徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

粒子

指数 粒子

物理科學中,粒子為佔有微小局域的物体,能夠以數個物理性质或化学性质,如体积或质量加以描述。.

181 关系: 加速器动量半透膜华人诺贝尔奖得主列表協同冷卻反τ子參數方程吊钹多世界诠释大型強子對撞機天体粒子物理学天空漫射太阳能电池太陽和太陽圈探測器太陽系探測器列表夸克禁閉奇異原子威廉·劳伦斯·布拉格孫觀漢定域性原理宇宙中微子背景輻射宇稱安舟封閉系統小柴昌俊射束中子中国科学院院士列表中性流帶電粒子希格斯玻色子希格斯玻色子的實驗探索希格斯玻色子的探索历史布莱恩·葛林世界线三体用语列表康普頓波長二體問題应立人事件 (粒子物理學)任意子介子介观体系传播子弗朗西斯·阿斯顿异常物质位移德布罗意方程组信使号心理史學 (阿西莫夫)...化学气相沉积分子分布 (数学分析)具質量粒子先驱者11号先进成分探测器光学光分解離子成像克莱因-戈尔登方程前6世纪固体固態反應倍压加速器Cinema 4D玻色子火山灰球對稱位勢碰撞磁場福克-普朗克方程离子空气簇射等焓等压系综等離子體參數粒子加速器粒子群演算法粒子物理學粒子束武器約束 (經典力學)緊湊緲子線圈经典力学绝对零度绝热不变量绝热过程维尔纳·海森堡真相 (小說)热运动热胀冷缩爱因斯坦望远镜病毒 (消歧义)炭疽病电磁辐射电流密度無限深方形阱物体物理学家狄拉克费米子狄拉克δ函数狄拉克旋量盒中氣體銜尾蛇蟻人 (電影)聲致發光菲利普·莱纳德非游離輻射衝撞风云系列卫星香港空氣質素健康指數角速度规范场论驰豫时间警察搜查隊质子运载火箭质荷比费曼物理学讲义超对称超對稱粒子超級質子同步加速器超金属點粒子黏附黯黑史詩软硬酸碱理论辐射计辩证逻辑霍金輻射錫酸阿布拉罕-勞侖茲-狄拉克力阿斯卡莱恩效应薛定谔方程蒸发重子不對稱性量子泡沫量子涨落自由粒子自然单位制自治系统 (数学)自旋自旋1/2自旋網路臭氧层腔量子电动力学色散关系苏联退耦 (宇宙学)ΓKG (消歧義)恩里科·费米研究所核反应核嬗变梅爾德實驗機動戰士GUNDAM 00世界觀及設定機率幅歸一條件氣泡室水手2號沉降波粒二象性消光游離輻射湮滅輻射漂移速度朱棣文朗德g因子朗道阻尼有限位勢壘有限深方形阱流体力学时间放射性散射散逸层普朗克常数晶体学2006年1月2013年2013年3月2013年天文學 扩展索引 (131 更多) »

加速器

加速器可能指:.

新!!: 粒子和加速器 · 查看更多 »

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

新!!: 粒子和动量 · 查看更多 »

半透膜

半滲膜,又稱選透膜,是一种对不同物質、粒子或分子的通过具有选择性的薄膜。例如细胞膜、膀胱膜、羊皮纸以及人工制的胶棉薄膜等。现代半透膜还用多孔性壁(如无釉陶瓷)并使适当的化合物(如铁氰化铜)沉淀于其孔隙中制成。半透膜用于渗透溶胶和测定渗透压强等。生物吸取养分也是通过半透膜进行的。 Category:扩散 Category:过滤器 Category:膜生物学 Category:膜技术.

新!!: 粒子和半透膜 · 查看更多 »

华人诺贝尔奖得主列表

華人界諾貝爾獎得主列表,列举了不同意义上的華人,海外華人,在中國出生者或持有/曾經持有中華民國/中華人民共和國國籍的諾貝爾獎得主列表。.

新!!: 粒子和华人诺贝尔奖得主列表 · 查看更多 »

協同冷卻

協同冷卻(Sympathetic cooling)也稱為共同冷卻及互感冷卻,是一種粒子冷卻另一種粒子的過程。 一般而言,會用可以被雷射冷卻的單原子離子來冷卻附近的離子或是原子,冷卻方式是用二個粒子之間的庫侖交互作用。此作法可以冷卻一些無法直接用雷射來冷卻的離子或是原子,後者包括大部份的多原子離子,特別是大的有機分子。不過若二個粒子的質量電荷比相近,協同冷卻的效果會最好。 第一個用協同冷卻冷卻中性粒子的例子是由Christopher Myatt等人在1997年實作。此處有利用一個配合電場及磁場的技術,使某一個方向自旋的原子受到限制較往另一個方向自旋的原子要小,限制較小的原子其動能較高,比較容易脫離,使總能量下降,因此使受強烈限制的原子得以冷卻。Christopher Myatt等人也用協同冷卻來產生玻色–爱因斯坦凝聚。.

新!!: 粒子和協同冷卻 · 查看更多 »

反τ子

反τ子(反陶子,Antitauon)是τ子的反粒子。.

新!!: 粒子和反τ子 · 查看更多 »

參數方程

參數方程()和函數相似,都是由一些在指定的集的數,稱為參數或自變數,以決定因變數的結果。例如在運動學,參數通常是「時間」,而方程的結果是速度、位置等。 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: \begin x.

新!!: 粒子和參數方程 · 查看更多 »

吊钹

吊鈸(Suspended Cymbal)是常用的敲擊樂器,由於聲音透過鈸片本身的震動所發聲,因此歸納為體鳴樂器的一種。它和踫鈸的構造基本上是相同,只是吊鈸借助鼓槌敲打,鈸片震動附近的空氣粒子而產生聲音,因此只需使用一片便可以。不過現代不論是演奏流行音樂,還是古典音樂,都很多機會用上超過一片吊鈸。.

新!!: 粒子和吊钹 · 查看更多 »

多世界诠释

多世界詮釋(the many-worlds interpretation,缩写作 MWI)是量子力學詮釋的一種。它是一個假定存在無數個平行世界,并以此来解釋微觀世界各種現象的量子論詮釋,其優點是不必考虑波函數塌縮。該理論也被稱為相對狀態提法、艾弗雷特诠释、普遍的波函數、多宇宙詮釋,或者多世界理論。 1957年,最初的相对状态提法由休·艾弗雷特发表Hugh Everett, Thesis, Princeton University, (1956, 1973), pp.

新!!: 粒子和多世界诠释 · 查看更多 »

大型強子對撞機

大型強子對撞機(Large Hadron Collider,縮寫:LHC)是一座位於瑞士日內瓦近郊歐洲核子研究組織的對撞型粒子加速器,作為國際高能物理學研究之用。LHC已經建造完成,2008年9月10日開始試運轉,並且成功地維持了兩質子束在軌道中運行,成為世界上最大的粒子加速器設施。大型強子對撞機是一個國際合作計劃,由全球85國中的多個大學與研究機構,逾8,000位物理學家合作興建,經費一部份來自歐洲核子研究組織會員國提供的年度預算,以及參與實驗的研究機構所提撥的資金。 大型強子對撞機本預計於2008年10月21日開始進行低能量對撞實驗。但2008年9月19日,大型強子對撞機第三與第四段之間用來冷卻超導磁鐵的液態氦發生了嚴重的洩漏,據推測是由於聯接兩個超導磁鐵的接點接觸不良,在超導高電流的情況下融毀所造成的。依據歐洲核子研究組織的安全條例,必需將磁鐵升回到室溫後詳細檢查才能繼續運轉,這將需要三到四週的時間。要再冷卻回運作溫度,也是得經過三四週的時間,如此正好遇上預定的年度檢修時程,因此必須延遲開始運作的時間。 2009年11月23日,大型強子對撞機進行了在修復完成後的第一次試撞。 2015年4月5日,經過兩年的精心維護與升級,大型強子對撞機再度啟動,預計今年夏天將會進行13TeV質子質子碰撞實驗,探索未知領域,例如,尋找暗物質、分析希格斯機制、研究夸克-膠子等離子體等等。.

新!!: 粒子和大型強子對撞機 · 查看更多 »

天体粒子物理学

粒子天文物理學是粒子物理學的一个分支,研究基本粒子的天文学的起源及其与有关的天体物理学和宇宙学。这是一个新兴的的交叉领域研究,包含粒子物理学,天文学,天体物理,探测器物理,相对论,固体物理,和宇宙学。因为中微子振荡发现的部分激励,自2000年初,这个领域在理论和实验上经历了快速的发展。.

新!!: 粒子和天体粒子物理学 · 查看更多 »

天空漫射

天空漫射(Diffuse sky radiation)是陽光直接被地球大氣層中的分子或懸浮粒子散射而改變了行進方向之後,經過才抵達地球表面的太陽輻射,這些以光子為主的輻射很可能經過不只一次的散射、反射,最終以疊加的型態進入觀測者的眼中,是天空會有顏色變化的主因,其變化就是隨著「輻射入射角」(時間)及「最短路徑上的阻礙」(天候狀況、空氣污染程度)造成顏色變化。它也被稱為天光(skylight)、 漫射天光(diffuse skylight)、或天空輻射(sky radiation)。來自太陽的陽光大約有總量的三分之二(根據在大氣層中的灰塵和煙霧含量,在太陽高懸時大約為有25%的入射輻射直接被散射)會在大氣層中被散射,最終成為彌散的天空輻射抵達地球表面。 在大氣層中的重要過程是瑞利散射和米氏散射的彈性過程,光線的波長不變,沒有被吸收,但從原有的路徑偏折。.

新!!: 粒子和天空漫射 · 查看更多 »

太阳能电池

太阳能电池(亦称太阳能芯片或光电池)是一种將太阳光通过光生伏打效应轉成電能的裝置。 在常見的半導體太陽能電池中,透過適當的能階設計,便可有效的吸收太陽所發出的光,並產生電壓與電流。這種現象又被称为太阳能光伏。 太阳能发电是一种可再生的环保发电方式,其发电过程中不会产生二氧化碳等溫室气体,因此不会对环境造成污染;但太阳能电池板的生产过程会排放大量有毒废水。按照制作材料分为硅基半导体电池、CdTe薄膜电池、薄膜电池、染料敏化薄膜电池、有机材料电池等。其中硅电池又分为单晶硅电池、多晶硅电池和无定形体硅薄膜电池等。对于太阳能电池来说最重要的参数是转换效率,目前在实验室所研發的硅基太阳能电池中(並非),单晶硅电池效率为25.0%,多晶硅电池效率为20.4%,CIGS薄膜电池效率达19.8%,CdTe薄膜电池效率达19.6%,非晶硅(无定形硅)薄膜电池的效率为10.1%。.

新!!: 粒子和太阳能电池 · 查看更多 »

太陽和太陽圈探測器

太陽和太陽圈探測器(Solar and Heliospheric Observatory,SOHO)是由以馬特拉馬可尼航太公司(現在的阿斯特里姆)為首的歐洲工業財團製造,使用洛克希德馬丁的擎天神2號運載火箭於1995年12月2日發射。它是研究太陽的太空船,迄今已發現超過3,000顆彗星 。它從1996年5月開始正常運作,是歐洲航天局和NASA聯合的一個國際合作專案。最初的計畫只是一個兩年的任務,但SOHO將在太空中服務超過20年。在2013年6月,一個延展的計畫獲得批准,它至少將持續工作至2016年12月。 除了它的科學任務,它也是太空天氣近及時預測資料的主要來源。SOHO與GGS Wind、先進成分探測器(Advanced Composition Explorer,ACE)、和(Deep Space Climate Observatory,DSCOVR)是在地球-太陽的L1點附近的四艘太空船。這個點是距離太陽0.99天文單位,距離地球0.01天文單位的日地重力平衡點。除了它的科學貢獻之外,SOHO是第一艘使用反作用輪作為虛擬陀螺儀的三軸穩定太空船;這是在1998年一次幾乎失去這艘太空船的突發緊急事件之後加入的新技術。.

新!!: 粒子和太陽和太陽圈探測器 · 查看更多 »

太陽系探測器列表

本列表包括任務成功以及試圖到達地球以外的所有探測器,其中的目標任務包括小行星、行星、衛星、太陽甚至是太陽系外的探測。其中有一些任務僅飛掠小行星、行星、衛星、太陽,由於探測地球本身的探測器數量龐雜、利用多次重力拋射的探測器軌道複雜,所以未加觀測地球、飛掠地球的探測器並未列入。另外,本列表目前也未將已取消或是未來可能發射的探測器列入,因為可能有諸多不確定因素。 截至2016年4月為止,共有248艘探測器被設定為太陽系探測器,這些探測器有些攜帶許多小探測器,但大部分為單一的探測器,其中143艘探測器成功;7艘探測器部分成功;98艘探測器失敗。.

新!!: 粒子和太陽系探測器列表 · 查看更多 »

夸克禁閉

夸克禁闭是一种物理现象,描述夸克不会单独存在。由于强相互作用力,带色荷的夸克被限制和其他夸克在一起(两个或三个组成一个粒子),使得总色荷为零。夸克之间的作用力随着距离的增加而增加,因此而不能发现单独存在的夸克。.

新!!: 粒子和夸克禁閉 · 查看更多 »

奇異原子

奇異原子通常是指與一般原子構成不同的原子,普通的原子是由電子e、質子p和中子n這三種長壽的粒子構成,但奇異原子卻是以其他的粒子代替這三種稳定粒子中的一个或多个,通过电磁相互作用構成。.

新!!: 粒子和奇異原子 · 查看更多 »

威廉·劳伦斯·布拉格

威廉·劳伦斯·布拉格爵士,CH,OBE,MC,FRS(Sir William Lawrence Bragg,),出生於澳洲的物理学家,他擁有澳洲和英國雙重國籍,因為發現了關於X射線衍射的布拉格定律,1915年与其父威廉·亨利·布拉格一同获得诺贝尔物理学奖。.

新!!: 粒子和威廉·劳伦斯·布拉格 · 查看更多 »

孫觀漢

孫觀漢,浙江省紹興縣人,有「台灣原子科學之父」之稱,與作家柏楊為至交。.

新!!: 粒子和孫觀漢 · 查看更多 »

定域性原理

在物理學中,定域性原理(Principle of locality),又稱局域性原理、區域性原則,認為一個特定物體,只能被它週圍的力量影響。包涵了定域性原理的物理學理論,被稱為是一個定域理論。根據經典物理學的場論的看法,某一點的行動,影響到另一點,在中間的空間,例如場,會成為運動的中介。要對另一個點造成影響,一個波或是粒子,必須先行經兩點中間的空間,之後才能造成影響。 根據狹義相對論,宇宙中所有物質和資訊的運動與傳播速度均無法超過光速。由於事件的傳播需要時間,而其速度上限為光速,因此定域性原理認為,在某一點發生的事件,不可能立即影響到另一點。換句話說,-zh-cn:信息;zh-tw:資訊-不可能比光速更快。這個觀點保持了事件之間的因果性,但排除了超距作用的可能。在量子力學的觀點上,這個原理可能會被打破(例: 量子纏結)。.

新!!: 粒子和定域性原理 · 查看更多 »

宇宙中微子背景輻射

宇宙中微子背景輻射是由大爆炸產生的中微子構成的背景輻射。與宇宙微波背景輻射類似,它們都是大爆炸的餘暉。這些中微子有時又稱作“殘留中微子”。 宇宙微波背景輻射始于宇宙誕生后379,000年,而宇宙中微子背景輻射則起始于宇宙誕生后2秒鐘。据估計,宇宙中微子背景輻射的溫度大概為;每立方釐米宇宙空間就有大約300個殘留中微子存在,但因爲低能量中微子和正常物質僅有極其微弱的相互作用,宇宙中微子背景輻射極難檢測,也許永遠無法直接觀測。但是有大量間接證據表明,宇宙中微子背景輻射的確存在。.

新!!: 粒子和宇宙中微子背景輻射 · 查看更多 »

宇稱

在量子力學中,宇稱被描述成宇稱變換中的量,以P (Parity) 表示。宇稱變換(又稱宇稱倒裝),是一個在一個三維座標系中其中一維的翻轉(變換),在三維空間之內,它也可以是一個在x, y, z 軸中同時進行的變換(點反演) 因為宇稱變換會將一個現象轉化為其的鏡像,所以宇稱變換也可以被形容成一個測試左右手座標系的物理現象。在宇稱變換之中,假設變換是在右手座標系,這樣的變換在左手座標系看來就可以被認為是一個身分轉換,反之亦然。 大部分的標準模型在宇稱底下,都呈現宇稱對稱,但弱交互作用卻會破壞這種對稱性。 在任何一維的三維座標系下,P的矩陣的行列式.

新!!: 粒子和宇稱 · 查看更多 »

安舟

安舟(Zhou An,),中国上海人,浙江大学医学院内科学呼吸病学硕士,浙医一院普胸外科主治医师,专长于呼吸介入教学与科研、气管镜介入与CT引导下肺部、纵隔病灶穿刺诊断以及介入以及普胸外科常规手术等临床工作,拥有超声支气管镜引导下的放射性粒子植入设备相关专利。.

新!!: 粒子和安舟 · 查看更多 »

封閉系統

在熱力學之中,封閉系統是指一個只與外界交換能量(作功或熱量)而不交換質量的系統。 假如一個只擁有一種粒子(原子或分子)的系統進行化學反應時,過程中所有種類的粒子都可以被生成或破壞。但是,封閉系統內的元素原子數目將會守恒。數學上可以寫成:.

新!!: 粒子和封閉系統 · 查看更多 »

小柴昌俊

小柴昌俊(,),日本物理学家,日本学士院会员。現任东京大学国际基本粒子物理中心(ICEPP)高级顾问,東京大學最初4名特別榮譽教授之一。勳一等旭日大綬章、文化勳章表彰。 1987年,小柴教授在超级神冈探测器完成人類史上首次的微中子發生觀測。2002年,小柴與戶塚洋二、梶田隆章三人同獲潘諾夫斯基實驗粒子物理學獎。同年因其“在天体物理学领域做出的先驱性贡献,其中包括在探测宇宙微中子和发现宇宙X射线源方面的成就”而获得诺贝尔物理学奖。 小柴教授是首位「雙博士」頭銜的日本人諾貝爾獎得主,此外亦是日本人第2位諾貝爾獎暨沃爾夫獎雙料得主。他的老師朝永振一郎、門生梶田隆章也都是諾貝爾物理學獎得主。.

新!!: 粒子和小柴昌俊 · 查看更多 »

射束

射束(英語:Beam),是一道粒子或能量的流束,較細的射束(beam)也被稱為射線(ray)。.

新!!: 粒子和射束 · 查看更多 »

中子

| magnetic_moment.

新!!: 粒子和中子 · 查看更多 »

中国科学院院士列表

中国科学院院士列表.

新!!: 粒子和中国科学院院士列表 · 查看更多 »

中性流

中性流(Neutral current)是次原子粒子相互作用現象之一,這些相互作用由Z玻色子所引發。弱中性流的發現是弱力與電磁力(弱電理論)統一的重要關鍵,並導致W及Z玻色子最終被發現。 1973年,阿卜杜勒·薩拉姆、謝爾登·格拉肖以及史蒂文·溫伯格預測中性流存在,隨後加爾加梅勒的氣泡室實驗觀察到中性流作用。.

新!!: 粒子和中性流 · 查看更多 »

帶電粒子

帶電粒子在物理學是指帶有電荷的粒子。它可以是離子,像是有多餘或欠缺電子的分子,或原子與質子的聯繫。它也可以是電子或質子本身,或是其它的基本粒子,像是正電子。它也可能是沒有電子的原子核,像是α粒子、氦核。中子沒有電荷,所以除非它們是帶正電的原子核的一部分,否則他們不是帶電粒子。電漿是原子核和電子分開的帶電粒子的集合體,但也可以是含有大量帶電粒子的氣體。電漿因為性質和固體、液體和氣體都不同,所以被稱為物質的第四態。 在極區常見的極光也是一種電漿,詳見極光。.

新!!: 粒子和帶電粒子 · 查看更多 »

希格斯玻色子

希格斯玻色子(Higgs boson)是標準模型裏的一種基本粒子,是一種玻色子,自旋為零,宇稱為正值,不帶電荷、色荷,極不穩定,生成後會立刻衰變。希格斯玻色子是希格斯場的量子激發。根據希格斯機制,基本粒子因與希格斯場耦合而獲得質量。假若希格斯玻色子被證實存在,則希格斯場應該也存在,而希格斯機制也可被確認為基本無誤。 物理學者用了四十多年時間尋找希格斯玻色子的蹤跡。大型強子對撞機(LHC)是全世界至今為止最昂貴、最複雜的實驗設施之一,其建成的一個主要任務就是尋找與觀察希格斯玻色子與其它種粒子。2012年7月4日,歐洲核子研究組織(CERN)宣布,LHC的緊湊渺子線圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超過背景期望值4.9个标准差),超環面儀器(ATLAS)测量到质量为126.5GeV的新玻色子(5个标准差),这两種粒子极像希格斯玻色子。2013年3月14日,歐洲核子研究組織發表新聞稿正式宣布,先前探測到的新粒子暫時被確認是希格斯玻色子,具有零自旋與偶宇稱,這是希格斯玻色子應該具有的兩種基本性質,但有一部分實驗結果不盡符合理論預測,更多數據仍在等待處理與分析。 希格斯玻色子是因物理學者彼得·希格斯而命名。術語「玻色子」是為了紀念印度物理學者薩特延德拉·玻色而命名。玻色子的自旋为整数,其物理行為可以用玻色-愛因斯坦統計描述,不遵守泡利不相容原理,即處於單獨一個量子態上的粒子數目不受限制。他是於1964年提出希格斯機制的六位物理學者中的一位。2013年10月8日,因為“次原子粒子質量的生成機制理論,促進了人類對這方面的理解,並且最近由歐洲核子研究組織屬下大型強子對撞機的超環面儀器及緊湊緲子線圈探測器發現的基本粒子證實”,弗朗索瓦·恩格勒、彼得·希格斯榮獲2013年諾貝爾物理學獎。.

新!!: 粒子和希格斯玻色子 · 查看更多 »

希格斯玻色子的實驗探索

希格斯玻色子的實驗探索(search for the Higgs boson)指的是從實驗中證實希格斯玻色子存在與否?這是一個極為重要的基礎物理問題。物理學者花費四十多年時間尋找它。至今為止,全世界最昂貴、最複雜的實驗設施之一,大型強子對撞機(LHC),其建成的主要目的之一就是尋找與觀察希格斯玻色子與其它種粒子。2012年7月4日,歐洲核子研究組織(CERN)宣布,LHC的緊湊渺子線圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超過背景期望值4.9个标准差),超環面儀器(ATLAS)测量到质量为126.5GeV的新玻色子(5个标准差),这两種粒子极像希格斯玻色子。2013年3月14日,歐洲核子研究組織發表新聞稿正式宣布,先前探測到的新粒子是希格斯玻色子,並且暫時確認具有偶宇稱與零自旋,這是希格斯玻色子應該具有的兩種基本性質,但有一部分實驗結果不盡符合理論預測,更多數據仍舊等待處理與分析。 2013年10月8日,因為“次原子粒子質量的生成機制理論,促進了人類對這方面的理解,並且最近由歐洲核子研究組織屬下大型強子對撞機的超環面儀器及緊湊緲子線圈探測器發現的基本粒子證實”,弗朗索瓦·恩格勒、彼得·希格斯榮獲2013年諾貝爾物理學獎。 本篇文章從下段落起,將希格斯玻色子簡稱為「希子」。.

新!!: 粒子和希格斯玻色子的實驗探索 · 查看更多 »

希格斯玻色子的探索历史

在本篇文章裏,希格斯玻色子簡稱為「希子」。所有實驗結果的「置信水平」都是使用方法計算求得。假若偵測到可能為新粒子的事件數量超過背景數量,則稱此為「超額事件」。任何發現新粒子的超額事件必需多過5個標準差才可算為正式發現。假若超額事件多過5個標準差,則偵測錯誤的機會是百萬分之一。.

新!!: 粒子和希格斯玻色子的探索历史 · 查看更多 »

布莱恩·葛林

布莱恩·葛林(Brian Greene, )是美国著名的理论物理学家与超弦理论家。他自1996年以来担任了哥伦比亚大学(弦论、宇宙学和天体粒子研究中心 ISCAP)的教授。1999年他发表了他的第一本科普书《》,激发了他在普通大众中的知名度。之后他又撰写了《宇宙的构造》,《隐遁的事实》等书,还出演了在他书的基础上制作的PBS同名科学纪录片。葛林出演了著名美国喜剧《生活大爆炸》(第四季)第20集,《The Herb Garden Germination》。.

新!!: 粒子和布莱恩·葛林 · 查看更多 »

世界线

世界線(World line)是美國物理學家阿爾伯特·愛因斯坦於其1905年論文《論動體的電動力學》中提及的概念。他將時間和空間合稱為四維時空,粒子在四維時空中的運動軌跡即為世界線。在物理學上,世界線是物體穿越四維時空唯一的路徑,因加入時間維度而有別於力學上的「軌道」或「路徑」。.

新!!: 粒子和世界线 · 查看更多 »

三体用语列表

三体用语,为中国作家刘慈欣的科幻小说作品《三体》及其续作《三体II:黑暗森林》和《三体III:死神永生》的用语介绍。.

新!!: 粒子和三体用语列表 · 查看更多 »

康普頓波長

阿瑟·康普頓。 粒子的康普頓波長(Compton wavelength)λ,其關係式如下: 式中的變數符號 定義約化康普頓波長 \bar為 根據CODATA 2014的數值,電子的康普頓波長是2.4263102367(11)×10-12 m。 不同的粒子,有不同的康普頓波長.

新!!: 粒子和康普頓波長 · 查看更多 »

二體問題

在經典力學裏,二體問題(two-body problem)研究兩個粒子因彼此互相作用而產生的運動。這是個很重要的天文問題,常見的應用有衛星繞著行星公轉、行星繞著恆星公轉、雙星系統、雙行星、一個經典電子繞著原子核運動等等。 二體問題可以表述為兩個獨立的單體問題,其中一個是平凡的單體問題,另外一個單體問題研究一個粒子因外力作用而呈現的運動。由於很多單體問題有精確解(exact solution),即不需借助近似方法就可得到問題的解答;其對應的二體問題連帶地也可解析。顯然不同地,除了特別案例以外,三體問題(或者更複雜的多體問題)並沒有精確解。.

新!!: 粒子和二體問題 · 查看更多 »

应立人

应立人(Nelson Ying;),美国实业家、慈善家、佛教居士。任美国大中集团董事长兼主席。.

新!!: 粒子和应立人 · 查看更多 »

事件 (粒子物理學)

在粒子物理學裡,事件是指兩個粒子在極短的時間內互相交互作用。對粒子物理學家來說,事件是一個很重要的觀念,像是粒子加速器就是在尋找一些不尋常的事件:當粒子加速器讓粒子相撞時,會產生幾億次事件,這些事件大部分的是一些很尋常的事件,而粒子加速器的電腦軟體會自動過濾掉大部分的事件,留下幾百件比較特殊的事件,這些事件就有可能隱藏著一些新粒子的訊息(像希格斯玻色子)。.

新!!: 粒子和事件 (粒子物理學) · 查看更多 »

任意子

任意子是数学和物理学中的一个概念。它描述一类只在二维--系统中出现的粒子。它是对费米子和玻色子概念的广义化。.

新!!: 粒子和任意子 · 查看更多 »

介子

介子是自旋为整数、重子数为零的强子,参与强相互作用。介子属于强子类。它是比电子重的带电或不带电的粒子。 根据夸克模型,介子是由一个夸克和一个反夸克组成的束缚态,这一对夸克和反夸克可以是不同味的,例如π+=(ud¯),π-=(ūd),J/ψ=(cc),F=(cs)等。 自旋为0的介子,在量子场论中是用标量波函数描述,根据其宇称为-1或+1分别称为赝标介子和标量介子。自旋为1的介子,在量子场论中是用矢量波函数描述,根据其宇称为-1或+1分别称为矢量介子或轴矢介子。根据其内部量子数,已发现的介子可分为非奇异介子(π、ρ、J/ψ等)、奇异介子(K、Q、K*等)、粲-非奇异介子(D)、粲-奇异介子(F)、底-非奇异介子(B)等。.

新!!: 粒子和介子 · 查看更多 »

介观体系

介于微观体系与宏观体系之间的体系被称为介观体系(mesoscopic system)。 介观体系中物质粒子大小约在1nm~1μm之间。纳米粒子、胶团、微乳液、囊泡等都属于介观体系。 介观体系中大的粒子可用光学显微镜观测,小的粒子需用电子显微镜观测。 Category:基本物理概念.

新!!: 粒子和介观体系 · 查看更多 »

传播子

在量子力學以及量子场论中的传播子(propagator),是描述粒子在特定時間由一處移動到另一處的機率幅,或是粒子以特定能量及動量移動的機率幅。 传播子也是场的运动方程的格林函数。.

新!!: 粒子和传播子 · 查看更多 »

弗朗西斯·阿斯顿

弗朗西斯·威廉·阿斯顿(Francis William Aston,),英国化学家、物理学家,英国皇家学会院士,俄罗斯科学院荣誉院士。由于“借助自己发明的质谱仪发现了大量非放射性元素的同位素,以及阐明了整数法则”,他被授予1922年诺贝尔化学奖。.

新!!: 粒子和弗朗西斯·阿斯顿 · 查看更多 »

异常物质

在物理學中,奇異物質(exotic matter)指的是與普通物質不同,具有奇異特性的物質的統稱。奇異物質有以下幾種:.

新!!: 粒子和异常物质 · 查看更多 »

位移

在物理學裏,位移是位置的改變。假設從舊位置\mathbf\,\!改變到新位置\mathbf\,\!,則位移是\Delta\mathbf.

新!!: 粒子和位移 · 查看更多 »

德布罗意方程组

德布羅意方程組是描述物質波的方程組。德布罗意方程组描述了波长 \lambda 与动量 p、频率 \nu 与总能 E 之间的关系。 路易·德布羅意受光的波粒二象性启发,认为微观粒子也有波粒二象性。描述波的物理量为频率、波长;而描述粒子的物理量为能量、动量。德布罗意方程将这两组物理量联系在一起。.

新!!: 粒子和德布罗意方程组 · 查看更多 »

信使号

信使號(英文縮寫:MESSENGER,英文全寫: MErcury Surface, Space ENvironment, GEochemistry and Ranging,意譯為「水星表面、太空環境、地球化學與廣泛探索」)是美國國家航空暨太空總署在2004年8月3日发射的探測衛星,目的是為了研究水星表面的化學成分、地理環境、磁場、地質年代、核心的狀態及大小、自轉軸的運動情況、散逸層及磁場的分布等。 信使號是1975年水手10號任務完成之後,人類30年來首次近距離探測水星的任務。信使號具有的解析能力已大為改善,上面裝置的照相機解析度達18公尺(59英尺),與水手10號具有的1.6公里(0.99英里)相比解析度更佳。信使號是一個環繞行星軌道的任務,將使用超過一年探測整個水星表面,而水手10號則是一個行星飛越任務,只能夠觀察到半個水星。 在進入環水星軌道前,信使號執行了一系列複雜的飛越 - 總計飛越地球一次、金星兩次、水星三次,使它可以用最少的燃料做相對於水星的减速。 信使號在2011年3月18日進入環水星軌道,在3月24日重新喚醒它携帶的科學儀器,在3月29日傳回第一張從軌道拍攝的照片。信使號在2012年成功完成它的主要任務。在繼續完成兩個擴展任務之後,信使號於2015年初開始用它殘留的機動燃料執行軌道衰减。信使號任務結束後於2015年4月30日撞擊水星表面。.

新!!: 粒子和信使号 · 查看更多 »

心理史學 (阿西莫夫)

“心理史學”(Psychohistory)是著名科幻小說作家阿西莫夫(Isaac Asimov)在其作品基地系列中提出的學說,这种科学揉合了歷史学、數學、社會心理學、社會學、氣體動力學及統計學,用于统计和预测巨大人口的未来活动,在基地系列中该学科被用于预测银河帝国的命运和人类的未来。.

新!!: 粒子和心理史學 (阿西莫夫) · 查看更多 »

化学气相沉积

化學氣相沉積(chemical vapor deposition,簡稱CVD)是一種用來產生純度高、性能好的固態材料的化學技術。半導體產業使用此技術來成長薄膜。典型的CVD製程是將晶圓(基底)暴露在一種或多種不同的前趨物下,在基底表面發生化學反應或/及化學分解來產生欲沉積的薄膜。反應過程中通常也會伴隨地產生不同的副產品,但大多會隨著氣流被帶走,而不會留在反應腔(reaction chamber)中。 微制程大都使用CVD技术来沉积不同形式的材料,包括单晶、多晶、非晶及磊晶材料。这些材料有硅、碳纤维、碳奈米纤维、奈米线、奈米碳管、SiO2、硅锗、钨、硅碳、氮化硅、氮氧化硅及各种不同的等材料。CVD制程也常用来生成合成钻石。.

新!!: 粒子和化学气相沉积 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 粒子和分子 · 查看更多 »

分布 (数学分析)

数学分析中的分布是广义函数的一种,由法国数学家洛朗·施瓦茨首先于二十世纪五十年代引入。分布推广了普通意义上的函数概念。对于普通意义上不可导甚至不连续的函数,可以具备分布意义上的导数。事实上,任意局部可积的函数都有分布意义上的弱导数。在偏微分方程的研究中,常常使用分布来表示方程的广义解函数,因为很多时候传统意义上的解函数不存在或难以求出。分布理论在物理学和工程学中都十分有用,因为在应用中常会出现解或初始条件是分布的微分方程,例如初始条件可能是一个狄拉克δ分布。 广义函数的概念最早由谢尔盖·索伯列夫在1935年提出。1940年代末,施瓦茨等人开始建立分布理论,首次提出了一个系统清晰的广义函数理论。.

新!!: 粒子和分布 (数学分析) · 查看更多 »

具質量粒子

具質量粒子(massive particle)是指其靜止質量為非零实数的粒子。依照狭义相对论,這些粒子的速度都會比光速要慢。同義詞慢子(bradyon,源自from βραδύς,tardyon或ittyon) 有時會用來和(其速度為光速)及假想的快子(其速度為超光速)對比。.

新!!: 粒子和具質量粒子 · 查看更多 »

先驱者11号

先驱者11号(Pioneer 11)是第二个用来研究木星和外太阳系的空间探测器。它也是去研究土星和它的光环的第一个探测器。与先驱者10号不同的是,先驱者11号(也称做先驱者G号)不仅拜访木星。它还用了木星的強大引力去改变它的轨道飞向土星。它靠近土星后,就顺着它的逃离轨道離開太阳系。 探測器在1973年4月6日,位於佛羅里達州的卡納維爾角發射。探測器全長2.9米,設有一个直徑2.74米的高增益天線,在其之前再裝上一个中增益天線。至於另外一條全方位低增益天線則裝設於高增益天線接收器之下。探測器以兩個放射性同位素熱電機(RTG)作為能源,在拜訪木星時仍能產生144 瓦特,但到達土星時只能產生100 瓦特的功率。 探測器上還設有三個感應器:恆星(老人星)感應器及兩個太陽感應器,藉以根據相對於地球及太陽的位置,及以老人星的位置作後備,用以計算探測器的位置。先鋒11號的恆星感應器及起點設定,是按先鋒10號的經驗而被重新修改的。探測器上的三對火箭推進器,負責控制轉軸(4.8rpm)及為探制器提供動力。三對火箭推進器都可以按指令持續燃點,或暫停燃點亦可。 在探測器上的儀器負責研究星際間及行星的磁場太陽風、宇宙射線、太陽圈的轉變區域、大量存在的中性氫;星塵粒子的分佈、大小、質量、通量及速度;外太陽系行星極光、電波、其衛星的大氣層;以及木星與土星及其衛星的表面等等。 以上的研究主要由探測器上的磁力計、等離子分析器(太陽風專用)、粒子感測器、離子感測器、一具可以重疊不同視點來探測由經過的隕石折射而來的陽光的非影像望遠鏡、一些已密封並加壓的氬氣及氮氣用以計算隕石的滲透、測紫外光計、測紅外光計、及一具影像光偏計用以拍攝照片及計算光偏振等等。至於進一步的數據則從天體力學及掩星法現象去計算出來。.

新!!: 粒子和先驱者11号 · 查看更多 »

先进成分探测器

先进成分探测器(,ACE)是NASA研究太阳风中高能粒子、行星际物质和其他源的成分的探测计划以及太阳和空间探索任务。从ACE获得的实时数据被空间天气预测中心用于提高太阳风暴预测和预警能力 ACE发射于1997年8月25号,现在运行于接近拉格朗日点L1的利萨如轨道(位于日地之间距离地球150万公里)。观测器仍然良好运行中,拥有足够的燃料来保持轨道运行到2024年。NASA戈达德太空飞行中心管理ACE的开发和集成。.

新!!: 粒子和先进成分探测器 · 查看更多 »

光学

光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.

新!!: 粒子和光学 · 查看更多 »

光分解離子成像

光分解離子成像,或更普遍地來說,產物成像是一種測量化學反應或光分解產物速度分佈的實驗技術 。 該方法使用二維偵測器,通常是微通道板,來擷取透過共振增強多光子離子化之態選擇後的離子到達偵測器的位置。第一個光分解離子成像實驗是由大衛·錢德勒(David W. Chandler)和保羅·休斯頓(Paul L. Houston)在1987年完成,其題目為碘甲烷的光分解動態學。.

新!!: 粒子和光分解離子成像 · 查看更多 »

克莱因-戈尔登方程

克莱因-戈尔登方程式(Klein-Gordon equation)是相对论量子力学和量子场论中的最基本方程式,它是薛定谔方程式的狭义相对论形式,用于描述自旋为零的粒子。克莱因-戈尔登方程式是由瑞典理论物理学家奥斯卡·克莱因和德国人沃尔特·戈尔登于二十世纪二三十年代分别独立推导得出的。.

新!!: 粒子和克莱因-戈尔登方程 · 查看更多 »

前6世纪

前600年至前501年的这一段期间被称为前6世纪。.

新!!: 粒子和前6世纪 · 查看更多 »

固体

固體是物質存在的一種狀態,是四種基本物质状态之一。與液體和氣體相比,固體有固定的體積及形狀,形狀也不會隨著容器形狀而改變。固體的質地較液體及氣體堅硬,固體的原子之間有緊密的結合。固體可能是晶体,其空間排列是有規則的晶格排列(例如金屬及冰),也可能是無定形體,在空間上是不規則的排列(例如玻璃)。一般而言,固体是宏观物体,一个物体要达到一定的大小才能夠被称为固体,但是对其大小無明确的规定。 物理學中研究固體的分支稱為固体物理学,是凝聚态物理学的主要分支之一。材料科学探討各種常見固體的物理及化學特性。固體化學研究固體結構、性質、合成、表徵等的一門化學分支,也和一些固體材料的化學合成有關。.

新!!: 粒子和固体 · 查看更多 »

固態反應

固態反應不同於液體和氣體的反應(以分子大小的粒子相混合),而是取決於固體的形狀、運輸性質等。簡單來說,就是物質在晶體中流動、反應。可以分為均勻固態反應、單相分均勻固態反應、非均勻固態反應等。.

新!!: 粒子和固態反應 · 查看更多 »

倍压加速器

倍壓加速器 是直流高壓加速器的一種,運用倍壓整流電路產生的直流高電壓加速帶電粒子,至於其他的構造就和一般的粒子加速器一樣。他只要是先在加速氣一端的高壓電極內,產生所需要的帶電粒子束,當直流高壓電加到高壓電極和加速管中的各個加速電極上時,各電極之間就產生了電場,並且把粒子加速。 Category:粒子加速器.

新!!: 粒子和倍压加速器 · 查看更多 »

Cinema 4D

Cinema 4D是一套由德国公司Maxon Computer开发的三维绘图软件,以其高的运算速度和强大的渲染外掛著称。Cinema 4D应用广泛,在广告、电影、工业设计、等方面都有出色的表现,例如影片《毁灭战士》(Doom)、《-zh-hans:范海辛; zh-hant:凡赫辛;-》(Van Helsing)、《-zh-hans:蜘蛛侠; zh-hant:蜘蛛人;-》、以及动画片《-zh-hans:极地特快; zh-hant:北極特快車;-》、《-zh-hans:丛林大反攻; zh-hant:打獵季節;-》(Open Season)等等。它正成为许多一流艺术家和电影公司的首选,Cinema 4D已经走向成熟。.

新!!: 粒子和Cinema 4D · 查看更多 »

玻色子

在量子力學裡,粒子可以分為玻色子(boson)與費米子。Carroll, Sean (2007) Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 43, The Teaching Company, ISBN 978-1-59803-350-2 "...boson: A force-carrying particle, as opposed to a matter particle (fermion).

新!!: 粒子和玻色子 · 查看更多 »

火(Fire)是物質燃燒過程中所進行的強烈氧化反應,而且其能量會以光和熱形式釋放,此外還會產生大量的生成物。緩慢的氧化反應,例如生锈或消化不在上述的定義中。 火的可见部分称作焰,可以隨著粒子的振動而有不同的形狀,在温度足够高时能以等离子体(第四態,類似氣體)的形式出現。依燃燒的物質及以純度不同,火焰的顏色和亮度也會不同。 火必須有可燃物、夠高的熱或溫度、氧化劑及化學物四項並存才能生火,缺一不可,根據質量守恆定律,火不會使被燃燒物的原子消失,只是通過化學反應轉變了被燃燒物的分子型態。火失控時,常常稱作失火或火災。 火是影響全球生態系統的重要因素之一,火的正面影響可以維持各種的生態系統以及刺激其成長。人類用火來烹調、生熱、產生訊號、照明及推進等。火的負面影響包括水體污染、土壤流失、空氣污染及對生命財產的危害。而造成全球溫度昇高的溫室效應,其原因之一就是來自燃燒化石燃料產生的二氧化碳。.

新!!: 粒子和火 · 查看更多 »

火山灰

火山灰是火山喷发物之一;粒径在2毫米以下的碎石、礦物質或火山玻璃,像灰尘;颜色深灰、浅灰、白和黄。火山灰也被俗称所有火山喷出物,其实正确说法是火山喷发碎屑。 在火山爆炸式喷发中,岩浆中不可溶的气体扩散并狂暴释放入大气层,从而把岩浆喷入了大气层并在空中固体化为細微的粒子而形成火山灰。另一种情形是蒸汽岩浆喷发也会形成火山灰释入大气层。 火山灰由于非常细小,可以被风吹扬到离火山喷发区很远的地方,甚至上千公里以外,并且在喷發结束后经过很长时间才沉积下来;火山灰经过压实固节后形成火山凝灰岩,如果经过沉积作用,并和泥沙相结合,则形成火山作用和沉积作用混合成因的层凝灰岩。 由于火山灰主要来源于岩浆,因此可用二氧化硅的含量来解释不同岩浆(及火山灰)的性质。玄武岩浆低能量喷发产生暗色火山灰,二氧化硅含量 ~45 - 55%,铁镁含量丰富。流纹岩浆的爆炸喷发产生长英质的火山灰,二氧化硅含量>69%。安山岩与英安岩浆产生的火山灰二氧化硅含量55-69%。 火山灰微粒包含不同成份:、晶体、等。 黏度低的岩浆喷发(如玄武岩浆的夏威夷式喷发与)产生火山碎屑岩。 夏威夷火山岩浆产生的火山灰包括火山碎屑,极少含微晶与。黏度更大的玄武岩浆喷发(如斯特龙博利火山)形成各种火山碎屑,从不规则的微滴到块状(黑色或暗褐色微晶火山碎屑)。与之相反,二氧化硅含量高的火山灰包含浮石、单个斑晶、某些石质成分()被粉碎的产物。 火山灰的形状受制于喷发的多样性与动力过程。 低黏度岩浆的喷发典型形成液滴状火山灰微粒,受到表面张力、喷发时的加速度、空气摩擦力影响,从完美球形到扭曲拉长的液滴形,具有光滑流态表面。高黏度岩浆(如流纹岩、英安岩与某些安山岩)形成的火山灰依赖于岩浆上升至碎裂。气孔是在岩浆固化前所含气体扩散形成的。火山灰微粒有不同的多孔度并有极高的表面积体积比。微粒上可观测到的凹洞、沟槽、管路等结构是气泡破裂的结果。 来自高黏度岩浆喷发的玻璃质火山灰微粒典型是有角的多气孔浮石碎片或薄气孔壁碎片,火山灰中的岩质碎片受制于岩浆接近地表时被气体爆炸爆炸弄碎的围岩的力学性质。蒸汽岩浆喷发形成的火山灰形态取决于冷却的岩浆的应力使得玻璃质碎裂成小块状或金字塔状火山灰微粒。 不同喷发类型形成的火山灰具有不同密度。浮石火山灰密度在700–1200 kg/m3;玻璃质碎片火山灰的密度2350–2450 kg/m3;晶体火山灰密度2700–3300 kg/m3;岩屑火山灰密度在2600–3200 kg/m3。由于更粗且密度更大的火山灰近源沉积,远距离沉降的火山灰具有更大比例的浮石与玻璃质。 火山灰可细小到1 μm.

新!!: 粒子和火山灰 · 查看更多 »

球對稱位勢

球對稱位勢乃是一種只與徑向距離有關的位勢。許多描述宇宙交互作用的基本位勢,像重力勢、電勢,都是球對稱位勢。這條目只講述,在量子力學裏,運動於球對稱位勢中的粒子的量子行為。這量子行為,可以用薛丁格方程式表達為 其中,\hbar是普朗克常數,\mu是粒子的質量,\psi是粒子的波函數,V是位勢,r是徑向距離,E是能量。 由於球對稱位勢V(r)只與徑向距離有關,與天頂角\theta、方位角\phi無關,為了便利分析,可以採用球坐標(r,\ \theta,\ \phi)來表達這問題的薛丁格方程式。然後,使用分離變數法,可以將薛丁格方程式分為兩部分,徑向部分與角部分。.

新!!: 粒子和球對稱位勢 · 查看更多 »

碰撞

“碰撞”在物理学中表现为两粒子或物体间极短的相互作用。 碰撞前后参与物发生速度,动量或能量改变。由能量转移的方式区分为弹性碰撞和非弹性碰撞。彈性碰撞是碰撞前後整個系統的動能不變的碰撞。彈性碰撞的必要條件是動能沒有轉成其他形式的能量(熱能、轉動能量),例如原子的碰撞。非弹性碰撞是碰撞后整个系统的部分动能转换成至少其中一碰撞物的内能,使整个系统的动能无法守恒。 下面示例的碰撞原理的数学表述是由克里斯蒂安·惠更斯在1651年到1655年间提出的。.

新!!: 粒子和碰撞 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 粒子和磁場 · 查看更多 »

福克-普朗克方程

福克-普朗克方程(Fokker–Planck equation)描述粒子在位能場中受到隨機力後,隨時間演化的位置或是速度的分布函數 。此方程式以荷蘭物理學家與馬克斯·普朗克的姓氏來命名。 一維 x方向上,福克-普朗克方程有兩個參數,一是拖曳參數 D1(x,t),另一是擴散 D2(x,t) 在N 維空間中的福克-普朗克方程是.

新!!: 粒子和福克-普朗克方程 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 粒子和离子 · 查看更多 »

空气簇射

气簇射(Air shower):宇宙射线进入大气层,与大气中的分子多次碰撞,相互作用后,产生许多游离的粒子和电磁辐射;在许多公里范围内出现彩色的射束;这种现象称为空气簇射。 这是天文学家布鲁诺·罗西于1930年末观察宇宙射线时发现的。 宇宙射线中包含各种粒子,如:质子、核、电子、光子、正电子等,以及电磁辐射。它们冲击空气中的分子,产生许多带能量的不稳定正子,衰变成其它的粒子和电磁辐射。 它们是空气簇射中的部分成份。宇宙射线和空气分子碰撞后,主要产生介子;也有K介子。它们是不稳定的,不久就衰变为其它粒子。其中的中性介子衰变为光子;光子和空气相互作用而产生电磁波和更多的光子和正子;这就是空气簇射彩色光的成因。 直到现在,超高能(>10^18 eV)宇宙射线的本质和来源仍然是个谜。 天体物理学者計劃测量广泛空气簇射的深度、二次发射粒子的数目、入射粒子的质量和能量的关系,来得到超高宇宙射线成分的知识。 皮埃尔和欧捷合作测量了从超高能宇宙射线而来的广泛空气簇射数据,得出能量在10的19次方eV范围的宇宙射线的平均质量是渐渐增大的。.

新!!: 粒子和空气簇射 · 查看更多 »

等焓等压系综

等压等焓(contant-pressure,constant- enthalpy),简写为NPH,即表示具有确定的粒子数(N)、压强(P)、焓(H)。由于由于H.

新!!: 粒子和等焓等压系综 · 查看更多 »

等離子體參數

等離子體參數就是一系列決定電漿性質的參數。一般來說是以厘米-克-秒制來當作參數的基本單位,但是溫度卻是以電子伏特(eV)當作單位,而質量則是以質子質量(μ.

新!!: 粒子和等離子體參數 · 查看更多 »

粒子加速器

粒子加速器(particle accelerator)是利用電場來推動帶電粒子使之獲得高能量。日常生活中常見的粒子加速器有用於電視的陰極射線管及X光管等設施。只有当被加速的粒子置於抽真空的管中时,才不會被空氣中的分子所撞擊而潰散。在高能加速器裡的粒子由四極磁鐵(quadrupole magnet)聚焦成束,使粒子不會因為彼此間產生的排斥力而散開。 粒子加速器有兩種基本型式,環形加速器和直線加速器。.

新!!: 粒子和粒子加速器 · 查看更多 »

粒子群演算法

粒子群演算法(Particle Swarm Optimization,簡稱PSO),或稱粒子群优化,是屬於人工智慧演算法,西元1995年由肯尼迪(Kennedy)與埃伯哈特(Eberhart)(1995)兩位學者所提出,這兩位學者藉由觀察鳥類族群覓食的訊息傳遞所得到的一個啟發,粒子群演算法的理論基礎是以單一粒子來做為鳥類族群之中的單一個體,於演算法中賦予該粒子(個體)擁有記憶性,並能夠透過與粒子群體中的其他粒子之間的互動而尋求到最適解。因此在粒子群演算法的基礎理論可以理解,任一個體(粒子)皆可用有自身移動過程中所產生的記憶與經驗,當個體移動的同時,能依造自身的經驗與記憶來學習調整自身的移動方向,由於在粒子群演算法中,多個粒子是同時移動的,且同時以自身經驗與其他粒子所提供的經驗進行比對找尋最適當的解,並使自己處於最適解中,該粒子群演算法的特性使得粒子不單單受自身演化的影響,同時會對群體間的演化擁有學習性、記憶性,並使粒子本身達到最佳調整。 Category:最优化算法 en:Particle swarm optimization.

新!!: 粒子和粒子群演算法 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

新!!: 粒子和粒子物理學 · 查看更多 »

粒子束武器

粒子束武器是指使用粒子加速器令粒子高速移動進行撞擊目標的一種強力武器。他由發射高度聚集的强原子粒子束流或亞原子粒子束流,以0.6C-0.8C光速的速度撞擊目標的武器。.

新!!: 粒子和粒子束武器 · 查看更多 »

約束 (經典力學)

在經典力學裏,物體的運動必須遵守牛頓運動定律。除此以外,每一個物理系統時常會有一些約束,物體的運動也必須遵守這些約束。例如,簡單擺系統的約束是擺繩的長度是常數,擺錘與支撐點的距離必須是這長度。除非水瓶破了,一個封閉的水瓶裏的水分子,絕對不能運動到水瓶的外面。這些約束使物理系統的特性呈現出來。要分析一個物理系統,必須了解這系統裏的約束。 因為約束的作用,在分析物體的運動上,會遇到一些新的困難:.

新!!: 粒子和約束 (經典力學) · 查看更多 »

緊湊緲子線圈

緊湊緲子線圈(CMS,Compact Muon Solenoid),瑞士歐洲核子研究組織CERN的大型強子對撞機計劃的兩大通用型粒子偵測器中的一個。直至2006年,已有約2300位來自159個不同的研究機構的科學家,共同參與建設。CMS將建在法國的Cessy的地下洞穴中,剛好跨過瑞士日內瓦的邊境。完成後的偵測器將是一個長約21公尺,直徑約16公尺的筒狀的結構,重量達12500公噸(這也是其名稱的由來)。.

新!!: 粒子和緊湊緲子線圈 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

新!!: 粒子和经典力学 · 查看更多 »

绝对零度

絕對零度(absolute zero)是熱力學的最低溫度,是粒子动能低到量子力学最低点时物质的温度。绝对零度是僅存於理論的下限值,其熱力學溫標寫成K,等於攝氏溫標零下273.15度(即−273.15℃)。 物質的溫度取決於其內原子、分子等粒子的動能。根據麥克斯韋-玻爾茲曼分佈,粒子動能越高,物質溫度就越高。理論上,若粒子動能低到量子力學的最低點時,物質即達到絕對零度,不能再低。然而,根據熱力學第二定律,絕對零度永遠無法達到,只可無限逼近。因為任何空間必然存有能量和熱量,也不斷進行相互轉換而不消失。所以絕對零度是不存在的,除非該空間自始即無任何能量熱量。在此一空間,所有物質完全沒有粒子振動,其總體積並且為零。 有關物質接近絕對零度時的行為,可初步觀察。定義如下: 其中h為普朗克常數、m為粒子的質量、k為波茲曼常數、T為絕對溫度。可見熱德布洛伊波長與絕對溫度的平方根成反比,因此當溫度很低的時候,粒子物質波的波長很長,粒子與粒子之間的物質波有很大的重疊,因此量子力學的效應就會變得很明顯。著名的現象之一就是在1995年首次被實驗證實的玻色-愛因斯坦凝聚,當時溫度降至只有1.7×10-7 K。.

新!!: 粒子和绝对零度 · 查看更多 »

绝热不变量

在等离子体物理学中,绝热不变量是指在一个缓慢变化的系统中,若并不具有完全周期性的运动的运动积分\oint p\,\mathrmq仍然为常数,则该运动积分\oint p\,\mathrmq可以称为绝热不变量,又称浸渐不变量,或缓渐不变量。此处系统的变化需要比运动周期慢。 浸渐不变量有一种错误的写法是寝渐不变量。出现这种错误的原因是繁体“浸”的一种字体是“寖”,和“寝”很像。 由于系统发生了变化,\oint p\,\mathrmq已经不是一个严格的闭路积分,但仍然可以很好的定义。 在等离子体物理学中,绝热不变量起着重要的作用,可以使研究者对很多涉及复杂运动的事例得到简单的答案。绝热不变量有三个μ、J、Φ,每个都与不同类型的周期性运动相对应。.

新!!: 粒子和绝热不变量 · 查看更多 »

绝热过程

绝热过程(Adiabatic process)是一个绝热体系的变化过程,绝热体系为和外界没有热量和粒子交换,但有其他形式的能量交换的体系,属于封闭体系的一种。绝热过程有绝热压缩和绝热膨胀两种。常见的一个绝热过程的例子是绝热火焰温度,该温度是指在假定火焰燃烧时没有传递热量给外界的情况下所可能达到的温度。现实中,不存在真正意义上符合定义的绝热过程,绝热过程只是一种近似,所以有时也称为绝热近似。 绝热过程分为可逆过程(熵增为零)和不可逆过程(熵增不为零)两种。可逆的绝热过程是等熵过程。等熵过程的对立面是等温过程,在等温过程中,最大限度的热量被转移到了外界,使得系统温度恒定如常。由于在热力学中,温度与熵是一组共轭变量,等温过程和等熵过程也可以视为“共轭”的一对过程。 如果一个热力学系统的变化快到足以忽略与外界的热交换的话,这一变化过程就可以视为绝热过程,又称“准静态过程”。准静态过程的熵增可以忽略,所以视作可逆过程,严格说来,在热力学中,准静态过程与可逆过程没有严格区分,在某些文献中被作为同义词使用。 同样的,如果一个热力学系统的变化慢到足以靠与外界的热交换来保持恒温的话,该过程则可以视为等温过程。.

新!!: 粒子和绝热过程 · 查看更多 »

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

新!!: 粒子和维尔纳·海森堡 · 查看更多 »

真相 (小說)

《真相》是倪匡筆下科幻小說衛斯理系列之一。故事敍述衛斯理等人,了解到一個多功能容器的秘密。本故事的上半部份,記載於錯手中。.

新!!: 粒子和真相 (小說) · 查看更多 »

热运动

热运动是自然界中独立存在的基本运动形式之一,有巨大数量微观粒子(分子、原子、电子或点阵粒子等)参与的永不停息的无规则运动,并伴有频繁碰撞。.

新!!: 粒子和热运动 · 查看更多 »

热胀冷缩

熱脹冷縮是指物體受熱時會膨脹,遇冷時會收縮的特性。由於物體內的粒子(原子)運動會隨溫度改變,當溫度上升時,粒子的振動幅度加大,令物體膨脹;但當溫度下降時,粒子的振動幅度便會減少,使物體收縮。 熱脹冷縮是一般物體的特性,但水(4°C以下)、銻、鉍、鎵和青銅等物質,在某些溫度範圍內受熱時收縮,遇冷時會膨脹,恰與一般物體特性相反。因此,水結冰時,冰是先在水面出現。由於鐵軌有熱脹冷縮的特性,因此鐵軌連結時須保持一定的間隙(以防止氣溫升高時,鐵軌因受熱膨脹伸長而相互推擠變形),再以魚尾鈑與螺桿將鐵軌相互連結起來。.

新!!: 粒子和热胀冷缩 · 查看更多 »

爱因斯坦望远镜

爱因斯坦望远镜是欧洲万有引力天文台(EGO)正在建造的一部望远镜,希望能够验证爱因斯坦提出的引力波理论并用于探测黑洞 。 爱因斯坦望远镜将建造在一个12英里长、埋入地0.5英里的隧道网中。有两个长6英里的臂,每个臂的终端放置反射目标,高精度激光沿着两个臂前进,末端的目标各反射一束激光。当引力波同粒子相互作用时,引力波会被粒子拉伸或收缩。计算机根据粒子拉伸和收缩的差异来计算引力波。预计将于2015年落成。 目前正在为爱因斯坦望远镜选址。.

新!!: 粒子和爱因斯坦望远镜 · 查看更多 »

病毒 (消歧义)

病毒可以指:.

新!!: 粒子和病毒 (消歧义) · 查看更多 »

炭疽病

炭疽病(英語:anthrax)是由炭疽桿菌感染造成的疾病,感染途徑包括皮膚接觸、呼吸道、消化道以及注射等四種,通常在感染一天至兩個月後開始出現症狀,經由皮膚接觸的感染會出現小水泡,周圍腫脹並常轉變為無痛的皮膚病,患部中央焦黑。經由呼吸道感染的症狀為發燒、胸痛、呼吸困難,經由消化道感染則會出現噁心、嘔吐、腹瀉或腹痛等症狀,經由注射感染會造成發燒及藥物注射部位的膿瘍。 炭疽病藉由接觸細菌孢子傳染,而孢子最常出現於動物製品上。傳播途徑包含吸入、食入,或皮膚傷口等等。本病鮮少直接人傳人,風險因子包含動物製品製造者、旅客、郵務員,或軍事人員。診斷方式包含偵測血中抗體或毒素,也可從患部採樣進行細菌培養輔助診斷。 建議高風險者接種炭疽病疫苗,先前曾出現炭疽病案例的地區也建議可為動物施打疫苗。若在暴露於風險環境後施打兩個月的抗生素,例如多西環素或環丙沙星,也可避免感染。若已經感染,則可以抗生素或抗毒素治療,所採用的抗生素種類與數量依感染的種類而定,而大範圍感染的患者建議採用抗毒素。 人類的炭疽病最常見於非洲和中南亞。它也在南歐頻繁發生,但在北歐和北美不常見。全球每年至少發生2000例,美國每年約有兩例。發生案例中,皮膚感染佔95%以上。若未治療,皮膚炭疽死亡率是24%。即使有治療,腸道感染死亡風險為25%至75%,而呼吸道感染的炭疽病死亡率為50%至80%。直到20世紀,每年有數十萬人和動物被炭疽病原感染而死亡。炭疽病原已被許多國家開發為武器。當放牧時,草食動物食用或呼吸吸入孢子時會受感染。肉食動物可能因取食已感染動物而感染。.

新!!: 粒子和炭疽病 · 查看更多 »

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

新!!: 粒子和电磁辐射 · 查看更多 »

电流密度

在電磁學裏,電流密度(current density)是電荷流動的密度,即每單位截面面積電流量。電流密度是一種向量,一般以符號\mathbf表示。採用國際單位制,電流密度的單位是安培/公尺2(ampere/meter2,A/m2)。.

新!!: 粒子和电流密度 · 查看更多 »

無是沒有、虛無和空的同義詞,有(存在)的反義詞。在東方哲學中,空可能和有的意義不同,分別屬於佛家和道家的思想。神學與哲學研究無的概念已經有一段時間,例如佛教和道家。數學有時會用無來描述一些狀況。物理學上,没有真正的真空;宇宙誕生带来时间,没有「宇宙誕生之前」的一个概念(或是宇宙誕生前是虛時間)。.

新!!: 粒子和無 · 查看更多 »

無限深方形阱

在物理學裏,無限深方形阱(infinite square potential),又稱為無限深位勢阱(infinite potential well),是一個阱內位勢為 0 ,阱外位勢為無限大的位勢阱。思考一個或多個粒子,永遠地束縛於無限深位勢阱內,無法逃出。關於這些粒子的量子行為的問題,稱為無限深方形阱問題,又稱為無限深位勢阱問題,盒中粒子問題(particle in a box problem),是一個理論問題。假若,阱內只有一個粒子,則稱為單粒子無限深方形阱問題。假若,阱內有兩個粒子,則稱為雙粒子無限深方形阱問題。假若,這兩個粒子是完全相同的粒子,則問題又複雜許多,稱為雙全同粒子無限深方形阱問題。在這裏,只討論單粒子無限深方形阱問題。 在經典力學裏,應用牛頓運動定律,可以非常容易地求得無限深方形阱問題的解答。假設粒子與阱壁的碰撞是彈性碰撞,粒子的動能保持不變。則這粒子在方形阱的兩阱壁之間來回移動,碰撞來,碰撞去,而速率始終保持不變。在任意時間,粒子在阱內各個位置的機率是均勻的。 在量子力學裏,這問題突然變得很有意思。許多基要的概念,在這問題的解析中,呈現了出來。由於問題的理想化與簡易化,應用薛丁格方程,可以很容易地,雖然並不是很直覺地,求得解答。滿足這薛丁格方程的能量本徵函數,是表達粒子量子態的波函數。每一個能量本徵函數的能量,只能是離散能級譜中的一個能級。很令人驚訝的是,離散能級譜中最小的能級不是 0 ,而是一個有限值,稱為零點能量!這系統的最小能級量子態的能級不是 0 。 更加地,假若測量粒子的位置,則會發現粒子在阱內各個位置的機率大不相同。在有些位置,找到粒子的機率是 0 ,絕對找不到粒子。這些結果與經典力學的答案迥然不同。可是,這些結果所根據的原理,早已在許多精心設計的實驗中,廣泛地證明是正確無誤的。.

新!!: 粒子和無限深方形阱 · 查看更多 »

物体

在物理学裡,物体是一群物质的聚集,被认定为独一的。例如,棒球可以被认为是一个物体;但是,棒球本身乃是由许多粒子形成的。 具体而言,物体是可以被经典力学或量子力学的理论描述的;也可以用科学仪器,做客观的实验,来证明这些理论的正确。这包括位置的测量,或在空间裡方位的测量,以及因为施力造成的这些测量值的改变。 例如,万有引力会使物体加速,如果此物体没有被固定住,导致它的位置改变。但是,值得注意的是,物体位置的改变并不须要有力量的存在-只有物体位置的变率,就是速度,会因力量的作用而改变。.

新!!: 粒子和物体 · 查看更多 »

物理学家

物理學家是指受物理學訓練、並以探索物質世界的組成和運行規律(即物理學)為目的科學家。研究範疇可細至構成一般物質的微細粒子,大至宇宙的整體,不同的範圍都會有相對的專家。對應於物理學分為理論物理學和實驗物理學,物理学家也可以分為理論物理學家和實驗物理學家。物理學中理論和實驗都是必不可缺的组成部分,所以有时候這樣的分類很難界定,只不過在一個物理學家更偏重理論的情况下,被稱為理論物理學家的例子包括爱因斯坦、海森堡、狄拉克、埃爾溫·薛丁格、尼爾斯·波耳、楊振寧等;而若偏重實驗,則稱為實驗物理學家,例如艾薩克·牛頓、法拉第、亨利·貝克勒、尼古拉·特斯拉、馬克斯·馮·勞厄、約瑟夫·湯姆森、歐內斯特·勞倫斯、吳健雄、威廉·肖克利、朱棣文等。.

新!!: 粒子和物理学家 · 查看更多 »

狄拉克费米子

物理学中,狄拉克费米子是反粒子与自身不同的费米子。绝大多数粒子因为反粒子与自身不同,而属于狄拉克费米子,粒子物理学中除中微子外,标准模型中的所有费米子都是狄拉克费米子。狄拉克费米子以保罗·狄拉克命名,可以用狄拉克方程描述。 一个狄拉克费米子相当于两个外尔费米子。与狄拉克费米子对应的是反粒子与自身相同的马约拉纳费米子。 除此之外,在凝聚态物理学中,石墨烯和拓扑绝缘体的低能激发是由狄拉克方程描述的费米子准粒子。.

新!!: 粒子和狄拉克费米子 · 查看更多 »

狄拉克δ函数

在科學和數學中,狄拉克函數或簡稱函數(譯名德爾塔函數、得耳他函數)是在實數線上定義的一個廣義函數或分佈。它在除零以外的點上都等於零,且其在整個定義域上的積分等於1。函數有時可看作是在原點處无限高、无限细,但是总面积为1的一個尖峰,在物理上代表了理想化的質點或点电荷的密度。 從純數學的觀點來看,狄拉克函數並非嚴格意義上的函數,因為任何在擴展實數線上定義的函數,如果在一個點以外的地方都等於零,其總積分必須為零。函數只有在出現在積分以內的時候才有實質的意義。根據這一點,函數一般可以當做普通函數一樣使用。它形式上所遵守的規則屬於的一部分,是物理學和工程學的標準工具。包括函數在內的運算微積分方法,在20世紀初受到數學家的質疑,直到1950年代洛朗·施瓦茨才發展出一套令人滿意的嚴謹理論。嚴謹地來說,函數必須定義為一個分佈,對應於支撐集為原點的概率測度。在許多應用中,均將視為由在原點處有尖峰的函數所組成的序列的極限(),而序列中的函數則可作為對函數的近似。 在訊號處理上,函數常稱為單位脈衝符號或單位脈衝函數。δ函數是對應於狄拉克函數的離散函數,其定義域為離散集,值域可以是0或者1。.

新!!: 粒子和狄拉克δ函数 · 查看更多 »

狄拉克旋量

量子場論中,狄拉克旋量(Dirac spinor)為一,出現在自由粒子狄拉克方程式的平面波解中: 自由粒子的狄拉克方程式為: 其中(採用自然單位制\scriptstyle c \,.

新!!: 粒子和狄拉克旋量 · 查看更多 »

盒中氣體

在量子力學裏,盒中氣體是一个理论模型,指的是在一個盒子內,一群不會互相作用的粒子。盒子內的位勢為零,盒子外的位勢為無限大。這些粒子永遠地束縛於盒子內,無法逃出。靠著粒子與粒子之間數不盡的瞬時碰撞,盒中氣體得以保持熱力平衡狀況。盒中氣體這個簡單的理論模型可以用來描述經典理想氣體,也可以用來描述各種各樣的量子理想氣體,像費米氣體、玻色氣體、黑體輻射、等等。 應用馬克士威-玻茲曼統計、玻色-愛因斯坦統計、與費米-狄拉克統計的理論結果,取非常大的盒子的極限,表達能量態的簡併為一個微分,然後以積分來總合每一個能量態,再用配分函數或大配分函數計算氣體的熱力性質。這計算的結果可以用來分析正質量粒子氣體或零質量粒子氣體的性質。 此篇文章是盒中粒子理論的進階。閱讀此篇文章前,必須先了解盒中粒子理論。.

新!!: 粒子和盒中氣體 · 查看更多 »

銜尾蛇

銜尾蛇(英语:Ouroboros,音譯烏洛波羅斯,,亦作咬尾蛇),是一個古代流傳下來的符號,形象為一條蛇(或龍)吞食自己的尾巴,結果形成一個圓環(有時亦會展示成扭紋形,即阿拉伯數字「8」的形狀),其名字涵義為「自我吞食者」。這個符號一直都有很多不同的象徵意義,而當中最為人接受的是「無限大」、「循環」等。另外,銜尾蛇亦是宗教及神話中的常見符號,在煉金術中更是重要的徽記。近代,有些心理學家(如卡爾·榮格)認為,銜尾蛇其實反映了人類心理的原型。.

新!!: 粒子和銜尾蛇 · 查看更多 »

蟻人 (電影)

《蟻俠》(Ant-Man)是一部於2015年上映的美國超級英雄電影,改編自漫威漫畫的同名漫畫書。由漫威工作室製作,華特迪士尼影業發行。本片為漫威電影宇宙系列的第十二部電影(第二階段的最後一部)。派頓·瑞德執導,保羅·路德飾演蟻人,麥可·道格拉斯飾演漢克·皮姆;其他演員包含寇瑞·史托爾、伊万杰琳·莉莉、麥可·潘納、波比·簡拿威、T.I.、伍德·哈瑞斯、及等。 《蟻人》於2015年6月29日在洛杉磯首映,並在2015年7月17日於美國正式上映(含2D和IMAX 3D)。電影發行後,在全球收穫超過5.19億美元的票房,並得到影評人的普遍讚譽。續集《蟻人與黃蜂女》將在2018年7月6日發行。.

新!!: 粒子和蟻人 (電影) · 查看更多 »

聲致發光

聲致發光(sonoluminescence),是指當液體中的氣泡受到聲音的激發時,氣泡內爆(implosion)並迸發出極短暫的亮光的現象。.

新!!: 粒子和聲致發光 · 查看更多 »

菲利普·莱纳德

菲利普·冯·莱纳德(Philipp von Lenard,),德国物理学家,1905年诺贝尔物理学奖获得者。 莱纳德在研究阴极射线时曾获得卓越成果,为此获得诺贝尔奖;他用实验发现了光电效应的重要规律;他也提出过一种原子结构设想。.

新!!: 粒子和菲利普·莱纳德 · 查看更多 »

非游離輻射

非游離輻射(Non-ionizing radiation)是指波長较长、頻率较低、能量低的射線(粒子(主要是光子)或波的双重形式)或电磁波。輻射可分為游離輻射和非游離輻射,非游離輻射无法從(绝大多数)原子或分子裡面游離(ionize)出電子。.

新!!: 粒子和非游離輻射 · 查看更多 »

衝撞

衝撞(Moshing或Slamdancing)是一種極端的舞蹈風格、重金屬音樂互動文化。參與者用手推、或用身體撞擊彼此,這是由於演唱會聽眾主動以身體姿態去享受現場的音樂、展現對台上表演樂團的歡迎,以及重金屬音樂的激烈特性形成這種動作。衝撞起源於1970年代末期美國加州和華盛頓特區的硬核龐克表演現場,隨後在龐克搖滾、鞭擊金屬與油漬搖滾表演現場的觀眾也開始這樣做,逐漸成為一種風行的舞蹈動作。從那時起,衝撞除了在龐克和重金屬樂團的表演中會出現外,偶爾也能在各式各樣的音樂流派裡發現,包括另類搖滾、電子舞曲和嘻哈音樂這種同樣精力充沛的音樂。雖然衝撞主要是在現場演唱會上進行的,但許多樂迷在私人空間聽音樂時也會玩起這種動作Tsitsos, William。 衝撞是充滿精力、非常自由、極富變化性和肢體接觸的舞蹈動作,它可以獨自一人、也可以從十幾個人到幾千人同時進行。在衝撞出現的場景中,視觀眾參與意願的不同,周圍會圍著退開、沒有參與的觀眾,將被撞出來的人推回衝撞範圍內,這個由參與衝撞者所占領的範圍即稱為「衝撞區」(Mosh Pit)。衝撞雖然主要是以手臂撞擊對方,但也有較危險的揮拳「猛撞」(Slam Pit)、俗稱洗衣機的漩渦「繞圈衝撞」(Circle Pit)和觀眾們分為兩邊,再隨音樂快速衝向對面的「死牆」(Wall Of Death)等不同形式。衝撞通常是在靠近舞台的區域出現,因為最前方往往是較熱情投入的觀眾。 衝撞是一種積極的樂迷回應或表達享受音樂的方式,大部分時候衝撞不會造成受傷,參與者通常也沒有傷害他人的意圖,而且會協助跌倒的人。但是衝撞也有許多造成傷亡的紀錄,它的危險性受到許多批評。其中「死牆」是最激烈、最極端的衝撞形式,這是鞭擊金屬樂迷發展出來的動作Nussbacher, Mike (2004).

新!!: 粒子和衝撞 · 查看更多 »

风云系列卫星

风云系列卫星是中国的气象卫星,由上海航天技术研究院研制,主用户为中国气象局,目前有地球静止轨道风云二号E、F、G星、风云四号A星,太阳同步轨道风云三号A、B、C星7颗卫星在轨运行。中国地球静止气象卫星预定的定点位置有三个:105ºE、86.5ºE和123.5ºE,其中105ºE为业务卫星的定点位置,其他两个位置一般用于备分星或准备废弃卫星的位置。 风云系列卫星已被世界气象组织列入全球業務應用氣象衛星序列。.

新!!: 粒子和风云系列卫星 · 查看更多 »

香港空氣質素健康指數

氣--健康指數(Air Quality Health Index,簡稱AQHI)是香港空氣污染情況的一項指標,由香港環境保護署於2013年12月30日起推出以香港市民健康為本的空氣--健康指數,取代由1995年沿用、使用了18年的空氣污染指數。此指數計算了臭氧、二氧化硫、二氧化氮和粒子引起的健康風險,每小時更新。另外當環保署預測部分監測站的指數將會達到10+之「嚴重」水平時,會透過香港政府新聞網發新聞稿,通知市民有關事項。.

新!!: 粒子和香港空氣質素健康指數 · 查看更多 »

角速度

角速度(Angular velocity)是在物理学中定义为角位移的变化率,描述物体轉動時,在单位时间内转过多少角度以及转动方向的向量,(更准确地说,是贗向量),通常用希腊字母Ω或ω来表示。 在国际单位制中,单位是弧度每秒(rad/s)。在日常生活,通常量度單位時間內的轉動週數,即是每分鐘轉速(rpm),電腦硬盤和汽車引擎轉數就是以rpm來量度,物理學則以rev/min表示每分鐘轉動週數。 角速度的方向垂直于转动平面,可通过右手定则来确定,物體以逆時針方向轉動其角速度為正值,物體以順時針方向轉動其角速度為負值。 角速度量值的大小稱作角速率,通常也是用ω來表示。.

新!!: 粒子和角速度 · 查看更多 »

规范场论

规范场论(Gauge Theory)是基于对称变换可以局部也可以全局地施行这一思想的一类物理理论。非交换对称群(又称非阿贝尔群)的规范场论最常見的例子为杨-米尔斯理论。物理系統往往用在某种变换下不变的拉格朗日量表述,当变换在每一时空点同时施行,它们有全局对称性。规范场论推广了这一思想,它要求拉格朗日量必须也有局部对称性—应该可以在时空的特定区域施行这些对称变换而不影响到另外一个区域。这个要求是广义相对论的等效原理的一个推广。 规范“对称性”反映了系统表述的一个冗余性。 规范场论在物理学上的重要性,在于其成功為量子电動力学、弱相互作用和强相互作用提供了一个统一的数学形式化架构——标准模型。這套理論精确地表述了自然界的三種基本力的实验预测,它是一个规范群为SU(3) × SU(2) × U(1)的规范场论。像弦论这样的现代理论,以及广义相对论的一些表述,都是某种意义上的规范场论。 有时,规范对称性一词被用于更广泛的含义,包括任何局部对称性,例如微分同胚。该术语的这个含义不在本条目使用。.

新!!: 粒子和规范场论 · 查看更多 »

驰豫时间

弛豫时间(Relaxation Time),即达到热动平衡所需的时间。.

新!!: 粒子和驰豫时间 · 查看更多 »

警察搜查隊

警察搜查隊(綽號:藍衣忍者;英文:Force Search Unit,縮寫:FSU)於1992年9月19日成立,隸屬於香港警務處行動處行動部行動科重點及搜查組,主要責任為執行反恐及安全保障等搜查任務,並且因應其他警察單位及紀律部隊的求助而協助蒐證。警察搜查隊於要員訪問香港或者香港舉辦國際活動前,均會在現場及附近一帶的範圍執行反恐搜查及安全保障等搜查任務。警察搜查隊是亞洲首支具有反恐能力的搜查隊,亦是警務處編制最龐大的兼任單位。.

新!!: 粒子和警察搜查隊 · 查看更多 »

质子运载火箭

质子运载火箭(Прото́н)苏联研制的一个大型运载火箭系列,包含多种衍伸型号。质子号从1960年代中期以来一直是苏联、俄罗斯发射大型航天器的主要运载火箭。在冷战结束后,由于能源号火箭被弃而不用,質子運載火箭实际上成为俄羅斯运载能力最强的火箭。但质子号使用剧毒的四氧化二氮與聯氨作为燃料,一旦发射失败可能对发射场周边地区造成严重污染,因此俄罗斯已决定用新研制的安加拉号运载火箭来取代它,此種新型火箭採用液氧與煤油作为推进剂。.

新!!: 粒子和质子运载火箭 · 查看更多 »

质荷比

荷质比又称比荷、比电荷,是一个带电粒子所带电荷与其质量之比,其单位为C/kg。计算时,粒子无论带何种电荷,应一律代入正值计算。 电子电荷e和电子静止质量 m的比值e/m(电子比荷)为电子基本常量之一,可通过磁聚焦法、磁控管法、湯姆森法及双电容法等进行测定。现代精确测量电子比荷的值为1.75881962×1011C/kg,质子比荷的值为9.578309×107C/kg,一般计算中取1×108C/kg.

新!!: 粒子和质荷比 · 查看更多 »

费曼物理学讲义

英語精裝版的《費曼物理學講義》,夹带有《费曼物理学诀窍》。 《费曼物理学讲义》(The Feynman Lectures on Physics)又译《费恩曼物理学讲义》,由理查德·費曼、羅伯·雷頓及馬修·山德士合著,被認為是费曼最易理解的专业作品,适用于任何对物理有兴趣的读者。该书今天已成为对现代物理的經典介绍,包括数学、电磁学、经典力学、量子物理学及物理学同其它学科的关系等。该书分为3卷。第1卷主要讲力学、光学、电磁辐射和热力学;第2卷主要讲电磁学和电动力学;第3卷主要讲量子力学。.

新!!: 粒子和费曼物理学讲义 · 查看更多 »

超对称

超对称是费米子和玻色子之间的一种對稱性,该对称性至今在自然界中尚未被观测到。物理学家认为这种对称性是自发破缺的。大型強子對撞機將會驗證粒子是否有相對應的超對稱粒子這個疑問。 超對稱模型能解決三個難題:.

新!!: 粒子和超对称 · 查看更多 »

超對稱粒子

在粒子物理學裏,超對稱粒子或超伴子是一種以超對稱聯係到另一種較常見粒子的粒子。在這物理理論中,每種費米子都應有一種玻色子“拍檔”(費米子的超對稱粒子),反之亦然。沒有“破缺”的超對稱預測:一顆粒子和其超對稱粒子都應有完全相同的質量。至今仍然沒有標準模型粒子的超對稱粒子被發現。這可能表示超對稱理論是錯誤的,或超對稱並不是一種“不破”的對稱性。如果超對稱粒子被發現,其質量會決定超對稱破裂時的尺度 就實純量的粒子(如軸子)而言,它們有一個費米子超對稱粒子,也有一個實純量場。 在延伸的超對稱裏,一種特定粒子可能會有多于一個超對稱粒子。舉例,在四維空間裏,一個光子會有兩個費米超對稱粒子和一個純量超對稱粒子。 在零維的情況下(常被稱作矩陣力學),有可能存在超對稱,但沒有超對稱粒子。然而,這只有在當超對稱性不包含超對稱粒子的情況下才成立。.

新!!: 粒子和超對稱粒子 · 查看更多 »

超級質子同步加速器

超級質子同步加速器(Super Proton Synchrotron,缩写:SPS)是歐洲核子研究組織的粒子加速器之一。它被容纳在一个环形隧道中,有的周长,在瑞士日内瓦附近并横跨法国-瑞士的边界。.

新!!: 粒子和超級質子同步加速器 · 查看更多 »

超金属

超金属是电子简并态物质的别称,是通常物质在超高压下形成的,由原子核紧密排列,浸泡在自由电子海洋中的物质状态。(普通金属是金属阳离子浸泡在自由电子海洋中的物质状态) 最简单,也是实验室能够得到超金属的是金属氢,因为氢没有内层电子,其金属化后,所有电子都处于简并气体状态。金属氢存在于多数气态氢行星(例如木星)的内核。因为金属氢中的质子既是普通阳离子,又是原子核,因此金属氢也是唯一既属于超金属,又属于通常金属的物质。 而最常见的电子简并态物质存在于白矮星,即物质在1400000大气压下,其原子中的电子被挤出,形成类似金属中的电子气体。原子核紧密排列,密度相当大,就成为了超金属。.

新!!: 粒子和超金属 · 查看更多 »

點粒子

點粒子是物理裡頭常使用的一種粒子理想化的概念。 其主要的特色是維度為零,不佔有空間。 當情況在與物體的大小、形狀、結構無關時,點粒子是一個合適的描述。 舉例而言,只要離得夠遠,形狀任意的物體都會看似於一個點。 在討論重力時,物理學家習慣用一個「點質量」去描述一個具有質量但不具有結構的粒子。 類似的情況,在電磁作用中「點電荷」代表一個帶電荷的粒子。 有時由於特殊的組成性質,即使相距不遠,物體仍可視作為點粒子。 例如一個其交互作用遵守平方反比定律的球形物體,它的作用等同全部的物質集中在球心的點上。 在牛頓重力和古典電磁學中,在球面之外的場等同一個位於球心的具有相同質量/電荷的點粒子產生的場。 I. Newton, A. Motte, J. Machin (1729), p. 270–271 在量子力學裡,這個概念變得比較複雜。 由於海森堡的不確定性原理,一個不具有結構的粒子所佔據的空間仍不為零。 例如一個氫原子軌道上的電子,其所占據的空間約 10-30 m3 。 此外,這當中電子與夸克這類的不具結構基本粒子與質子這類具有結構的複合粒子(質子由三個夸克構成)也有所不同。 基本粒子有時也被稱作「點粒子」,但這與上面討論的概念不同。 (細節請見基本粒子).

新!!: 粒子和點粒子 · 查看更多 »

黏附

黏附是指不同的粒子黏在一起的現象。若對於相同的粒子,類似的現象稱為。黏附是和兩物質狀態之間介面的性質有關。黏附的成因還不清楚,目前已提出五種不同的黏附理論。.

新!!: 粒子和黏附 · 查看更多 »

黯黑史詩

黯黑史詩(Epica)是荷蘭的交響金屬樂團,2002年由前萬世沉淪的吉他手馬可·揚森組成。2003年透過發行首張錄音室專輯《》,2005年發行續作《》,登上第12名。他們在傳動唱片破產後改簽給,並於2007年發行第三張專輯《》,登上荷蘭專輯排行榜第9名。2009年第四張專輯《》獲得更大成功,登上荷蘭專輯排行榜第8名,在許多歐洲鄰國的排行榜上取得成績,獲得相當程度的好評。 黯黑史詩在2012年的第五張專輯《》受到更多音樂評論家歡迎,開始取得國際上的成功,登上美國告示牌二百強專輯榜第105名、日本公信榜第172名。2014年,樂團發行第六張專輯《》後,繼續獲得市場成功,登上告示牌二百強專輯榜第110名,在家鄉荷蘭也拿到第4名。2015年6月,鑒於在國際上成功推廣荷蘭藝術,黯黑史詩獲頒。2016年,樂團發行了第七張專輯《》,登上告示牌二百強專輯榜第139名。 樂團人聲表現以優美的女性清腔搭配殘暴的男性吼腔,交織出歌劇《美女與野獸》、天使與魔鬼般的鮮明衝突感,加上重金屬樂手的侵略性和管弦樂團的恢弘氣勢,呈現十分濃郁的旋律性。樂團的音樂風格以傾向哥德金屬的交響金屬為主幹,兼具一些死亡金屬和旋律死亡金屬的特徵,電吉他演奏上則擁有鞭擊金屬和蠱戮金屬特色的即興重覆段,爵士鼓的打擊過門也有黑金屬的味道。2005年之後,前衛金屬的元素出現,並短暫浮現力量金屬的段落與民謠金屬的旋律。.

新!!: 粒子和黯黑史詩 · 查看更多 »

软硬酸碱理论

软硬酸碱理论简称HSAB(Hard-Soft-Acid-Base)理论,是一种尝试解释酸碱反应及其性质的现代理论。20世纪60年代初,拉尔夫·皮尔逊採用HSAB原理,嘗試统一有机和无机化学反应。它目前在化学研究中得到了广泛的应用,其中最重要的莫过于对配合物稳定性的判别和其反应机理的解释。软硬酸碱理论的基础是酸鹼電子論,即以电子对得失作为判定酸、碱的标准(即路易斯酸碱理论)。该理论可用于定性描述,而非定量的描述,这将有助于了解化学性质和反应的主要驱动因素。尤其是在过渡金属化学,化学家们已经完成了无数次实验,以确定配体和过渡金属离子本身的硬和软方面的相对顺序。.

新!!: 粒子和软硬酸碱理论 · 查看更多 »

辐射计

辐射计,又称“放射计”,是一种测量电磁辐射的辐射通量的装置。“放射计”这一术语有时特指红外辐射检测计,但也可指检测其它各种波长的电磁辐射的检测计。 较常见的辐射计是克鲁克斯辐射计(1873年由威廉·克鲁克斯發明),它是一个内有转子(带有颜色深浅不同的叶片)的处在在半真空中的早期模型,在受到光照时叶片会转动。 (1901年發明)的原理与克鲁克斯辐射计不同,这类辐射计更加灵敏。 微波辐射计用于检测微波波段的电磁辐射。微波辐射计内充有氩气以使其旋转。 MEMS(Micro-electromechanical Systems,微电子机械系统)辐射计,由帕特里克·简柯维克(Patrick Jankowiak)发明,可以按尼克斯辐射计或克鲁克斯辐射计的原理运作,而且可以检测更宽的波段和粒子的能级。.

新!!: 粒子和辐射计 · 查看更多 »

辩证逻辑

辯證邏輯(Dialectical Logic),是“矛盾邏輯”的同義詞。與之相對應的反義詞,是“無矛盾邏輯”,或者“相容邏輯”,也常常被稱作“形式邏輯”,或者簡稱為“邏輯”(即亞裏士多德邏輯)。.

新!!: 粒子和辩证逻辑 · 查看更多 »

霍金輻射

霍金輻射(Hawking radiation)是以量子效應理論推測出的一種由黑洞散發出來的熱輻射。此理論在1974年由物理學家史蒂芬·霍金提出。有了霍金輻射的理論就能說明如何降低黑洞的質量而導致黑洞蒸散的現象。 而因為霍金輻射能夠讓黑洞失去質量,當黑洞損失的質量比增加的質量多的時候就會造成縮小,最終消失。而比較小的微黑洞的發散量通常會比正常的黑洞大,所以前者會比後者縮小與消失的速度還要快。 霍金的分析迅速成為第一個令人信服的量子引力理論,儘管目前尚未實際觀察到霍金輻射的存在。在2008年6月NASA發射了GLAST衛星,它可以尋找蒸發的黑洞中γ射線的閃光。而在額外維度理論,高能粒子对撞也有可能創造出會自我消失的微黑洞。 2010年9月,一項模擬重力研究的結果被部分科學家認為是首次展示出霍金輻射的可能存在與可能性質。然而,霍金輻射仍未被實際觀測到Hawking radiation from ultrashort laser pulse filaments Authors: F. Belgiorno, S.L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V.G. Sala, D. Faccio http://arxiv.org/abs/1009.4634。.

新!!: 粒子和霍金輻射 · 查看更多 »

錫酸

錫酸(stannic acid)是一種含锡無機酸,其化學式為H2SnO3。锡酸擁有類似於碳酸的結構,不易溶於水,可溶於有機物如丙酮,溶解後可解離成锡酸根离子(SnO32-),也同樣擁有類似碳酸根的共振結構。錫酸中錫離子周圍有6個氫氧根,其結晶結構呈八面體。A.F.Holleman, E.Wiberg.

新!!: 粒子和錫酸 · 查看更多 »

阿布拉罕-勞侖茲-狄拉克力

阿布拉罕-勞侖茲-狄拉克力(Abraham-Lorentz-Dirac force)是阿布拉罕-勞侖茲力的改版,跟阿布拉罕-勞侖茲力一樣,是描述當加速帶電粒子因為粒子放射出電磁輻射而所受到的平均力,只不過阿布拉罕-勞侖茲-狄拉克力把相對論產生的效應也加進去而已。.

新!!: 粒子和阿布拉罕-勞侖茲-狄拉克力 · 查看更多 »

阿斯卡莱恩效应

阿斯卡莱恩效应(Askaryan effect)是指粒子在较密的电介质(如盐、冰或月壤)中,以比光的相速快的速度运动,电介质就会产生一束带各向异性电荷的二次粒子,成为电磁谱中无线电或微波电磁波,以锥形发射。阿斯卡莱恩效应以切伦科夫效应为基础。.

新!!: 粒子和阿斯卡莱恩效应 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: 粒子和薛定谔方程 · 查看更多 »

蒸发

蒸发是液体表面汽化的过程,與另一汽化過程「沸腾」不同的是,蒸發只會發生於液體的表面,而且可在任何溫度發生。在工业生产中,一般需要加热,可以在低于沸点时蒸发,也可以在沸点时进行沸腾蒸发。不同液体的沸点也不同,有的液体在沸点或低于沸点时会氧化或分解,需要进行减压蒸发(真空蒸发)。 蒸發的發生是由於液體粒子流動時互相發生不同程度的碰撞,這些碰撞使接近液體表面的粒子擁有足夠能量從液體中逃逸出去,做成蒸發現象。蒸發是水循環的重要途径,太陽的能量使海洋、湖泊裡的水,泥土中的水汽蒸發,形成雲。在水文學中,蒸發和蒸騰(植物葉片氣孔中水分的蒸發)合稱蒸散。 在蒸发時,液体表面會有數個平均自由程的蒸氣薄膜,稱為克努森層。.

新!!: 粒子和蒸发 · 查看更多 »

重子不對稱性

重子不對稱性是在物理宇宙學一個重要的問題,就是为什麼在宇宙中,重子(重子是構成質子、中子等粒子)的數量比反重子多?根據在現在說明宇宙誕生的理論來看,粒子的數量應該和反粒子的數量一樣多,而粒子會和反粒子湮滅產生光子(也就是電磁波),因此宇宙應該是由完全電磁波構成的,而不會有任何的物質,但我們知道事實不是這樣,因此出現許多的理論出來解釋,其中可能是;宇宙有分許多不同的地區,有些地區是被物質佔據,而其他的地區則是反物質,這些地區的之間建的距離很遠,要不然不同地區的粒子就會互相湮滅,於是展開觀察反物質的行動,但情況並不樂觀,到2007年5月都沒由任何比氦重的反原子核被觀測到。因此這個問題還有待其他物理學家解決。.

新!!: 粒子和重子不對稱性 · 查看更多 »

量子泡沫

量子泡沫(Quantum foam),又稱時空泡沫(space time foam),是一種物理概念,最早在1955年由約翰·惠勒所提出量子力學中的一個概念。量子泡沫即為誕生前宇宙的概念化。 在量子泡沫的普朗克尺度(10-35公尺)裡,時空不再是平滑的,許多不同的形狀會像泡沫一樣隨機浮出,又隨機消失,這樣在微小世界的能量起伏,就是所謂的「量子漲落」。在量子漲落中形成的小通道,就是所謂的蟲洞,而這些量子蟲洞則又可以連接到周遭眾多的起伏泡沫,那些量子泡沫就是幼宇宙。 量子泡沫可用於極小尺度(普朗克長度量級)下量子振蕩的定性描述。在這麼小的尺度下海森堡的不確定性原理允許能量暫時產生並瞬間產生粒子和反粒子,然後在不違反物理守恆定律下互相湮滅,由於此處討論的時間和空間規模極小,且加上虛擬粒子增加的能量,根據愛因斯坦的廣義相對論,表明,在足夠小的範圍內,這些波動的能量將是大到足以使在較大的尺度上可觀測到相對平滑時空的顯著偏離,有如泡沫一般,因此,在量子泡沫裡,空間沒有一定的結構,對於各種不同的形狀和曲度都有不同的機率。.

新!!: 粒子和量子泡沫 · 查看更多 »

量子涨落

在量子力學中,量子涨落(quantum fluctuation。或量子真空涨落,真空涨落)是在空间任意位置對於能量的暂时变化。 從维尔纳·海森堡的不确定性原理可以推導出這結論。 根據這原理的一種表述,能量的不確定性 \Delta E 與能量改變所需的時間 \Delta t ,兩者之間的關係式為 其中 \hbar 是約化普朗克常数。 这意味著能量守恒定律好像被违反了,但是仅持续很短的时间。因此,在空間生成了由粒子和反粒子组成的虚粒子对。粒子对借取能量而生成,又在短时间内湮灭归还能量。这些产生的虚粒子的物理效应是可以被测量的,例如,電子的有效電荷與裸電荷不同。從量子电动力学的兰姆位移与卡西米尔效应,可以觀測到這效應。 量子涨落对于宇宙大尺度結構的起源非常重要,可以解釋宇宙为什么會出現超星系團、纖維狀結構這一類結構的问题:根据宇宙暴胀理论,宇宙初期是均匀的,均匀宇宙存在的微小量子涨落在暴胀之后被放大到宇宙尺度,成为最早的星-系-结构的种子。.

新!!: 粒子和量子涨落 · 查看更多 »

自由粒子

在物理學裏,自由粒子是不被位勢束縛的粒子。在經典力學裏,一個自由粒子所感受到外來的淨力是0。 假若,一個粒子的能量大於在任何地點x\,\!的位勢,E > V(x) \,\!,不會被位勢束縛,則稱此粒子為自由粒子。更強版的定義,還要求位勢為常數V(x).

新!!: 粒子和自由粒子 · 查看更多 »

自然单位制

在物理學裏,自然單位制(natural unit)是一種建立於基礎物理常數的計量單位制度。例如,電荷的自然單位是單位電荷 e 、速度的自然單位是光速 c ,都是基礎物理常數。純自然單位制必定會在其定義中,將某些基礎物理常數歸一化,即將這些常數的數值規定為整數1。.

新!!: 粒子和自然单位制 · 查看更多 »

自治系统 (数学)

在数学中,一个动力系统被称为自治(驻定)的,当且仅当这个系统由一组常微分方程组成,并且这些方程的表达式与动力系统的自变量无关。 在有关物理的动力系统中,自变量通常是时间。这时自治系统通常表示其中的物理规律不随时间变化的系统,也就是说空间中每一点的性质在过去、现在和将来都是一样的。 自治系统是动力系统中很重要的一个组成部分。理论上说,所有的动力系统都可以转化为自治系统。.

新!!: 粒子和自治系统 (数学) · 查看更多 »

自旋

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.

新!!: 粒子和自旋 · 查看更多 »

自旋1/2

在量子物理中,自旋½表示一粒子所具有的內稟角動量(自旋)為 \frac ,\hbar\,是約化普朗克常數,其中包括了電子、質子、中子、中微子與虧子(夸克)。自旋-½粒子在量子統計上屬於費米子,並遵守包立不相容原理。 對自旋½粒子進行自旋性質的量子測量會得到兩個值。有兩個結果肇因於所存有的向量空間的維度。自旋½粒子的自旋量子態可以用一種兩個維度的複數值向量來描述,稱之為二元旋量。利用這種表示法,量子力學中的算符可寫成2乘2(2 x 2)的複數厄米矩陣。 自旋投影算符S_z意義上代表了沿著z\,方向對自旋做的測量: 1&0\\ 0&-1 \end S_z算符有兩個本徵值—— \pm \frac ,有各自對應的本徵向量: 其構成描述自旋之希爾伯特空間的完整基底,即自旋的態可用這兩個態的線性組合來代表。這兩個態方便上稱之為「自旋向上」(spin up)與「自旋向下」(spin down)。 自旋算符S有些特質和角動量算符L相同,但其他特質則不相同。 可為自旋½物體建構升降算符;其遵守和其他角動量算符相同的對易關係(交換關係)。 自旋投影算符的旋轉的兩個本徵值與前面相同(相應於測量的可能結果),但本徵向量則不同——為向量自旋算符 \mathbf \cdot \hat ;其中n\,是一個順沿投影方向的單位向量,而 這些\sigma\,為包立矩陣或稱包立旋量。.

新!!: 粒子和自旋1/2 · 查看更多 »

自旋網路

量子力學中,自旋網路是一種圖表,用以表示粒子與量子場之間的的交互作用與狀態。以數學的出發點來看,這些圖案是一種簡明方法,可代表多線性函數以及矩陣群眾多表示之間的關聯函數。此圖案記號往往能簡化計算,以其能代表複雜的函數。自旋網路的發明一般是歸因於羅傑·潘洛斯於1971年的貢獻,然而在此之前已有類似的圖樣方法。 透過卡洛·羅威利, 、, 等多位研究者的努力,自旋網路被用於量子重力理論。自旋網路亦可被用在數學中局域規範轉換不變性的連通空間,用以建構特定的泛函。.

新!!: 粒子和自旋網路 · 查看更多 »

臭氧层

臭氧層是指大氣層的平流層中臭氧濃度相對較高的部分,主要作用是吸收短波紫外線。臭氧層密度低,如果它被壓縮到對流層的密度,則只有數毫米厚。.

新!!: 粒子和臭氧层 · 查看更多 »

酸(有时用“HA”表示)的传统定义是当溶解在水中时,溶液中氢离子的浓度大于纯水中氢离子浓度的化合物。换句话说,酸性溶液的pH值小于水的pH值(25℃时为水的pH值是7)。酸一般呈酸味,但是品尝酸(尤其是高浓度的酸)是非常危险的。酸可以和碱发生中和作用,生成水和盐。酸可分为无机酸和有机酸两种。.

新!!: 粒子和酸 · 查看更多 »

腔量子电动力学

腔量子電動力學(Cavity quantum electrodynamics,簡稱:cavity QED 或 CQED)描述了被微腔中的光場與其它粒子(例如原子)之間的相互作用 。對强作用腔量子电动力学所作出的研究,為量子邏輯提供了的一種實現途徑,這就是建造量子计算机的原理之一。.

新!!: 粒子和腔量子电动力学 · 查看更多 »

色散关系

在物理科学和電機工程學中,色散关系描述波在介质中传播的色散现象的性质。色散关系将波的波长或波數与其頻率建立了联系。由这组关系,波的相速度和群速度有了方便的确定介质中折射率的表达式。克拉莫-克若尼關係式可以描述波的传播、的频率依赖性,這關係比與幾何相關和與材料相關的色散关系更具一般性。 色散的原因可能是几何边界条件(波导、浅水)或是波与传输介质间的相互作用。基本粒子(被认为是物質波)即使在没有集合约束和其他介质存在下也会有非平凡的色散关系。 在存在色散的情况下,波速不再唯一定义,从而产生了相速度和群速度的区别。.

新!!: 粒子和色散关系 · 查看更多 »

苏联

苏维埃社会主义共和国联盟( ),简称苏联(),是一個存在於1922年至1991年的聯邦制社會主義國家,也是當時世界上土地面積最大的國家,佔有東歐的大部分,以及幾乎整個中亞和北亞;陸地與挪威、芬蘭、波蘭、捷克斯洛伐克、匈牙利、羅馬尼亞、土耳其、伊朗、阿富汗、中国、蒙古及朝鮮接壤;而與瑞典、日本、美國及加拿大隔海相望。 蘇聯起源自1917年的俄國革命,俄羅斯帝國的沙皇政府被推翻後,臨時政府成立,但僅執政了不到8個月,布爾什維克便很快從臨時政府手中奪取政權並於選舉後武力解散俄國立憲會議,史稱十月革命及一月劇變;之後俄國發生內戰,布尔什维克党領導的紅軍擊敗了白軍以及協約國的武裝干涉。1922年12月,俄羅斯、白俄羅斯、烏克蘭和外高加索等蘇維埃社會主義共和國合併,成立首個以社會主義為理念的國家——蘇聯。 第一任蘇聯領導人弗拉基米尔·列宁於1924年去世後,约瑟夫·斯大林從一連串的權力鬥爭中勝出,取得了領導權。斯大林以計劃經濟作保障,在歐美經濟危機期間推行驚人的大規模重工業化,但也進行多次大清洗,導致逾百萬人在政治鬥爭中被整肅或被殺。第二次世界大戰中,蘇聯先是与纳粹德国结盟,於1939年和德國共同瓜分了波蘭、将波罗的海国家纳入版图、割占罗马尼亚领土,将流亡苏联的德国政治难民交还纳粹判決。不過很快兩者關係破裂,1941年6月22日,苏联遭到德國等軸心國入侵,歷經了4年激烈的戰事後取得了勝利,與美國一同成為當時世界上最強大的兩個國家,被稱為超級大國,同時因出兵击退入侵德军,并得以控制了東歐大部分國家。 蘇聯而後與衛星國組成的華沙条約組織(華約),與以美國為首的北大西洋公約組織(北約)對峙,這兩大軍事集團在冷戰時期於全世界展開意識形態的對立和政治鬥爭,但在1980年代初期,石油以及初級資源價格回落,此時的蘇聯大力施行福利國家政策,致经济增长速度变慢,加上政治欠乏改革,基本的人民自由也陷入壓抑,苏联的国力已经落后于美国。 在1980年代末,蘇聯領導人米哈伊爾·戈爾巴喬夫試圖進行改革政策,將國家自由化和民主化,放寬對東歐等其他衛星國的控制,却导致蘇聯在1991年解體,在政治斗争中获胜的葉爾欽所領導的俄羅斯聯邦繼承了蘇聯主要的軍事、經濟和國際地位,但人口損失近半的情況下,蘇聯建立的紅色秩序已經不復存在。 儘管苏联宪法規範苏联是一個联邦制国家,由15个平等权利的苏维埃社会主义共和国(加盟共和国)按照自愿联合的原则组成,但其联邦特性不高,因為中央政府權力高度集中,並奉行世界上第一個完全的社會主義制度及計劃經濟政策,由蘇聯共產黨一黨執政。在1945年苏联16个加盟共和国中应有2个(乌克兰、白俄罗斯)应作为联合国创始会员国,因为苏联是联邦制国家,所以苏联在联合国历史上是唯一一个“一国三票”的主权国家。.

新!!: 粒子和苏联 · 查看更多 »

退耦 (宇宙学)

宇宙学中,退耦指各种粒子彼此脱离热平衡的时期。由于宇宙的膨胀,粒子间的平均自由程增加,相互作用频率降低,因此脱离热平衡而发生退耦。目前普遍认为大爆炸后有两种主要的退耦,分别是光子退耦和中微子退耦,且它们分别导致了宇宙微波背景辐射和宇宙中微子背景輻射。 Category:物理宇宙学.

新!!: 粒子和退耦 (宇宙学) · 查看更多 »

Γ

Gamma(大寫Γ,小寫γ,中文音译:伽马、伽瑪、伽傌),是第三個希臘字母。 西里爾字母的Г、Ґ和拉丁字母的C、G都是從Gamma變來。 大寫的Γ用於:.

新!!: 粒子和Γ · 查看更多 »

KG (消歧義)

kg常被用作為國際單位制中的公斤簡稱,而KG, Kg, kG或kg 也可能指以下的人、事、物:.

新!!: 粒子和KG (消歧義) · 查看更多 »

恩里科·费米研究所

恩里科·费米研究所(Enrico Fermi Institute,简写:EFI),是芝加哥大学下属的一家跨学科研究机构。研究所的所有教职人员均在芝加哥大学以下一个或多个系里兼任其它职务:物理系、天文和天体物理系、化学系、地球物理系和数学系。 该研究所在1945年9月成立时的名称是“核子學術研究所”(Institute for Nuclear Studies),由Samuel King Allison担任首任所长。恩里科·费米在研究所任教授。1954年费米逝世后,为表达对这位杰出物理学家的尊敬,该研究所于1955年11月20日更名为“恩里科·费米核子學術研究所”(Enrico Fermi Institute for Nuclear Studies);又于1968年1月改为现名。.

新!!: 粒子和恩里科·费米研究所 · 查看更多 »

核反应

核反应指的是某种微观粒子与原子核相互作用(碰撞)时,使核的结构发生变化,形成新核,放出一个或几个粒子的过程;重核可以发生裂变。 从原子物理学上来说,参与核反应碰撞的粒子数目可以超過两个,但因三个以上的粒子在同一时间在同一位置相撞的几率远低于两个粒子,因此实际上这种情况几乎不会出现。(從\mathrm.

新!!: 粒子和核反应 · 查看更多 »

核嬗变

核嬗變是一種化學元素轉化成另外一種元素,或一種化學元素的某種同位素轉化為另一種同位素的过程。能夠引發核嬗變的核反應包括一個或多個粒子(如質子、中子以及原子核)與原子核發生碰撞后引發的反應,也包括原子核的自發衰變。 但反過來說,原子核的自發衰變或者與其他粒子的碰撞並不一定都導致核嬗變。比如,γ衰變以及同它有關的内轉換過程就不會導致核嬗變。核嬗變既可以自然發生,也可以人工引發。.

新!!: 粒子和核嬗变 · 查看更多 »

梅爾德實驗

梅爾德實驗是德国物理学家在1859年進行的關於駐波的科學實驗,他起初用音叉產生振盪,後來換用電振盪器連接拉緊的細線製造此現象。梅爾德在1860年前后首先揭示了駐波現象及創造了“駐波”(stehende Welle, Stehwelle)這個术语。 這個實驗證明了机械波的干涉現象。機械波在相反方向傳播時形成不動的點,稱為,梅爾德又稱這樣的波為駐波,因節點和腹點(antinode,振蕩點)位置保持不變。.

新!!: 粒子和梅爾德實驗 · 查看更多 »

機動戰士GUNDAM 00世界觀及設定

本條目介紹動畫《機動戰士GUNDAM 00》及其外傳中出現的名詞。.

新!!: 粒子和機動戰士GUNDAM 00世界觀及設定 · 查看更多 »

機率幅

在量子力學裏,機率幅,又稱為量子幅,是一個描述粒子的量子行為的複函數。例如,機率幅可以描述粒子的位置。當描述粒子的位置時,機率幅是一個波函數,表達為位置的函數。這波函數必須符合薛丁格方程。 一個機率幅\psi\,\!的機率密度函數是 \psi^*\psi\,\!,等於 \mid\psi\mid^2\,\!,又稱為機率密度。在使用前,不一定要將機率密度函數歸一化。尚未歸一化的機率密度函數可以給出關於機率的相對大小的資訊。 假若,在整個三維空間內,機率密度 \mid\psi\mid^2\,\!是一個有限積分。那麼,可以計算一個歸一常數 c\,\!,替代 \psi\,\!為 c\psi\,\!,使得有限積分等於1。這樣,就可以將機率幅歸一化。粒子存在於某一個特定區域V\,\!內的機率是 \mid\psi\mid^2\,\!在區域V\,\!的積分。這句話的含義是,根據量子力學的哥本哈根詮釋,假若,某一位觀察者試著測量這粒子的位置。他找到粒子在 \varepsilon\,\!區域內的機率 P(\varepsilon)\,\!是 不光局限於粒子觀,機率幅的絕對值平方可以詮釋為「在某時間、某位置發生相互作用的概率」。.

新!!: 粒子和機率幅 · 查看更多 »

歸一條件

在量子力學裏,表達粒子的量子態的波函數必須滿足歸一條件(歸一化,be normalized),也就是說,在空間內,找到粒子的機率必須等於 1 。這性質稱為歸一性。用數學公式表達, 其中,x 是粒子的位置,\psi(x) 是波函數。.

新!!: 粒子和歸一條件 · 查看更多 »

氣泡室

氣泡室是一種偵測帶電粒子的儀器,它是在1952年由唐納德·格拉澤發明,這因此讓他得到1960年的諾貝爾物理獎。據說他是在密西根大學外的酒吧,看到有人把鹽放進啤酒裡而得到的靈感,但他在2006年時否認了這項說法。.

新!!: 粒子和氣泡室 · 查看更多 »

水手2號

水手2号探测器是美国发射的第二个水手系列探测器,该探测器成功地掠过金星从而成为人类第一个成功接近其他行星的空间探测器。 水手2号的结构与水手1号基本一致,携带了6台科学仪器。包括一台工作在13.5毫米和19毫米的双通道微波雷达,一台工作在8至9微米和10至10.8微米波段的红外雷达,1台磁力计,1个电离室,1個粒子探测器以及1台宇宙尘埃检测仪。 在经历了108天、2亿9千万公里的飞行之后,水手2号在12月14日接近金星并拍摄下了红外及微波波段的图像。.

新!!: 粒子和水手2號 · 查看更多 »

沉降

沉降又稱沉積、沉澱,是懸浮液的粒子下沉積聚的過程。原因可以是地心吸力、離心力或電磁力。在地理學,沉降通常是侵蝕作用的相反,亦即沉積物遷移的最終結果;過程包括躍移。 不同大小的東西都可以沉降,由流水中的大石頭,塵土或花粉的懸浮液,至單個分子,例如蛋白質和肽的細胞懸浮液都可以。 在地理學,此名詞通常用來描述沉積物的堆積作用,而最後會形成沉積岩;在其他化學及環境學領域等則用來描述小粒子和分子的運動。在生物工業則是指將細胞分離自介質的過程。.

新!!: 粒子和沉降 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

新!!: 粒子和波粒二象性 · 查看更多 »

消光

消光(Extinction)是天文學中觀測者用來描述被觀測的天體發射的光線被路途中的物質(氣體和塵埃)吸收和散射的狀態。對地面的觀測者而言,消光來自於星際物質(ISM)和地球大氣層,他也可能來自於被觀測天體周圍的星周塵。大氣層的消光在一些波段(X射線、紫外線和紅外線)上非常強烈,必須進入太空才能觀測。在可見光的波段上,藍色遠比紅色被稀釋的強烈,結果是天體會比預期的偏紅,星際消光也會使天體紅化 (不要與紅移混淆)。.

新!!: 粒子和消光 · 查看更多 »

游離輻射

游離輻射(ionizing radiation)是指波長短、頻率高、能量高的射線(粒子或波的双重形式)。輻射可分為游離輻射和非游離輻射,游離輻射可以從原子或分子裡面電離過程(Ionization)中作用出至少一個電子。反之,非游離輻射則不行。游離能力,決定於射線(粒子或波)所帶的能量,而不是射線的數量。如果射線沒有帶有足夠游離能量的話,大量的射線並不能夠導致游離。.

新!!: 粒子和游離輻射 · 查看更多 »

湮滅輻射

湮滅輻射是指粒子和反粒子互相湮滅所產生的輻射。根據質能轉換公式,其輻射的能量等於粒子的質量(一般湮滅後會產生兩個光子,每個光子都等於粒子的質量。)。在自然界中,最常見的湮滅輻射就是成對產生而造成的輻射,能量是511keV,成對產生是電磁波脈衝穿過原子時在原子核附近形成的形成正電子和電子,而電子-正電子對很快就會湮滅并释放511 keV 伽马射线。 Category:原子核物理學 Category:粒子物理學.

新!!: 粒子和湮滅輻射 · 查看更多 »

漂移速度

漂移速度(Drift Velocity),是指一個粒子(例如電子)因為電場的關係而移動的平均速度。 實際上,當沒有電場存在,導體中的電子以费米速度作隨機移動。 電場使這個隨機運動過程獲得單一方向的淨速度。 因為電流和漂移速度成正比,經多番推導後可得出其量值亦和電場量值成正比例,當中的推導過程可以歐姆定律解釋。 漂移速度可以用以下公式表達:.

新!!: 粒子和漂移速度 · 查看更多 »

朱棣文

朱棣文(Steven Chu,),美國華人物理学家,籍貫江苏太仓,生於美國聖路易斯;因「發展了用雷射冷卻和捕獲原子的方法」而獲得1997年諾貝爾物理學獎。前任美國能源部部長。2013年2月1日宣布即将离职,但將留任至續任者獲得同意上任為止。 當朱棣文被任命為能源部長時,他是美國加州大學伯克利分校的物理學和分子和細胞生物學教授,和勞倫斯伯克利國家實驗室的主任,他的研究關心的主要是研究在水平的生物系統。而在此之前,他曾在斯坦福大學教授物理學。他積極主張進行更多對於可再生能源和核能的研究,他认为從化石燃料轉變出來是應對氣候變化的關鍵。Sarah Jane Tribble, Oakland Tribune, 2007-06-18.

新!!: 粒子和朱棣文 · 查看更多 »

朗德g因子

在物理学和化学中,朗德 因子是阿尔佛雷德·朗德试图解释反常塞曼效应时,于 1921 年提出的一个无量纲物理量,反映了塞曼效应中磁矩与角动量之间的联系。其定义后来被推广到其它领域,在粒子物理学中常常被简称为 因子。.

新!!: 粒子和朗德g因子 · 查看更多 »

朗道阻尼

朗道阻尼是等离子体中由于波和粒子之间的共振导致的波阻尼,是一种无碰撞阻尼,最初是在1946年由苏联物理学家列夫·朗道提出的。人们一度认为物理上没有这种机制,这只是纯粹的数学结果。J.M.Dawson从波和粒子的能量交换的角度推导出朗道阻尼,1960年代又在实验上证实了这个现象。 朗道阻尼的起因是波和粒子之间的相互作用而导致的能量交换。相速度为v_的波能够与速度近似为v_的粒子发生强烈的相互作用,其结果是速度略微大于v_的粒子减速,失去能量,速度略微小于v_的粒子加速,得到能量。考虑在一个具有麦克斯韦速度分布的无碰撞等离子体中,速度略微小于v_的粒子总是比速度略微大于v_的粒子数目稍微多一点,其结果是得到能量的粒子比失去能量的粒子越多,粒子的总能量增加,则波的总能量减少,这样就表现为波的一种阻尼效应。如果波和粒子的速度相差很远,比如电磁波以光速传播,远大于电子、离子的热运动速度,则不会有朗道阻尼。 朗道阻尼也可以用一种直观但并不严格的物理情景解释,如右图所示。将朗缪尔波想像成海洋上的波浪,粒子如同漂浮在上面的船。如果船运动的速度略微小于波浪传播的速度,在与波浪相对静止的参考系看来,粒子被波浪推动;反之如果船的运动速度略微大于波速,粒子则推动波浪。 朗道阻尼通常可以分为线性朗道阻尼和非线性朗道阻尼两种。朗道阻尼在短波情况下表现得很显著,在长波情况下则可以忽略。这就是为什么实验上通常只能观察到长波的等离子体波,而难以观察到短波的等离子体波。.

新!!: 粒子和朗道阻尼 · 查看更多 »

有限位勢壘

在量子力學裏,有限位勢壘是一種位勢。在壘外,位勢為 0 ,在壘內,位勢為有限值 。有限位勢壘問題專門研討在這種位勢的作用中,一個粒子的量子行為。如圖右,最簡單的有限位勢壘是方形壘,壘高是一個常數。在這條目裏,只研討這種位勢壘。 通常,在經典力學裏,一維的有限位勢壘問題會設定一個粒子,從位勢壘的左邊,往位勢壘移動。假若,粒子的能量大於位勢壘的位勢。則這粒子,在經過位勢壘的時候,因為動能的轉換為位能,速度會降低,但方向不會改變。當移動至位勢壘外時,速度又會回復至原本值。假若,粒子的能量小於位勢壘的位勢,則在與位勢壘彈性碰撞之後,這粒子會改變方向,以同樣的速率,往回移動。粒子絕對無法存在於位勢壘內或越過位勢壘。 在量子力學裏,粒子的量子行為,是取決於其波函數。由於粒子沒有被有限位勢壘束縛,粒子的能量不是離散能量譜的特殊容許值,而是大於 0 的任意值,因此不需要求算粒子的能量。在這裏,主要研究的是粒子的一維散射 。這是一個很有意思的領域。假若,粒子的能量大於位勢壘的位勢。由於往位勢壘傳播的波函數,並不是完全地透射過位勢壘,仍舊有一部分反射回來。所以,反射的機率幅大於 0 ,粒子被反射回來的機率大於 0 。假若,粒子的能量小於位勢壘的位勢,雖然波函數會呈指數地遞減,在位勢壘內,機率幅仍舊大於 0 。所以,這粒子存在於位勢壘內的機率大於 0。不止這樣,機率幅在位勢壘外的另一邊也大於 0 。假若,位勢壘的位勢並不大大的超過粒子的能量,位勢壘的壘寬也並不很寬,則粒子穿越位勢壘的機率會是很顯著的,稱這效應為量子穿隧效應。透射的可能性,稱為透射係數;反射的可能性,則稱為反射係數。.

新!!: 粒子和有限位勢壘 · 查看更多 »

有限深方形阱

在量子力學裏,有限深方形阱,又稱為有限深位勢阱,是無限深方形阱的延伸。有限深方形阱是一個阱內位勢為0,阱外位勢為有限值的位勢阱。關於一個或多個粒子,在這種位勢作用中的量子行為的問題,稱為有限深位勢阱問題。與無限深方形阱問題不同的是,在阱外找到粒子的機率大於0。 在經典力學裏,假若,粒子的能量小於阱壁的位勢,則粒子只能移動於阱內,無法存在於阱外。截然不同地,在量子力學裏,雖然粒子的能量小於阱壁的位勢,在阱外找到粒子的機率大於0。.

新!!: 粒子和有限深方形阱 · 查看更多 »

流体力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.

新!!: 粒子和流体力学 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 粒子和时间 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 粒子和放射性 · 查看更多 »

散射

傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.

新!!: 粒子和散射 · 查看更多 »

散逸层

散逸层(英文:Exosphere),亦称外氣層,是地球大气层的最外层,位于热层的上方,其顶界可被视作整个大气层的上界。散逸层大气的温度极高,因此空气粒子运动很快。又因其离地心较远,受地球引力作用较小,所以这一层的大气质点经常散逸至外层空间。散逸层的这一特点也造成其大气密度极低,和外層空间区别不大。.

新!!: 粒子和散逸层 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 粒子和普朗克常数 · 查看更多 »

晶体学

晶体学,又称结晶学,是一门以确定固体中原子(或离子)排列方式为目的的实验科学。“晶体学”(crystallography)一词原先仅指对各种晶体性质的研究,但随着人们对物质在微观尺度上认识的加深,其词义已大大扩充。 在X射线衍射晶体学提出之前(介绍见下文),人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数,最终便可确定晶体的对称性关系。 现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,参见条目波粒二象性),可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。 以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。.

新!!: 粒子和晶体学 · 查看更多 »

2006年1月

没有描述。

新!!: 粒子和2006年1月 · 查看更多 »

2013年

没有描述。

新!!: 粒子和2013年 · 查看更多 »

2013年3月

没有描述。

新!!: 粒子和2013年3月 · 查看更多 »

2013年天文學

没有描述。

新!!: 粒子和2013年天文學 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »