目录
32 关系: 卡邁克爾函數,单位群,同餘,合数,交换环,代數數論,初等數論,分圆域,哥德尔数,唯一分解整環,因數,四平方和定理,積性函數,算术研究,素数,高斯整數,質元素,質因子,黎曼ζ函數,FTA,P進數,欧几里得,欧几里得定理,欧拉函数,準素分解,最小公倍數,戴德金整環,数学定理列表,整数分解,數論主題列表,0的奇偶性,1。
卡邁克爾函數
卡邁克爾函数\lambda(n)满足a^\equiv 1\pmod,其中a与n互质。.
单位群
在环中,所有可逆元素叫环的单位,所有单位对乘法可构成一个乘法群,叫环的单位群。对环(域)来说,单位群所有元素,和环(域)的所有元素有多少相同,有多少不同,可由环的素理想,分式理想,理想类群来度量。 整数环Z的单位只有1,-1,单位群同构于循环群C2。模n 的剩余类环Zn单位群记为U(Zn)。仅有U(Z3),U(Z4),U(Z6),U(Z8),U(Z12),U(Z24)非单位元的阶均为2;非单位元的阶均为其他素数p(p > 2)的单位群不存在。.
查看 算术基本定理和单位群
同餘
数学上,同余(congruence modulo,符號:≡)是數論中的一種等價關係。當两个整数除以同一个正整数,若得相同-zh-hans:余数; zh-hant:餘數;-,则二整数同余。同餘是抽象代數中的同餘關係的原型。最先引用同余的概念与「≡」符号者为德國数学家高斯。.
查看 算术基本定理和同餘
合数
合數(也稱為合成數)是因數除了1和其本身外具有另一因數的正整數(定義為包含1和本身的因數大於或等於3個的正整數)。依照定義,每一個大於1的整數若不是質數,就會是合數。而0與1則被認為不是質數,也不是合數。例如,整數14是一個合數,因為它可以被分解成2 × 7。 起初105个合数为:4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140,141,142,143,144,145,146,147,148,150.
查看 算术基本定理和合数
交换环
在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.
查看 算术基本定理和交换环
代數數論
在數學中,代數數論是數論的一支,其中我們將「數」的概念延伸,以解決具體的數論問題。我們在代數數論中考慮代數數,這類數是有理係數多項式的根。與此相關的概念是數域,這是有理數域的有限擴張。在此框架下能推廣整數為代數整數,並研究一個數域裡的代數整數。 代數整數在加法、減法與乘法下構成一個環,但整數的許多性質並不能推廣到一般數域裡的代數整數上,其中一個例子是素因數分解的唯一性(又稱算術基本定理),這是十九世紀數學家試圖證明費馬大定理時遇到的主要阻礙,然而代數數論的應用不僅止於此。數學中一些較深入的理論有助於讓我們了解代數數與代數整數的性質——包括伽羅瓦理論、伽羅瓦上同調、類域論、表示理論與L-函數的相關理論等等。 數論中的許多問題可藉由「模 p」(其中 p 為素數)來研究。這套技術導向p進數的建構,而p進數是局部域的例子;局部域的研究運用了一些研究數域時的相同方法,但是通常更容易處理。一般數域上的陳述常與各個局部域上的相應陳述有關,例如哈瑟原理:「一個有理係數二次方程在有理數域上有解,若且唯若它在實數上及在每個素數 p 之 p進數域上有解」。這類結果往往被稱作局部-整體原理,其中「局部」意指局部域,而「整體」意指數域。.
查看 算术基本定理和代數數論
初等數論
初等數論意指使用不超過高中程度的初等代數處理的數論問題,最主要的工具包括整數的整除性與同餘。重要的結論包括中國餘數定理、費馬小定理、二次互反律等等。.
查看 算术基本定理和初等數論
分圆域
在数论中,分圆域是在有理数域 \mathbb 中添加复数单位根进行扩张而得到的数域。将 n 次单位根 \zeta_n 加入而得到的分圆域称为 n 次分圆域,记作 \mathbb(\zeta_) 。 由于与费马最后定理的联系,分圆域在现代代数和数论的研究中扮演着重要的角色。正是因为库默尔对这些数域上(特别是当 p为素数时)的算术的深入研究,特别是在相应整环上唯一分解定理的失效,使得库默尔引入了理想数的概念,并证明了著名的库默尔同余。.
查看 算术基本定理和分圆域
哥德尔数
在形式数论中,哥德尔编号是对某些形式语言的每个符号和公式指派一个叫做哥德尔数(GN)的唯一的自然数的函数。这个概念是哥德尔为证明他的哥德尔不完备定理而引入的。 可计算函数集合的编号有时叫做哥德尔编号或有效编号。哥德尔编号可以被解释为一个编程语言,带有指派哥德尔数到每个可计算函数作为在这种编程语言中计算这个函数的值的程序。Roger 等价定理特征化了是哥德尔编号的可计算函数集合的编号。.
查看 算术基本定理和哥德尔数
唯一分解整環
在數學中,唯一分解整环(Unique factorization domain)是一個整環,其中元素都可以表示成有限個不可約元素(或素元)之積,並且表示法在允許重排與相伴(associative)之下唯一,相當於滿足算術基本定理的整環。唯一分解整环通常以英文縮寫UFD表示。.
因數
因數是一個常見的數學名詞,又名「--」。.
查看 算术基本定理和因數
四平方和定理
四平方和定理 (Lagrange's four-square theorem) 說明每个正整数均可表示为4个整数的平方和。它是費馬多邊形數定理和華林問題的特例。 注意有些整數不可表示為3個整數的平方和,例如7。.
積性函數
在數論中,積性函數是指一個定義域為正整數n 的算術函數f(n),有如下性質:f(1).
查看 算术基本定理和積性函數
算术研究
《算术研究》(Disquisitiones Arithmeticae)是德国数学家卡尔·弗里德里希·高斯於1798年写成的一本数论教材,在1801年他24岁时首次出版。全书用拉丁文写成。在这本书中高斯整理汇集了费马、欧拉、拉格朗日和勒让德等数学家在数论方面的研究结果,并加入了许多他自己的重要成果。.
查看 算术基本定理和算术研究
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
查看 算术基本定理和素数
高斯整數
斯整數是實數和虛數部分都是整數的複數。所有高斯整數組成了一個整域,寫作\mathbf,是個不可以轉成有序環的歐幾里德域。 高斯整數的范数都是非負整數,定義為 \mathbf單位元1, -1, i, -i的範數均為1。.
查看 算术基本定理和高斯整數
質元素
在數學裡,尤其是在抽象代數裡,交換環的質元素(prime element)是指滿足類似整數裡的質數或不可約多項式之性質的一個數學物件。須注意的是,質元素與不可約元素之間並不相同,雖然在唯一分解整環裡是一樣的,但在一般情況下則不一定相同。.
查看 算术基本定理和質元素
質因子
質因子(或質因數)在數論裡是指能整除給定正整數的質數。根據算術基本定理,不考虑排列顺序的情况下,每个正整数都能够以唯一的方式表示成它的质因数的乘积。兩個沒有共同質因子的正整數稱為互質。因為1沒有質因子,1與任何正整數(包括1本身)都是互質。只有一個質因子的正整數為質數。 将一个正整数表示成质因数乘积的过程和得到的表示结果叫做质因数分解。显示质因数分解结果时,如果其中某个质因数出现了不止一次,可以用幂次的形式表示。例如360的质因数分解是: 其中的质因数2、3、5在360的质因数分解中的幂次分别是3,2,1。 数论中的不少函数与正整数的质因子有关,比如取值为的质因数个数的函数和取值为的质因数之和的函数。它们都是加性函数,但并非完全加性函数。.
查看 算术基本定理和質因子
黎曼ζ函數
黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.
查看 算术基本定理和黎曼ζ函數
FTA
FTA可以指:.
查看 算术基本定理和FTA
P進數
进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.
查看 算术基本定理和P進數
欧几里得
欧几里得(Ευκλειδης,前325年—前265年),有时被称为亚历山大里亚的欧几里得,以便区别于墨伽拉的欧几里得,希腊化时代的数学家,被稱為「几何學之父」。他活躍於托勒密一世時期的亚历山大里亚,也是亚历山太学派的成员。他在著作《几何原本》中提出五大公設,成為欧洲数学的基础。歐幾里得也寫過一些關於透視、圓錐曲線、球面幾何學及數論的作品。歐幾里得幾何被广泛的认为是數學領域的經典之作。.
查看 算术基本定理和欧几里得
欧几里得定理
欧几里得定理是数论中的基本定理,定理指出素数的个數是无限的。该定理有许多著名的证明。.
欧拉函数
在數論中,對正整數n,歐拉函數\varphi(n)是小於或等於n的正整數中與n互質的數的數目。此函數以其首名研究者歐拉命名,它又稱為φ函數(由高斯所命名)或是歐拉總計函數(totient function,由西爾維斯特所命名)。 例如\varphi(8).
查看 算术基本定理和欧拉函数
準素分解
在交換代數中,準素分解將一個交換環的理想(或模的子模)唯一地表成準素理想(或準素子模)之交。這是算術基本定理的推廣,能用以處理代數幾何中的情況。.
查看 算术基本定理和準素分解
最小公倍數
最小公倍數是数论中的一个概念。若有一個數X,可以被另外兩個數A、B整除,且X大於(或等于)A和B,則X為A和B的公倍數。A和B的公倍數有無限個,而所有的公倍數中,最小的公倍數就叫做最小公倍數。兩個整數公有的倍數称为它们的公倍数,其中最小的一個正整数称为它们两个的最小公倍数。同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数。n整数a_1, a_2, \cdots, a_n的最小公倍数一般记作:,或者参照英文记法记作\operatorname(a_1, a_2, \cdots, a_n),其中lcm是英语中“最小公倍数”一词(lowest common multiple)的首字母缩写。 对分數进行加減运算時,要求兩數的分母相同才能計算,故需要--;标准的计算步骤是将兩個分數的分母--成它们的最小公倍數,然后将--后的分子相加。.
查看 算术基本定理和最小公倍數
戴德金整環
在環論中,戴德金整環是戴德金為了彌補一般數域中算術基本定理之闕如而引入的概念。在戴德金整環中,任意理想可以唯一地分解成素理想之積。.
查看 算术基本定理和戴德金整環
数学定理列表
以下是数学定理的列表:.
整数分解
在數學中,整數分解(integer factorization)又稱質因數分解(prime factorization),是將一個正整數寫成幾個因數的乘積。例如,給出45這個數,它可以分解成32 ×5。根據算術基本定理,這樣的分解結果應該是獨一無二的。這個問題在代數學、密碼學、計算複雜性理論和量子計算機等領域中有重要意義。.
查看 算术基本定理和整数分解
數論主題列表
這是數論的主題列表。參照.
0的奇偶性
0是一个偶数。来证明0是偶数的最简单的方法是检查0是否符合偶数的定义:若某数是2的整数倍数,那么它就是偶数。因为0=0×2,所以0为偶数。除此以外,0还满足偶数的所有性质:0可以被2整除;与0相邻的两个数字都是奇数;0可以被等分成两份。 0还满足其它一些由偶数构建出来的一些模型,例如在算术运算中的一些奇偶规则:偶数-偶数=偶数。.
查看 算术基本定理和0的奇偶性
1
1(一/壹)是0与2之间的自然数,是最小的正奇數.
查看 算术基本定理和1