徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

算子

指数 算子

算子(Operator)是从一个向量空间(或模)到另一个向量空间(或模)的映射。 算子对于线性代数和泛函分析都至关重要,它在纯数学和应用数学的许多其他领域中都有应用。 例如,在经典力学中,导数的使用无处不在,而在量子力学中,可观察量由埃尔米特算子表示。 各种算子可以具有包括线性、连续性和有界性等的重要性质。.

61 关系: 埃尔米特伴随埃尔米特矩阵卷积单参数群双线性映射外微分威廉·哈密頓实变函数论导数差分不变子空间问题串接希尔伯特-施密特算子幺正算符广义函数微分算子分数微积分命题逻辑傅里叶变换C*-代数Cholesky分解积分变换等距同构算符索伯列夫空间物理符號表特征值和特征向量百分號運算子 (數學)運算數菲涅耳衍射頻域高阶函数谱定理边值问题运算霍爾斯特德複雜度量測闭值域定理零空间雅可比恒等式逻辑异或Lax 对Nabla算子PDP-11投影李导数格林函數模糊集模除正交座標系...求值策略泛函分析有界算子无穷小变换无界算子时不变系统旋度散度数学学科分类标准拓扑空间拉普拉斯算子 扩展索引 (11 更多) »

埃尔米特伴随

数学上,特别是泛函分析中,希尔伯特空间中的每个线性算子有一个相应的伴随算子(adjoint operator)。算子的伴随将方块矩阵共轭转置推广到(可能)无穷维情形。如果我们将希尔伯特空间上的算子视为“广义复数”,则一个算子的伴随起着一个复数的共轭的作用。 一个算子A的伴随常常也称为埃尔米特伴随(Hermitian adjoint,以夏尔·埃尔米特命名),记作A*或A†(后者尤其用于狄拉克符号记法)。.

新!!: 算子和埃尔米特伴随 · 查看更多 »

埃尔米特矩阵

埃尔米特矩阵(Hermitian matrix,又译作厄米矩阵),也稱自伴隨矩陣,是共轭對稱的方陣。埃尔米特矩阵中每一个第i行第j列的元素都与第j行第i列的元素的复共轭。 对于 有: 记做: 例如: 3&2+i\\ 2-i&1 \end 就是一个埃尔米特矩阵。 显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。.

新!!: 算子和埃尔米特矩阵 · 查看更多 »

卷积

在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.

新!!: 算子和卷积 · 查看更多 »

单参数群

在数学中,一个单参数群(one-parameter group)或称单参数子群(one-parameter subgroup)通常表示从实数 R(作为加法群)到另一个拓扑群 G 的一个连续群同态 这意味着它严格说来其实不是一个群;如果 φ 是单射,则其像 φ(R) 是 G 的一个同构于加法群 R 的子群。这就是说,我们只知道 其中 s, t 是群在 G 中的参数。我们可能有 对某个 s ≠ 0 成立。譬如 G 是单位圆是这可能发生,且 在这种情形,φ 的核由 2π 乘以整数组成。 一个单参数群在一个集合上的作用称为流。 一个技术复杂性在于 φ(R) 作为 G 的子空间的拓扑可能比 R 上的要粗糙;这在 φ 是单射时可能发生。譬如考虑当 G 是一个环面 T,φ 是沿着一个无理斜率缠绕的直线。 所以一个单参数群或单参数子群需区别于一个群或一个子群自身,有三个原因:.

新!!: 算子和单参数群 · 查看更多 »

双线性映射

在数论中,一个双线性映射是由两个向量空间上的元素,生成第三个向量空间上一个元素之函数,并且该函数对每个参数都是线性的。例如矩阵乘法就是一个例子。.

新!!: 算子和双线性映射 · 查看更多 »

外微分

数学上,微分拓扑的外微分算子,把一个函数的微分的概念推广到更高阶的微分形式的微分。它在流形上的积分理论中极为重要,并且是德拉姆和Alexander-Spanier上同调中所使用的微分算子。其现代形式是由嘉当发明的。.

新!!: 算子和外微分 · 查看更多 »

威廉·哈密頓

威廉·哈密顿爵士(Sir William Rowan Hamilton,),愛爾蘭數學家、物理學家及天文學家。哈密顿最大的成就或许在於重新表述了牛顿力学,创立被称为哈密顿力学的力学表述。他的成果后在量子力学的发展中起到核心作用。哈密顿还对光学和代数的发展提供了重要的贡献,因为发现四元数而闻名。 他的妻子海倫·瑪俐亞·貝雷是一個牧師的女兒。哈密顿死於1865年9月2日,被安葬在都柏林杰羅姆山公墓。.

新!!: 算子和威廉·哈密頓 · 查看更多 »

实变函数论

實分析或實數分析是處理實數及實函數的數學分析。專門實數函數及數列的解析特性,包括實數數列的極限,實函數的微分及積分、連續性,光滑性以及其他相關性質。 實分析常以基礎集合論,函數概念定義等等開始。.

新!!: 算子和实变函数论 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

新!!: 算子和导数 · 查看更多 »

差分

差分,又名差分函數或差分運算,是数学中的一个概念。它将原函数 \ f(x) 映射到 \ f(x+a)-f(x+b)。差分運算,相應於微分運算,是微积分中重要的一个概念。.

新!!: 算子和差分 · 查看更多 »

不变子空间问题

数学领域泛函分析中,最著名的悬而未决的问题之一就是不变子空间问题,有时被乐观地称为不变子空间猜想。这个问题就是如下命题是否成立: 该命题对于所有2维以上有限维复向量空间是成立的:一个线性算子(矩阵)的特征值是其特征多项式的零点;根据代数基本定理,这个多项式存在零点;一个对应的特征向量可以张成一个不变子空间。该命题也很容易成立如果W不必是闭的:取任意H中非零向量x并考虑H的由线性张成的子空间W.

新!!: 算子和不变子空间问题 · 查看更多 »

串接

在形式語言理論(特別是編程語言),字串串接(Concatenation),又稱字串相加、連接、串連、相連,指將兩個字串的首尾相接的操作。例如「foo」和「bar」串接後便成了「foobar」。部分語言,串接的操作是透過將串接運算子放在兩個字串(運算元)之間。.

新!!: 算子和串接 · 查看更多 »

希尔伯特-施密特算子

在数学中,一个希尔伯特-施密特算子(Hilbert–Schmidt operator)(得名于大卫·希尔伯特和), 是希尔伯特空间H上的有界算子A,有有限的希尔伯特-施密特范数 其中\|\ \|是H上的范数,\ 是H上的一组标准正交基,Tr是非负自伴算子的迹。这里指标集不一定可数。这个定义不依赖于基底的选择,所以有 其中A_.

新!!: 算子和希尔伯特-施密特算子 · 查看更多 »

幺正算符

在泛函分析中,幺正算符是定义在希尔伯特空间上的有界线性算符U: H → H,满足如下规律 其中 U∗ 是 U的厄米转置, 而 I: H → H是恒等算符。 幺正算符具有如下性质.

新!!: 算子和幺正算符 · 查看更多 »

广义函数

数学上,广义函数或是分布是将函数的概念一般化得到的对象。得到承认的理论不止一种。广义函数在使得不连续函数表现得更像光滑函数的方面很有用,并且(在极限情况下)可以表述像点电荷这类的物理现象。它们广泛应用于物理和工程领域。 有些方法的一个共同之处在于它们是基于日常数值函数的算子方面的。其早期历史和算子微积分的一些思想有联系,而更为近代的发展和佐藤幹夫称为代数分析的特定方向的一些思想有密切关联。偏微分方程和群表示理论的技术要求曾对该主题有重要影响。.

新!!: 算子和广义函数 · 查看更多 »

微分算子

在数学中,微分算子是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数(以计算机科学中高阶函数的方式)。 当然有理由不单限制于线性算子;例如施瓦茨导数是一个熟知的非线性算子。不过这里只考虑线性的情形。.

新!!: 算子和微分算子 · 查看更多 »

分数微积分

数学上,分数微积分(fractional calculus)是数学分析的一个分支,它研究微分算子D.

新!!: 算子和分数微积分 · 查看更多 »

命题逻辑

在邏輯和數學裡,命題演算(或稱句子演算)是一個形式系統,有著可以由以邏輯運算符結合原子命題來構成代表「命題」的公式,以及允許某些公式建構成「定理」的一套形式「證明規則」。.

新!!: 算子和命题逻辑 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

新!!: 算子和傅里叶变换 · 查看更多 »

C*-代数

C*-代数(或读作“C星代数”)是数学分支中泛函分析的重要研究对象。C*-代数的典型例子是满足以下两个性质的复希尔伯特空间的线性算子的代数A:.

新!!: 算子和C*-代数 · 查看更多 »

Cholesky分解

線性代數中,Cholesky分解(Cholesky decomposition or Cholesky factorization,另有譯作楚列斯基分解)是指將一個正定的Hermite矩陣分解成一個下三角矩陣與其共軛轉置之乘積。這種分解方式在提高代數運算效率、蒙特卡羅方法等場合中十分有用。實數矩陣的Cholesky分解由最先發明。實際應用中,Cholesky分解在求解線性方程組中的效率約兩倍於LU分解。.

新!!: 算子和Cholesky分解 · 查看更多 »

积分变换

積分變換(integral transform)是數學中作用于函数的算子,用以處理微分方程等問題。常見的有傅里葉變換﹑拉普拉斯變換等。.

新!!: 算子和积分变换 · 查看更多 »

等距同构

在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.

新!!: 算子和等距同构 · 查看更多 »

算符

在物理學裏,算符(operator),又稱算子,作用於物理系統的狀態空間,使得物理系統從某種狀態變換為另外一種狀態。這變換可能相當複雜,需要用很多方程式來表明,假若能夠使用算符來代表,可以更為簡單扼要地表達論述。 對於很多案例,假若作用的對象有所迥異,算符的物理行為也會不同;但是,對於有些案例,算符的物理行為具有一般性,這時,就可以將論題抽象化,專注於研究算符的物理行為,不必顧慮到狀態的獨特性。這方法比較適用於一些像對稱性或守恆定律的論題。因此,在經典力學裏,算符是很有用的工具。在量子力學裏,算符為理論表述不可或缺的要素。 對於更深奧的理論研究,可能會遇到很艱難的數學問題,算符理論(operator theory)能夠提供高功能的架構,使得數學推導更為簡潔精緻、易讀易懂,更能展現出內中物理涵意。 一般而言,在經典力學裏的算符大多作用於函數,這些函數的參數為各種各樣的物理量,算符將某函數映射為另一種函數。這種算符稱為「函數算符」。在量子力學裏的算符稱為「量子算符」,作用的對象是量子態。量子算符將某量子態映射為另一種量子態。.

新!!: 算子和算符 · 查看更多 »

索伯列夫空间

数学上,一个索伯列夫空间是一个由函数组成的賦範向量空間,对于某个给定的p ≥ 1,它对一个函数f和它的直到某个k阶导数加上有限''Lp''范数的这个条件。它以前苏联数学家舍蓋·索伯列夫來命名。.

新!!: 算子和索伯列夫空间 · 查看更多 »

物理符號表

這是一個普通物理常數和符號的清單,以粗體字表示的符號為向量。物理上,有一組常在數學表達式中出現的符號。工作者熟悉這些符號,不是每次使用都加以說明。所以,對於物理初學者,下面的列表給出了很多常見的符號包括名稱、讀法。.

新!!: 算子和物理符號表 · 查看更多 »

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

新!!: 算子和特征值和特征向量 · 查看更多 »

百分號

分號是表達百分比的符號,加在數值的後面,表達百分之一。.

新!!: 算子和百分號 · 查看更多 »

運算子 (數學)

#重定向 算子.

新!!: 算子和運算子 (數學) · 查看更多 »

運算數

數學上的運算數(operand)是指數學運算的對象,以此進行數學運算。.

新!!: 算子和運算數 · 查看更多 »

菲涅耳衍射

在光學裏,菲涅耳衍射(Fresnel diffraction)指的是光波在近場區域的衍射。菲涅耳衍射積分式可以用來計算光波在近場區域的傳播,因法國物理學者奥古斯丁·菲涅耳而命名,是基爾霍夫衍射公式的近似。 從每一個光學系統特徵的菲涅耳數,可以辨別光波傳播的區域是近場還是遠場。設想光波入射於任意孔徑,對於這光學系統,菲涅耳數定義為 其中,a 是孔徑的尺寸,L 是孔徑與觀察屏之間的距離,\lambda 是入射波的波長。 假若 F \gtrsim 1 ,則衍射波是處於近場,可以使用菲涅耳衍射積分式來計算其物理性質。.

新!!: 算子和菲涅耳衍射 · 查看更多 »

頻域

在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.

新!!: 算子和頻域 · 查看更多 »

高阶函数

在数学和计算机科学中,高阶函数是至少满足下列一个条件的函数:.

新!!: 算子和高阶函数 · 查看更多 »

谱定理

数学上,特别是线性代数和泛函分析中,谱定理是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用乘法算子来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看谱分析中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。.

新!!: 算子和谱定理 · 查看更多 »

边值问题

在微分方程中,边值问题是一个微分方程和一组称之为边界条件的约束条件。边值问题的解通常是符合约束条件的微分方程的解。 物理学中经常遇到边值问题,例如波动方程等。許多重要的边值问题屬於Sturm-Liouville問題。這類問題的分析會和微分算子的本徵函數有關。 在实际应用中,边值问题应当是适定的(即:存在解,解唯一且解會隨著初始值連續的變化)。許多偏微分方程領域的理論提出是為要證明科學及工程應用的許多边值问题都是适定問題。 最早研究的边值问题是狄利克雷问题,是要找出调和函数,也就是拉普拉斯方程的解,後來是用狄利克雷原理找到相關的解。.

新!!: 算子和边值问题 · 查看更多 »

运算

数学上,运算(Operation)是一种行为,通过已知量的可能的组合,获得新的量。例如,算术中的加法6+3.

新!!: 算子和运算 · 查看更多 »

霍爾斯特德複雜度量測

霍爾斯特德複雜度量測(Halstead complexity measures)是由霍爾斯特德在1977年提出的一種軟體度量方法,是有關軟體開發經驗科學的論文中的一部份。 霍爾斯特德觀察到軟體度量應該要反映在不同程式語言中演算法實現的方式,但又要獨立於使用的平台及語言。這些度量要可以由靜態代碼中計算而得。 霍爾斯特德的目標是識別軟體中可量測的性質,以及各性質之間的關係。有點類似識別物體中可量測的性質(如氣體的體積、質量及壓強),以及各性質之間的關係(如理想氣體方程式的體積、質量及壓強),因此霍爾斯特德複雜度量測不單單只是一種的度量。.

新!!: 算子和霍爾斯特德複雜度量測 · 查看更多 »

闭值域定理

闭值域定理是数学中的巴拿赫空间理论中的一个定理,给出了闭合稠定线性算子(closed densely defined operator)的值域为闭集的充要条件。这一定理由斯特凡·巴拿赫于1932年在《线性算子理论》(Théorie des opérations linéaires)一文中给出了证明。 设X与Y为巴拿赫空间,若T: D(X) → Y是一个闭合的线性算子,它的定义域D(X)在X中稠密,而\scriptstyle是它的转置算子。则定理指出,如下四个结论等价:.

新!!: 算子和闭值域定理 · 查看更多 »

零空间

在数学中,一个算子 A 的零空间是方程 Av.

新!!: 算子和零空间 · 查看更多 »

雅可比恒等式

雅可比恒等式就是下列等式:.

新!!: 算子和雅可比恒等式 · 查看更多 »

逻辑异或

在--邏輯中,逻辑算符互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XOR或EOR或⊕。与一般的邏輯或OR不同,當兩兩數值相同為否,而數值不同時為真。 两个运算元(命题):A与B的异或一般写成A异或B,或者写成A \quad \mathrm \quad B、A \oplus B、A \neq B等等。在C语言中,写作A^B。.

新!!: 算子和逻辑异或 · 查看更多 »

Lax 对

Lax 对定义。一个非线性偏微分方程 F(x,t,u,……).

新!!: 算子和Lax 对 · 查看更多 »

Nabla算子

Del算子或稱Nabla算子,在中文中也叫向量微分算子、劈形算子、倒三角算子,符号为\nabla,是一个向量微分算子,但本身並非一個向量。 其形式化定义为: \nabla.

新!!: 算子和Nabla算子 · 查看更多 »

PDP-11

PDP-11為迪吉多電腦於1970到1980年代所銷售的一系列16位元迷你電腦。PDP-11是迪吉多電腦的PDP-8系列的後續機種。PDP-11有著許多創新的特色,而且比起其前代機種更容易撰寫程式。當32位元的後續擴充機型VAX-11推出時,PDP-11已經廣受程式設計師的喜愛。這兩個機型後續的市場,則多由IBM PC、蘋果二號與昇陽電腦的工作站電腦等個人電腦所取代。.

新!!: 算子和PDP-11 · 查看更多 »

投影

在线性代数和泛函分析中,投影是从向量空间映射到自身的一种线性变换,是日常生活中“平行投影”概念的形式化和一般化。同现实中阳光将事物投影到地面上一样,投影变换将整个向量空间映射到它的其中一个子空间,并且在这个子空间中是恒等变换。.

新!!: 算子和投影 · 查看更多 »

李导数

在微分幾何中,李导数(Lie derivative)是一個以索甫斯·李命名的算子,作用在流形上的張量場,向量場或函数,將該張量沿著某個向量場的流做方向導數。因為該作用在座標變換下保持不變,因此,該李導數在一般的流形上都是定義良好的。 所有李导数组成的向量空间对应于如下的李括号构成一个无限维李代数。 李导数用向量场表示,这些向量场可看作M上的流(flow, 也就是时变微分同胚)的无穷小生成元。从另一角度看,M上的微分同胚组成的群,有其对应的李导数的李代数结构,在某种意义上和李群理论直接相关。.

新!!: 算子和李导数 · 查看更多 »

格林函數

在數學中,格林函數(點源函數、影響函數)是一種用來解有初始条件或邊界條件的非齐次微分方程的函數。在物理学的多体理论中,格林函数常常指各种,有时并不符合数学上的定义。 格林函數的名稱是來自於英國數學家喬治·格林(George Green),早在1830年代,他是第一個提出這個概念的人。.

新!!: 算子和格林函數 · 查看更多 »

模糊集

模糊集是模糊数学上的一个基本概念,是数学上普通集合的扩展。.

新!!: 算子和模糊集 · 查看更多 »

模除

模除(又稱模数、取模運算等)是一种不具交换性的二元运算。.

新!!: 算子和模除 · 查看更多 »

正交座標系

在數學裏,一個正交座標系定義為一組正交座標\mathbf.

新!!: 算子和正交座標系 · 查看更多 »

求值策略

在计算机科学中,求值策略(Evaluation strategy)是确定编程语言中表达式的求值的一组(通常确定性的)规则。重点典型的位于函数或算子上——求值策略定义何时和以何种次序求值给函数的实际参数,什么时候把它们代换入函数,和代换以何种形式发生。经常使用用来研究函数的形式系统λ演算来建模求值策略,这里它们通常叫做归约策略。求值策略分为两大基本类,严格的和非严格的,基于如何处理给函数的实际参数。一个语言可以组合多种求值策略;例如C++组合了传值调用和传引用调用。多数语言对布尔表达式和if语句使用某种形式的非严格求值。.

新!!: 算子和求值策略 · 查看更多 »

泛函分析

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.

新!!: 算子和泛函分析 · 查看更多 »

有界算子

在泛函分析此一數學分支裡,有界線性算子是指在賦範向量空間X 及Y 之間的一種線性變換L,使得對所有X 內的非零向量v,L(v) 的範數與v 的範數間的比值會侷限在相同的數字內。亦即,存在一些M > 0,使得對所有在X 內的v, 其中最小的M 稱為L 的算子范数。\|L\|_ \,。 有界線性算子一般不會是有界函數;後者需要對所有的v,L(v)的範數是有界的,但這只有在Y 為零向量空間時才有可能。然而,有界線性算符為局部有界函數。 一個線性算子為有界的,若且唯若其為連續的。因此有界线性算子也被称为连续线性算子。.

新!!: 算子和有界算子 · 查看更多 »

无穷小变换

数学裡,无穷小变换是小变换的一个无穷小极限。例如我们可以谈论三维空间中一个刚体的无穷小旋转。这通常由一个 3×3 反对称矩阵 A 表示。它不是空间中的实际旋转;但是对一个小参数 ε,我们有 与小旋转之差只是 ε2 阶量。 无穷小变换的综合理论最早由索甫斯·李给出。事实上这是他在如今称为李群及其李代数方面工作的核心;以及它们在几何特别是微分方程中作用的等同。一个抽象李群的性质正是无穷小变换的那些限定,正如群论的公理实现了对称。 例如,在无穷小旋转情形,将一个反对称矩阵与一个三维向量等同,则李代数结构由叉积给出。这相当于选取旋转的一个轴;雅可比恒等式是叉积一个熟知的性质。 无穷小变换最早的例子可能认为出现于齐次函数的欧拉定理中。它断言 n 个变量 x1,..., xn 的一个度数为 r 的齐次函数 F,满足 其中 是一个微分算子。这是由性质 我们可对 λ 微分,然后取 λ 等于 1。这是光滑函数 F 有齐次性质的一个必要条件;这也是充足的(通过利用施瓦兹分布我们简化这里考虑的数学分析)。在我们有一个缩放算子的单参数子群时这个过程是典型的;变换的信息事实上包含于一阶微分算子无穷小变换中。 算子方程 这里 是泰勒定理的一个算子版本,从而只对 f 是一个解析函数成立。集中于算子部分,它实际上说明 D 是一个无穷小变换,通过指数生成在实直线上的平移。在李理论中,这推广得很远。任何连通空间李群可由它的无穷小生成元(这个群李代数的一个基)构造出来;贝克-坎贝尔-豪斯多夫公式中给出了清晰不过未必总有用的信息。 Category:李群.

新!!: 算子和无穷小变换 · 查看更多 »

无界算子

在数学中, 特别是泛函分析与算符理论, 无界算子的概念提供了用于处理微分算符, 量子力学中无界可观测量等的一个抽象框架.

新!!: 算子和无界算子 · 查看更多 »

时不变系统

非時變系統是输出不會直接隨著时间变化的系统。 如果系统的传递函数不是时间的函数,就可以满足这个特性。这个特性也可以用示意图的术语进行描述.

新!!: 算子和时不变系统 · 查看更多 »

旋度

旋度(Curl)或稱回轉度(Rotation),是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。向量场每一点的旋度是一个向量,称为旋度向量。它的方向表示向量场在这一点附近旋度最大环量的旋转轴,它和向量场旋转的方向满足右手定则。旋度向量的大小则是这一点附近向量场旋转度的一个量化体现,定义为当绕着这个旋转轴旋转的环量与旋转路径围成的面元面积之比趋近于零时的极限。举例来说,假设一台滚筒洗衣机运行的时候,从前方看来,内部的水流是逆时针旋转,那么中心水流速度向量场的旋度就是朝前方向外的向量。.

新!!: 算子和旋度 · 查看更多 »

散度

散度或稱發散度,是向量分析中的一个向量算子,将向量空间上的一个向量场(矢量场)对应到一个标量场上。散度描述的是向量场里一个点是汇聚点还是发源点,形象地说,就是这包含这一点的一个微小体元中的向量是“向外”居多还是“向内”居多。举例来说,考虑空间中的静电场,其空间里的电场强度是一个矢量场。正电荷附近,电场线“向外”发射,所以正电荷处的散度为正值,电荷越大,散度越大。负电荷附近,电场线“向内”,所以负电荷处的散度为负值,电荷越大,散度越小。向量函數的散度為一個純量,而纯量的散度是向量函数。.

新!!: 算子和散度 · 查看更多 »

数学学科分类标准

数学学科分类标准(MSC) 是由美国数学学会策划的建立在两个主要的引文数据库数学评论和数学文摘的字母数字混合的分类方案.

新!!: 算子和数学学科分类标准 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

新!!: 算子和拓扑空间 · 查看更多 »

拉普拉斯算子

在數學以及物理中,拉普拉斯算子或是拉普拉斯算符(Laplace operator, Laplacian)是由欧几里得空间中的一個函数的梯度的散度给出的微分算子,通常寫成 \Delta 、 \nabla^2 或 \nabla \cdot \nabla 。 這名字是為了紀念法国数学家皮耶-西蒙·拉普拉斯(1749–1827)而命名的。他在研究天体力学在數學中首次应用算子,当它被施加到一个给定的重力位(Gravitational potential)的时候,其中所述算子给出的质量密度的常数倍。經拉普拉斯算子運算為零∆f.

新!!: 算子和拉普拉斯算子 · 查看更多 »

重定向到这里:

運算子

传出传入
嘿!我们在Facebook上吧! »