要酶类,约占到各种代谢反应总数的75%。 由细胞色素P450催化的最常见反应就是单加氧酶反应,例如将氧气中的一个氧原子插入到有机底物(以RH表示)中,而另一个氧原子被还原形成水: RH + O2 + 2H+ + 2e– → ROH + H2O thumb.

查看 药物代谢和细胞色素P450

生物学史

生物学史是人类从古至今对生命研究的过程。虽然生物学的概念作为单一领域出现於19世纪,但生物学从传统医学起就已经出现,并可以根据自然史追溯到古埃及医学及时代亚里士多德和盖伦的工作。中世纪时,及学者贾希兹(al-Jahiz)、阿维森纳、伊本·苏尔(Ibn Zuhr或Avenzoar)、伊本·贝塔尔(Ibn al-Baitar)及伊本·纳菲斯(Ibn al-Nafis)进一步发展。欧洲文艺复兴及近代时期,生物学思想被新的经验主义思想彻底变革并发现了一些新的生物。这次活动中比较突出的是对生理机能进行了实验和认真观察的安德雷亚斯·维萨里和威廉·哈维以及开始对生物进行分类和化石记录的博物学家卡尔·林奈和蒲豐,同时还对有机体的发展和行为进行研究,显微镜展示了之前从未看到的世界并为细胞学说打下基础。自然神学的重要性不断增长,在一定程度上回应了机械论学说的兴起,鼓励了博物学的发展(虽然它也巩固了)。 从18世纪到19世纪,植物学及动物学等生物科学逐渐形成专门的学科。拉瓦锡和其它物理学家开始通过物理和化学方法将有生物的世界和无生命的世界连接起来。探索博物学家如亚历山大·冯·洪堡调查了生物和他们所在环境之间的关系,这些关系取决於地理,并建立了生物地理学、生态学及动物行为学。博物学家开始否认本质主义并考虑灭绝及物种突变的重要性。细胞学说为生命的基础提供了新的角度。这些发展以及胚胎学和古生物学,被查尔斯·达尔文综合到自然选择的演化论中。19世纪末,自然发生说开始没落,同时兴起,而遗传的机制仍处於神秘状态。 20世纪初,对孟德尔的作品的重新发现带来了托马斯·亨特·摩尔根和他的学生们的遗传学的快速发展。到了1930年代,群体遗传学和自然选择相结合形成「新达尔文主义」。新的学科得到了快速发展,特别是在沃森和克里克提出DNA的结构之后。随着分子生物学的中心法则的建立和遗传密码的破译,生物学被明显地分为有机体生物学(organismal biology)——主要研究生物体及所在的群体—和细胞生物学及分子生物学所在领域。到20世纪末,一些新学科如基因组学和蛋白质组学则打破了这一趋势,有机体生物学家使用了分子生物学的技术,而分子生物学家和细胞生物学家也调查了基因和环境的关系以及自然生物体的遗传。.

查看 药物代谢和生物学史

药物基因组学

药物基因组学(Pharmacogenomics),又称基因组药物学或基因组药理学,是研究基因组在药物反应中的作用。药物基因组学分析个体的遗传构成如何影响他/她对药物的反应。通过将基因表达或单核苷酸多态性与药代动力学(药物的,,代谢,和)和药物效应动力学以及药物受体靶效应相关联,处理后天获得性的与先天性的遗传变异对药物反应的影响。 药物基因组学根据患者的基因型来保证最大疗效的同时将不良反应降到最低,用于探索合理的方法来优化药物治疗方案。这样的方法许诺“精密医学”(precision medicine)甚至“(personalized medicine)”的出现,其中药物和药物组合被优化来针对狭窄的患者子集,甚至针对每个人的独特遗传构成。无论是用来解释病人的反应还是缺乏治疗,或作为预测工具,都希望能够获得更好的治疗效果,更大的疗效,使药物毒性和药物不良反应(ADR)发生的最小化。对于对治疗缺乏治疗反应的患者,可以指定最适合其要求的替代疗法。为了提供给定药物的药物基因组建议,可以使用两种可能的输入类型:基因型分型或外显子或全基因组测序。测序提供了更多的数据点,包括检测过早终止合成蛋白(早期终止密码子)的突变。.

查看 药物代谢和药物基因组学

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

查看 药物代谢和酶

苯丙胺

安非他命(英文名稱:Amphetamine为一种中樞神經刺激劑,用來治療注意力不足過動症、嗜睡症、和肥胖症。“Amphetamine”一名擷取自。 安非他命是在西元1887年發現的,以兩種對映異構體的形式存在 ,分別是左旋安非他命和右旋安非他命。 准确来说,安非他命指的是特定的化學物質-外消旋,這個物質等同於安非他命的的兩個對映異構體:左旋安非他命和右旋安非他命的等比化合物之純胺類型態。 然而,實際上安非他命一詞已被廣泛的用來表示任何由安非他命對映異構體構成的物質或安非他命對映異構體本身。 安非他命是一种中樞神經興奮劑,適度適量地使用能提升整體抑制控制能力。在醫療用的劑量範圍內,安非他命能帶來情緒以及執行功能的變化,例如:欣快感的增强、性欲的改變、清醒度的提升、大腦執行功能的進化。安非他命所改變的生理反應包含:減少反應時間、降低疲勞、以及肌耐力的增強。然而,若攝取劑量远超过醫療用的劑量範圍,將會導致大腦執行功能受損以及橫紋肌溶解症。 攝取過份超越醫療用劑量範圍的安非他命可引发嚴重的藥物成癮。然而長期攝取醫療劑量範圍的安非他命並不會產生上癮的風險。 此外,服用远超醫療用劑量範圍的安非他命會引起精神疾病(例如:妄想、偏執)。然而長期攝取醫療劑量範圍的安非他命並不會引起上述疾病。 那些为享乐而摄入的安非他命通常会遠超過醫療用劑量範圍,且伴隨著非常嚴重甚至致命的副作用。 历史上,安非他命也曾被用來治療鼻塞和抑鬱。 安非他命也被用來、促進大腦的認知功能及在助興時(非醫療用途情況下)被作為增強性慾和欣快感促進劑。 安非他命在許多國家為合法的處方藥。然而,私自散布和囤積安非他命被視為非法行為,因為安非他命被用於非醫療用途的助興可能性極高。 首個藥用安非他命的藥品名稱為Benzedrine。當今以下列幾種形式存在:外消旋安非他命、阿得拉尔 、右旋安非他命,或對人體無藥效的前驅藥物甲磺酸赖氨酸安非他命。 安非他命藉著自身作用於兒茶酚胺神經傳導元素:正腎上腺素及多巴胺的特點來活化 ,進而增加单胺类神经递质和神经递质在腦內的活動。 安非他命屬於類的物質。由安非他命衍伸出的物質被歸納在的分類中,比如說:安非他酮、 、 MDMA、 和 甲基苯丙胺。安非他命也與人體內可自然生成的兩個屬於痕量胺的神經傳導物質——特別是苯乙胺和 ——有關。 Phenethylamine 是安非他命的原始化合物,而則是安非他命的位置異構體(只有在甲基族中才會區分出此位置異構體)。.

查看 药物代谢和苯丙胺

氟化物

氟化物指含负价氟的有机或無機化合物。与其他卤素类似,氟生成单负阴离子(氟离子F−)。氟可与除He、Ne和Ar外的所有元素形成二元化合物。从致命毒素沙林到药品依法韦仑,从难溶的氟化钙到反应性很强的四氟化硫和三氟化氯都属于氟化物的范畴。.

查看 药物代谢和氟化物