徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

相位

指数 相位

位(phase),是描述訊號波形變化的度量,通常以度(角度)作為單位,也稱作相角或相。當訊號波形以週期的方式變化,波形循環一周即為360º。常應用在科學領域,如數學、物理學、電學等。.

178 关系: AN/FPS-117雷達功率因数基爾霍夫電路定律原子力显微镜偏振卡比博-小林-益川矩阵单边带调制叠加原理双缝实验中光子的动力学复数 (数学)天文學太陽系年表奈奎斯特图定義域著色宇稱導抗小米MIX 2小米Note 2差分信号不确定性原理中子電偶極矩中性區希格斯机制布洛赫波布拉格定律三角恒等式干涉 (物理学)干涉合成孔径雷达干涉測量術平面波并网逆变器广义相对论的实验验证交互相位調變交易詮釋交流电功率交流電二維傅立葉變換互补原理伊利澤-威德曼炸彈測試問題传递函数伯特蘭定理伽利略·伽利莱低通滤波器位移電流彩虹色圆二色性利萨茹曲线和谐号CRH1型电力动车组傅里叶变换哈密頓-雅可比方程式...哈密顿-雅可比-爱因斯坦方程几何光学全息摄影共模訊號共模抑制比光学光学显微镜光伏逆变器光弹性光程光栅CDDAComplex.h环加成反应磁矢势神经振荡神盾戰鬥系統科学大纲穩定態自由旋進造影筑波快線紅米Note 3紅米Note 4紅米Pro线性时不变系统理论电偶极矩电子电磁场电磁辐射电荷守恒定律电抗物理光学盲目去迴旋積直接数字合成相干性相位偏移調變相位因子相位聲碼器相位裕度相位角相位陣列相衬显微技术相量相速度Direct Stream Digital音分聲碼器頻域頻率衍射衍射光栅表面声波频谱馬克士威方程組馬赫-曾德爾干涉儀駐波规范场论諧振子高階弦波輸入描述函數谱密度龐蒂科夫-牧-中川-坂田矩陣迈克尔·贝里舊量子論阻抗阿利·伯克級驅逐艦阿哈罗诺夫-玻姆效应薛定谔方程肥皂泡锁相环锁模技术脈波量子纏結量子退相干量子擦除實驗金屬疲勞鉴频鉴相器電子掃描陣列雷達雙縫實驗逆變器Gross-Pitaevskii方程Hartley oscillatorΦMIDIP波RLC电路Super Audio CDWKB近似WWVBX射线晶体学抗噪耳機柯尼卡美能達A卡口橢圓偏振技術欧姆定律正交幅度调制正弦曲線汉伯里·布朗及特维斯效应波动方程波德圖波包波動力學波的传播波长波束赋形波數法拉第效应滤波器设计漸逝波激光干涉引力波天文台激光干涉空间天线振动振幅調變月球惠更斯-菲涅耳原理战斗机斯涅尔定律新幹線0系電聯車新视野号无线电日本國鐵ED71型電力機車日本國鐵ED72型電力機車日本國鐵ED77型電力機車日本國鐵ED78型電力機車旋轉編碼器感觉系统散射长度效果器時頻分析的測不準原理 扩展索引 (128 更多) »

AN/FPS-117雷達

AN/FPS-117是由洛克希德所設計與生產的3維長程防空雷達,除了美國以外,並且外銷到許多國家,目前除美國外有127具固定與移動款式於各國服役。.

新!!: 相位和AN/FPS-117雷達 · 查看更多 »

功率因数

功率因数(power factor,縮寫:PF)又称功率因子,是交流電力系統中特有的物理量,是一負載所消耗的有效功率与其视在功率的比值,是0到1之間的無因次量。 有效功功率代表一電路在特定時間作功的能力,视在功率是電壓和電流有效值的乘積。純電阻負載的视在功率等於有功功率,其功率因數為1。若負載是由電感、電容及電阻組成的線性負載,能量可能會在負載端及電源端往復流動,使得有功功率下降。若負載中有電感、電容及電阻以外的元件(非線性負載),會使得輸入電流的波形扭曲,也會使视在功率大於有功功率,這二種情形對應的功率因数會小於1。功率因数在一定程度上反映了发电机容量得以利用的比例,是合理用电的重要指标。 電力系統中,若一負載的功率因數較低,負載要產生相同功率輸出時所需要的電流就會提高。當電流提高時,電路系統的能量損失就會增加,而且電線及相關電力設備的容量也隨之增加。電力公司為了反映較大容量設備及浪費能量的成本,一般會對功率因數較低的工商業用戶以較高的電費費率來計算電費。 提高負載功率因數,使其接近1的技術稱為功率因數修正。低功率因數的線性負載(如感應馬達)可以藉由電感或電容組成的被動元件網路來提昇功因。非線性負載(如二極體)會使得輸入電流的波形扭曲,此情形可以由主動或被動的功率因數修正來抵消電流扭曲的影響,並且改善功因。功率因數修正設備可以位在中央變電站、分佈在電力系統中,或是放在耗能設備的內部。 功率因數和二者是不同概念,一設備的效率是輸出功率相對於輸入功率的比值,和功因不同。一設備功率因數提昇後,設備本身的效率不一定會隨之提昇。但功率因數提昇後,視在功率及輸入電流會減小,因此供電系統的效率會提昇。.

新!!: 相位和功率因数 · 查看更多 »

基爾霍夫電路定律

基爾霍夫電路定律(Kirchhoff Circuit Laws)簡稱為基爾霍夫定律,指的是兩條電路學定律,基爾霍夫電流定律與基爾霍夫電壓定律。它們涉及了電荷的守恆及電勢的保守性。1845年,古斯塔夫·基爾霍夫首先提出基爾霍夫電路定律。現在,這定律被廣泛地應用於電機工程學。 從馬克士威方程組可以推導出基爾霍夫電路定律。但是,基爾霍夫並不是依循這條思路發展,而是從格奧爾格·歐姆的工作成果加以推廣得之。.

新!!: 相位和基爾霍夫電路定律 · 查看更多 »

原子力显微镜

原子力显微镜(atomic force microscope,简称AFM),也称扫描力显微镜(scanning force microscope,SFM)是一种纳米级高分辨的扫描探针显微镜,优于光学衍射极限1000倍。原子力显微镜的前身是扫描隧道显微镜,是由IBM苏黎士研究实验室的海因里希·罗雷尔(Heinrich Rohrer)和格尔德·宾宁(Gerd Binnig)在上世纪80年代早期发明的,他们之后因此获得1986年的诺贝尔物理学奖。 格爾德·賓寧、魁特(Calvin Quate)和格勃(Gerber)于1986年发明第一台原子力显微镜,而第一台商业化原子力显微镜于1989年生产的。AFM是在纳米尺度操作材料,及其成像和测量最重要的工具。信息是通过微悬臂感受和悬臂上尖细探针的表面的“感觉”来收集的,而压电元件可以控制样品或扫描器非常精确的微小移动,用导电悬臂(cantilever)和导电原子力显微镜附件则可以测量样品的电流偏压;更高级的仪器则可以测试探针上的电流来测试样品的电导率或下表面的电子的移动,不过这种测试是非常艰难的,只有个别实验室报道了一致的数据。利用微悬臂感受和放大悬臂上尖细探针與受測樣品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。 原子力显微镜是由IBM公司苏黎世研究中心的格尔德·宾宁与斯坦福大学的Calvin Quate于一九八五年所发明的,其目的是为了使非导体也可以采用類似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子穿隧效應,而是检测原子之间的接触,原子键合,范德瓦耳斯力或卡西米爾效應等来呈现样品的表面特性。.

新!!: 相位和原子力显微镜 · 查看更多 »

偏振

偏振(polarization)指的是横波能夠朝著不同方向振盪的性質。例如電磁波、引力波都會展示出偏振現象。纵波则不會展示出偏振現象,例如傳播於氣體或液體的聲波,其只會朝著傳播方向振盪。如右圖所示,緊拉的細線可以展示出線偏振現象與圓偏振現象。 電磁波的電場與磁場彼此相互垂直。按照常規,電磁波的偏振方向指的是電場的偏振方向。在自由空間裏,電磁波是以橫波方式傳播,即電場與磁場又都垂直於電磁波的傳播方向。理論而言,只要垂直於傳播方向的方向,振盪的電場可以呈任意方向。假若電場的振盪只朝著單獨一個方向,則稱此為「線偏振」或「平面偏振」;假若電場的振盪方向是以電磁波的波頻率進行旋轉動作,並且電場向量的矢端隨著時間流意勾繪出圓型,則稱此為「圓偏振」;假若勾繪出橢圓型,則稱此為「橢圓偏振」;對於這兩個案例,又可按照在任意位置朝著源頭望去,電場隨時間流易而旋轉的順時針方向、逆時針方向,將圓偏振細分為「右旋圓偏振」、「左旋圓偏振」,將橢圓偏振細分為「右旋橢圓偏振」、「左旋橢圓偏振」;這性質稱為手徵性。 光波是一種電磁波。很多常見的光學物質都具有各向同性,例如玻璃。這些物質會維持波的偏振態不變,不會因偏振態的不同而展現出不同的物理行為。可是,有些重要的雙折射物質或光學活性物質具有各向異性。因此,偏振方向的不同,波的傳播狀況也不同,或者,波的偏振方向會被改變。起偏器是一種光學濾波器,只能讓朝著某特定方向偏振的光波通過,因此,可以將非偏振光變為偏振光。 在涉及到橫波傳播的科學領域,例如光學、地震學、無線電學、微波學等等,偏振是很重要的參數。激光、光纖通信、無線通信、雷達等等應用科技,都需要完善處理偏振問題。 極化的英文原文也是「polarization」,在英文文獻裏,偏振與極化兩個術語通用,都是使用同一個詞彙來表達,只有在中文文獻裏,才有不同的用法。一般來說,偏振指的是任何波動朝著某特定方向振盪的性質,而極化指的是各個帶電粒子因正負電荷在空間裡分離而產生的現象。.

新!!: 相位和偏振 · 查看更多 »

卡比博-小林-益川矩阵

卡比博-小林-益川矩阵(Cabibbo-Kobayashi-Maskawa,CKM或KM matrix)是粒子物理标准模型的一个重要组成成份,它表征了顶类型和底类型夸克间通过W粒子弱相互作用的耦合强度。对二代夸克情形,它是由意大利物理学家卡比博在1963年首先给出的,通常被称为卡比博矩阵或卡比博角。1973年日本物理学家小林诚和益川敏英把它推广到三代夸克。三代矩阵含有相位,可以用来解释弱相互作用中的电荷宇称对称性破缺(CP破坏),也被经常用来解释宇宙重子数不对称。CKM矩阵在轻子中的对应是牧-中川-坂田矩阵(Maki-Nakagawa-Sakata或MNS)。.

新!!: 相位和卡比博-小林-益川矩阵 · 查看更多 »

单边带调制

在无线电通信中,单边带调制(SSB)或单边带抑制载波(SSB-SC),是一种可以更加有效的利用电能和带宽的调幅技术。调幅技术输出的调制信号带宽为源信号的两倍。单边带调制技术可以避免带宽翻倍,同时避免将能量浪费在载波上,不过因为设备变得复杂,成本也会增加。.

新!!: 相位和单边带调制 · 查看更多 »

叠加原理

在物理学与系统理论中,叠加原理(superposition principle),也叫叠加性质(superposition property),说对任何线性系统“在给定地点与时间,由两个或多个刺激产生的合成反应是由每个刺激单独产生的反应之代数和。” 从而如果输入 A 产生反应 X,输入 B 产生 Y,则输入 A+B 产生反应 (X+Y)。 用数学的话讲,对所有线性系统 F(x).

新!!: 相位和叠加原理 · 查看更多 »

双缝实验中光子的动力学

双缝实验中光子的动力学描述了在双缝实验中,经典电磁波和其量子化的对应物——光子之间的关系。表面上,只要将经典场解释为光子的几率幅,光子的动力学似乎就能用经典的麦克斯韦方程组完全描述。然而,这种解释充满疏漏,并最终会导致矛盾的结论。也就是说,我们不能将电磁场看作是光子的波函数。主要原因在於,电磁场是物理实在的并且是可观测的;而从原理上说(即不管使用什么仪器),满足薛定谔方程的波函数都不是可观测量。从而,电磁场是一种物理实在的可观测场,而不仅仅代表了对振幅取模平方所对应的在某处找到光子的几率。而光子的波函数是否可定义,仍然是一个悬而未决的问题。.

新!!: 相位和双缝实验中光子的动力学 · 查看更多 »

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

新!!: 相位和复数 (数学) · 查看更多 »

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

新!!: 相位和天文學 · 查看更多 »

太陽系年表

這是太陽系的天文學年表,列出人類對太陽系的主要發現與研究成果。.

新!!: 相位和太陽系年表 · 查看更多 »

奈奎斯特图

奈奎斯特图(Nyquist plot)是對於一個連續時間的線性非時變系統,將其頻率響應的增益及相位以極座標的方式在复平面中繪出,常在控制系統或信號處理中使用,可以用來判斷一個有反馈的系統是否穩定。奈奎斯特图的命名是來自貝爾實驗室的電子工程師哈里·奈奎斯特(Harry Nyquist)。 奈奎斯特图上每一點都是對應一特定頻率下的頻率響應,該點相對於原點的角度表示相位,而和原點之間的距離表示增益,因此奈奎斯特图將振幅及相位的波德圖綜合在一張圖中。 一般的系統有低通濾波器的特性,高頻時的頻率響應會衰減,增益降低,因此在奈奎斯特图中會出現在較靠近原點的區域。.

新!!: 相位和奈奎斯特图 · 查看更多 »

定義域著色

在複分析中,定義域著色是一種可以將複變函數可視化的一個資訊視覺化技術,是藉由在定義域上以色彩表示其函數值來表達函數圖形的方法,故稱為「定義域」著色。「定義域著色」一詞由法蘭克·菲莉絲(Frank Farris)在1998年左右時命名 Ludmark refers to Farris' coining the term "domain coloring" in this 2004 article.

新!!: 相位和定義域著色 · 查看更多 »

宇稱

在量子力學中,宇稱被描述成宇稱變換中的量,以P (Parity) 表示。宇稱變換(又稱宇稱倒裝),是一個在一個三維座標系中其中一維的翻轉(變換),在三維空間之內,它也可以是一個在x, y, z 軸中同時進行的變換(點反演) 因為宇稱變換會將一個現象轉化為其的鏡像,所以宇稱變換也可以被形容成一個測試左右手座標系的物理現象。在宇稱變換之中,假設變換是在右手座標系,這樣的變換在左手座標系看來就可以被認為是一個身分轉換,反之亦然。 大部分的標準模型在宇稱底下,都呈現宇稱對稱,但弱交互作用卻會破壞這種對稱性。 在任何一維的三維座標系下,P的矩陣的行列式.

新!!: 相位和宇稱 · 查看更多 »

導抗

導抗 ,是電路負載中六種參數的統稱。 負載共分為電阻(電阻器)、電容(電容器)和電感(線圈)三種。電阻只會影響\frac (導抗矢量)的實數部份,而電容和電感則只會影響其虛數部份,而三者的配合能夠影響正弦曲線式電源的剎那電壓、電流或功率等參數。.

新!!: 相位和導抗 · 查看更多 »

小米MIX 2

小米MIX 2,是一款由小米科技於2017年9月11日所发表的Android系統全螢幕智能手机。小米MIX 2同樣是由第一代小米MIX手機的设计师菲利普·斯塔克所设计。.

新!!: 相位和小米MIX 2 · 查看更多 »

小米Note 2

没有描述。

新!!: 相位和小米Note 2 · 查看更多 »

差分信号

差分传输是一种信号传输的技术,区别于传统的一根信号线一根地线的做法,差分传输在这两根线上都传输信号,这两个信号的振幅相同,相位相反。在这两根线上的传输的信号就是差分信号。信号接收端比较这两个电压的差值来判断发送端发送的是逻辑0还是逻辑1。在电路板上,差分走线必须是等长、等宽、紧密靠近、且在同一层面的两根线。.

新!!: 相位和差分信号 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 相位和不确定性原理 · 查看更多 »

中子電偶極矩

中子電偶極矩衡量中子內部正電荷與負電荷的分佈。只有當正電量心與負電量心不重疊在同一位置時,電偶極矩才不等於零。至今為止,科學家尚未發現中子電偶極矩的蛛絲馬跡。現在中子電偶極矩的最準確上限為|p_n| 。.

新!!: 相位和中子電偶極矩 · 查看更多 »

中性區

中性區,又称--(英文名稱:Neutral Zone 或 Dead Zone,在台灣鐵路管理局稱作 Neutral Section)乃電氣化鐵路的無電區間,一般設置於交流電化線路的變電站附近、兩交流變電站供電區域的分隔處,或交流與直流供電的交界處。.

新!!: 相位和中性區 · 查看更多 »

希格斯机制

在標準模型裏,希格斯機制(Higgs mechanism)是一種生成質量的機制,能夠使基本粒子獲得質量。為什麼費米子、W玻色子、Z玻色子具有質量,而光子、膠子的質量為零?希格斯機制可以解釋這問題。希格斯機制應用自發對稱性破缺來賦予規範玻色子質量。在所有可以賦予規範玻色子質量,而同時又遵守規範理論的可能機制中,這是最簡單的機制。根據希格斯機制,希格斯場遍佈於宇宙,有些基本粒子因為與希格斯場之間交互作用而獲得質量。 更仔細地解釋,在规范场论裏,為了滿足定域規範不變性,必須設定规范玻色子的质量為零。由於希格斯場的真空期望值不等於零,希格斯場在最低能量態的平均值,就是「希格斯場的真空期望值」。費曼微積分(Feymann calculus)用來計算的是希格斯場在最低能量態的振動,即希格斯玻色子。造成自發對稱性破缺,因此規範玻色子會獲得質量,同時生成一種零質量玻色子,稱為戈德斯通玻色子,而希格斯玻色子則是伴隨著希格斯場的粒子,是希格斯場的振動。通過選擇適當的規範,戈德斯通玻色子會被抵銷,只存留帶質量希格斯玻色子與帶質量規範向量場。 費米子也是因為與希格斯場相互作用而獲得質量,但它們獲得質量的方式不同於W玻色子、Z玻色子的方式。在规范场论裏,為了滿足定域規範不變性,必須設定費米子的质量為零。通過湯川耦合,費米子也可以因為自發對稱性破缺而獲得質量。 本條目的數學表述內容需要讀者了解一些量子場論的知識。所有方程式都遵守愛因斯坦求合約定。按照粒子物理學慣例,採用CGS單位制為物理量的單位,並且設定光速與約化普朗克常數的數值為1。.

新!!: 相位和希格斯机制 · 查看更多 »

布洛赫波

在固体物理学中,布洛赫波(Bloch wave)是周期性势场(如晶体)中粒子(一般为电子)的波函数,又名布洛赫态(Bloch state)。 布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫而得名。 布洛赫波由一个平面波和一个周期函数 u(\boldsymbol) (布洛赫波包)相乘得到。其中 u(\boldsymbol) 与势场具有相同周期性。布洛赫波的具体形式为: 式中k 为波向量。上式表达的波函数称为布洛赫函数。当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质: 这一结论称为布洛赫定理(Bloch's theorem),其中 \boldsymbol 为晶格周期向量。可以看出,具有上式性质的波函数可以写成布洛赫函数的形式。 平面波波向量 \boldsymbol (又称“布洛赫波向量”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵向量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波向量,即所谓“简约波向量”。对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n 以区别。这些能带的能量在 \boldsymbol 的各个单值区分界处存在有限大小的空隙,称为能隙。在第一布里渊区中所有能量本征态的集合构成了电子的能带结构。在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。 上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波向量 \boldsymbol 是一个守恒量(以倒易点阵向量为模),即电子波的群速度为守恒量。换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷以及电子与声子的相互作用。 从薛定谔方程出发可以证明,哈密顿算符与平移算符的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。 布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(1877年),(1883年)和亚历山大·李雅普诺夫(1892年)等独立地提出。因此,类似性质的概念在各个领域有着不同的名称:常微分方程理论中称为弗洛凯理论(也有人称“李雅普诺夫-弗洛凯定理”);一维周期性波动方程则有时被称为希尔方程。.

新!!: 相位和布洛赫波 · 查看更多 »

布拉格定律

在物理學中,布拉格定律給出晶格的相干及不相干散射角度。當X射線入射於原子時,跟任何電磁波一樣,它們會使電子雲移動。電荷的運動把波動以同樣的頻率再發射出去(會因其他各種效應而變得有點模糊);這種現象叫瑞利散射(或彈性散射)。散射出來的波可以再相互散射,但這種進級散射在這裏是可以忽略的。當中子波與原子核或不成對電子的相干自旋進行相互作用時,會發生一種與上述電磁波相近的過程。這些被重新發射出來的波來相互干涉,可能是相長的,也可能是相消的(重疊的波某程度上會加起來產生更強的波峰,或相互消抵),在探測器或底片上產生繞射圖樣。而所產生的波干涉圖樣就是繞射分析的基本部份。這種解析叫布拉格繞射。 布拉格繞射(又稱X射線繞射的布拉格形式),最早由威廉·勞倫斯·布拉格及威廉·亨利·布拉格於1913年提出,他們早前發現了固體在反射X射線後產生的晶體線(與其他物態不同,例如液體),而這項定律正好解釋了這樣一種效應。他們發現,這些晶體在特定的波長及入射角時,反射出來的輻射會形成集中的波峰(叫布拉格尖峰)。布拉格繞射這個概念同樣適用於中子繞射及電子繞射 。中子及X射線的波長都於原子間距離(~150 pm)相若,因此它們很適合在這種長度作“探針”之用。 威廉·勞倫斯·布拉格使用了一個模型來解釋這個結果,模型中晶體為一組各自分離的平行平面,相鄰平面間的距離皆為一常數d。他的解釋是,如果各平面反射出來的X射線成相長干涉的話,那麼入射的X射線經晶體反射後會產生布拉格尖峰。當相位差為2π及其倍數時,干涉為相長的;這個條件可經由布拉格定律表示: 其中n為整數,λ為入射波的波長,d為原子晶格內的平面間距,而θ則為入射波與散射平面間的夾角。注意移動中的粒子,包括電子、質子和中子,都有對應其速度及質量的德布羅意波長。 布拉格定律由物理學家威廉·勞倫斯·布拉格爵士於1912年推導出來,並於1912年11月11日首度於劍橋哲學會中發表。儘管很簡單,布拉格定律確立了粒子在原子大小下的存在,同時亦為晶體研究了提供了有效的新工具──X射線及中子繞射。威廉·勞倫斯·布拉格及其父,威廉·亨利·布拉格爵士獲授1915年諾貝爾物理學獎,原因為晶體結構測定的研究,他們測定了氯化鈉、硫化鋅及鑽石的結構。 他們是唯一一隊同時獲獎的父子隊伍,而威廉·勞倫斯·布拉格時年25歲,因此成了最年輕的諾貝爾獎得主。.

新!!: 相位和布拉格定律 · 查看更多 »

三角恒等式

在数学中,三角恒等式是对出现的变量的所有值都为實的涉及到三角函数的等式。这些恒等式在表达式中有些三角函数需要简化的时候是很有用的。一个重要应用是非三角函数的积分:一个常用技巧是首先使用使用三角函数的代换规则,则通过三角恒等式可简化结果的积分。.

新!!: 相位和三角恒等式 · 查看更多 »

干涉 (物理学)

干涉(interference)在物理学中,指的是兩列或两列以上的波在空间中重疊時发生叠加,从而形成新波形的現象。 例如采用分束器将一束单色光束分成两束后,再让它们在空间中的某个区域内重叠,将会发现在重叠区域内的光强并不是均匀分布的:其明暗程度随其在空间中位置的不同而变化,最亮的地方超过了原先两束光的光强之和,而最暗的地方光强有可能为零,这种光强的重新分布被称作“干涉条纹”。在历史上,干涉现象及其相关实验是证明光的波动性的重要依据 ,但光的这种干涉性质直到十九世纪初才逐渐被人们发现,主要原因是相干光源的不易获得。 为了获得可以观测到可见光干涉的相干光源,人们发明制造了各种产生相干光的光学器件以及干涉仪,这些干涉仪在当时都具有非常高的测量精度:阿尔伯特·迈克耳孙就借助迈克耳孙干涉仪完成了著名的迈克耳孙-莫雷实验,得到了以太风观测的零结果。迈克耳孙也利用此干涉仪測得的精確長度,並因此獲得了1907年的諾貝爾物理學獎。而在二十世纪六十年代之后,激光这一高强度相干光源的发明使光学干涉测量技术得到了前所未有的广泛应用,在各种精密测量中都能见到激光干涉仪的身影。现在人们知道,两束电磁波的干涉是彼此振动的电场强度矢量叠加的结果,而由于光的波粒二象性,光的干涉也是光子自身的几率幅叠加的结果。.

新!!: 相位和干涉 (物理学) · 查看更多 »

干涉合成孔径雷达

干涉合成孔径雷达,(英語:Interferometric synthetic aperture radar,縮寫:InSAR或IfSAR)是一种应用于测绘和遥感的雷达技术。这种测量方法使用两幅或多幅合成孔径雷达影像图,根据卫星或飞机接收到的回波的相位差来生成数字高程模型或者地表形变图。理论上此技术可以测量数日或数年间厘米级的地表形变,可以用于自然灾害监测,例如地震、火山和滑坡,以及结构工程尤其是沉降监测和结构稳定性。.

新!!: 相位和干涉合成孔径雷达 · 查看更多 »

干涉測量術

干涉测量术(Interferometry)是通过由波的叠加(通常为电磁波)引起的干涉现象来获取信息的技术。这项技术对于天文学、光纤、工程计量、光学计量、海洋学、地震学、光谱学及其在化学中的应用、量子力学、核物理学、粒子物理学、 等离子体物理学、遥感、、表面轮廓分析、微流控、应力与应变的测量、测速以及验光等领域的研究都非常重要。 干涉仪广泛应用于科学研究和工业生产中对微小位移、折射率以及表面平整度的测量。在干涉仪中,从单个光源发出的光会分为两束,经不同,最终交汇产生干涉。所产生的干涉图纹能够反映两束光的光程差。在科学分析中,干涉仪用于测量长度以及光学元件的形状,精度能到纳米级。它们是现有精度最高的长度测量仪器。在傅里叶变换光谱学中,干涉仪用于分析包含与物质相互作用发生吸收或散射信息的光。由两个及以上的望远镜组成,它们的信号汇合在一起,结果的分辨率与直径为元件间最大间距的望远镜的相同。.

新!!: 相位和干涉測量術 · 查看更多 »

平面波

在三維空間裏,平面波(plane wave)是一種波動,其波阵面(在任何時刻,波相位相等的每一點所形成的曲面)是相互平行的平面。平面波的傳播方向垂直於波前。假若平面波的振幅不是常數,例如,振幅是位置的函數,則稱此種平面波為「非均勻平面波」。 加以延伸,平面波這術語時常用來形容,在空間的一個局部區域裏,近似於平面波的波動。例如,一個局部區域波源,像發射無線電波的天線,所發射出的電磁波,在可以近似為平面波。等價地說,對於在一個均勻介質內,波的傳播距離超長於波長的案例,在幾何光學的正確極限內,射線區域性地對應於近似平面波。.

新!!: 相位和平面波 · 查看更多 »

并网逆变器

并网逆变器(grid-tie inverter,簡稱GTI)是一種特殊的逆變器,除了可以將直流電轉換給交流電外,其輸出的交流電可以和和市電的頻率及相位同步,因此輸出的交流電可以回到市電。并网逆变器常用在一些直流電壓源(如太陽能板或是小型風力發電機)和電網連接的應用中。 在許多國家,有的住家或是公司,可以將其產生的電力再賣給電力公司。輸送回電網的電力有幾種不同的補貼方式。净计量电价是指有可再生能源設備的住家或公司,依其送回電網的淨能量來領取補貼,例如某一個月,一個住家送回電網的電力為500千瓦-小時,而從電網用的電力為100千瓦-小時,則依400千瓦-小時來領取補貼。在美國,淨能量的政策會依司法管轄區不同而不同。另一種政策是上网电价补贴政策,產生每一千瓦-小時的電依照和輸電公司所訂契約中列的補貼方式來進行補貼。 在美國,並網能源系統是在(NEC)管理範圍以內,因此會對并网逆变器有一些強制性的要求。.

新!!: 相位和并网逆变器 · 查看更多 »

广义相对论的实验验证

1915年廣義相對論最初被發表之時,並沒有得到穩固的實驗證據支持,已知道的是它正確地解釋了水星近日點的反常進動,並且在哲學層面,它令人滿意地結合了艾薩克·牛頓的萬有引力定律和阿爾伯特·愛因斯坦的狹義相對論。1919年,光波在引力場中的軌跡被發現似乎會彎曲,正如廣義相對論所預測;但一直要等到1959年,一系列精確度實驗才開始進行,從而準確地檢驗了許多廣義相對論在弱引力場極限中的預測,並大大降低了理論於現實偏差的可能性。1974年起,拉塞爾·赫爾斯、約瑟夫·泰勒等人研究脈沖雙星的物理行為,其所受到的引力比在太陽系之中要大得多。無論是太陽系中的弱引力場極限,或是脈衝星系統中更強的引力場,廣義相對論的預測已有相當優良的實驗證據。.

新!!: 相位和广义相对论的实验验证 · 查看更多 »

交互相位調變

交互相位調變(Cross-phase Modulation,縮寫 XPM),又譯交叉相位调制,当两个或两个以上的信道使用不同的频率同时在光纤中传播时,由光场自身引起的非线性光学效应。 簡言之,一特定波長光線可以藉由非線性光學克爾效應,影響到另一不同波長光波的電波偏振相位。 應用交互相位調變,可以在一道同調性目標光束中,利用另一道入射光束,讓兩光束同時在一特定的非線性介質中傳播,改變目標光束相位;藉此可加入欲傳輸的外加資訊,讓目標光束來傳輸訊號。這項技術已經應用在光纖通訊技術中。 交互相位調變已經應用於密集波長分波多工技術中。利用並直接偵測交互相位調變效應。首先,在同調目標光束中,以第二道入射光束同時行進,利用相位調變加入訊號。然後,利用光的色散效應,將相位調變轉換成目標光束內的攜帶訊號所引發的功率差異分佈。然而,介質中光色散效應也會使訊號通道可能會喪失某些訊號,降低交互相位調變效果。.

新!!: 相位和交互相位調變 · 查看更多 »

交易詮釋

量子力學的交易詮釋(transactional interpretation of quantum mechanics, TIQM)是一種對於量子力學不尋常的詮釋方式,其將量子交互作用描述為駐波,此駐波是由延遲波(retarded wave,順著時間行進)以及超前波(advanced wave,逆著時間行進)的兩種波所構成。這種詮釋首先由於1986年提出。作者主張這樣的詮釋能夠幫助建立量子過程的直觀性,避免掉哥本哈根詮釋以及觀察者角色所帶來的哲學問題,並解決數個量子悖論。克拉默本人在西雅圖的華盛頓大學教授量子力學時採用交易詮釋。 麦克斯韦方程組允許延遲波與超前波的存在作為方程組的解是於1945年由理查·費曼與約翰·惠勒提出。他們兩人利用這個觀念來解決電子的問題。克拉默再度使用此兩種波的想法,用在他對量子理論的交易詮釋上。雖然一般的薛丁格方程式不允許超前解的存在,然而其相對論性的版本卻允許,因此將這樣的超前解用到交易詮釋上。 假設一粒子(比如一光子)由一處源頭發射出,可以跟兩個偵測器中的一者發生作用。根據交易詮釋,粒子源發射出一個尋常的(延遲的)波,順著時間行進,可稱作「出價波」(offer wave),當此波抵達兩個偵測器,每一個回應以一超前波,可稱作「確認波」(confirmation wave),逆著時間行進,回到粒子源。出價波與確認波的相位彼此關聯,透過建設性干涉,在發射與偵測兩事件間的時空區域形成一個具有完整振幅的波;也透過破壞性干涉在其他時空區域抵銷(也就是:在發射時空點「之前」以及吸收時空點「之後」)。出價波與確認波之間的交互作用程度決定了粒子撞擊到其中一個偵測器(而不是另外一個)的機率。在這樣的詮釋中,波函數坍縮不會出現在任何一個特定的時間點,而是「非時間性的」(atemporal),發生於整個交易過程——出價波與確認波發生交互作用所在的時空區域。這些波被視為在物理上是真實存在的,而不僅僅是用以記錄觀察者知識的數學道具——後者觀點則出現在其他一些量子力學詮釋中。 約翰·克拉默主張交易詮釋與阿弗沙爾實驗(Afshar experiment)結果相符,而哥本哈根詮釋與多世界詮釋則沒有如此特性。.

新!!: 相位和交易詮釋 · 查看更多 »

交流电功率

交流电功率是交流电做功的功率,即能量在交流电路中流动的速率。 在交流电系统中,例如电感器和电容器之类的储能装置可能会导致能量流动方向的周期性变化。在一个完整周期内,能量在一个方向上的净流动率称为有功功率,而往返于储能装置与电源间的部分称为无功功率。.

新!!: 相位和交流电功率 · 查看更多 »

交流電

交流電流(Alternating Current,縮寫:AC)是指大小和方向都發生週期性變化的電流,在一個週期內的運行平均值為零。不同於直流電,後者的方向是不會隨著時間發生改變的,並且直流電沒有周期性變化。 通常波形為正弦曲線。交流電可以有效傳輸電力。但實際上還有應用其他的波形,例如三角形波、正方形波。生活中使用的市電就是具有正弦波形的交流電。.

新!!: 相位和交流電 · 查看更多 »

二維傅立葉變換

傅立葉轉換(英语:Fourier transform)是一種幫助我們分析訊號頻域成分的積分變換,詳細內容詳見傅立葉轉換一文。一般教科書所教的通常是一維的傅立葉轉換,但我們也可以將傅立葉轉換推廣到多維的空間。而二維傅立葉轉換即是由一維傅立葉轉換推廣而來,近幾十年來常被運用在影像處理上。其他相關的數學工具,例如二維餘弦轉換、二維濾波器……等等,均是建立在二維傅立葉轉換的概念上而得到的。.

新!!: 相位和二維傅立葉變換 · 查看更多 »

互补原理

在量子力學裏,互補原理(complementarity principle)是尼爾斯·玻爾於1927年提出的一個基礎原理,是哥本哈根詮釋的角石。在不同學術領域,互補原理常被用來解釋迥然不同的現象,對於這些用法,互補原理蘊含的意義大不相同,所根據的操作機制也完全不同。 概念而言,微觀物體具有波动性或粒子性,有時會表現出波動性,有時會表現出粒子性。波動性指的是波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。粒子性指的是粒子總是可以被觀測到其在某時間與某空間的明確位置與動量的性質。 當描述微觀物體的量子行為時,必須同時思考其波動性與粒子性。互補原理闡明,不能用單獨一種概念來完備地描述整體量子现象,為了完備地描述整體量子现象,必須將分別描述波動性、粒子性的概念都囊括在內。這兩種概念可以視為同一個硬幣的兩面。按照玻爾的說法,微觀物體的波動性與粒子性互補。 理論而言,根據位置-動量不確定性原理,在描述微觀物體的量子行為時,位置的不確定性越小,則動量的不確定性越大;反之亦然。類似地,根據能量-時間不確定性原理,能量的不確定性越小,則測量時間的不確定性越大;反之亦然。在這裏,互補原理指的是量子力學所給出的信息,對於任何一對不相容可觀察量,由於不確定性原理,其中一個可觀察量的不確定性越小,則另一個可觀察量的不確定性越大,反之亦然。這一對不相容可觀察量互補。玻爾主張,因為不確定性原理,位置與動量互補,能量與測量時間互補。 從實驗方面來說,再精緻的設計,也只能演示出一部份量子現象,無法演示出全部量子現象。舉例而言,在量子擦除實驗裏,路徑信息透露粒子經過的是哪條路徑,而干涉圖樣顯露波動相互干涉所形成的圖樣,觀測到越多路徑信息,則干涉圖樣的可視性越低;反之亦然。單獨一種實驗無法同時完整地觀測到這兩種現象,需要用兩種不同的實驗設置才能完整地觀測到這兩種現象。因此可以推論,整個實驗與觀測結果密切相關,只有在實驗的框架內,物體被觀測的性質才具有意義,才能夠被確切決定。對於量子擦除實驗,玻爾會說,路徑信息與干涉圖樣互補。.

新!!: 相位和互补原理 · 查看更多 »

伊利澤-威德曼炸彈測試問題

在量子力學裏,伊利澤-威德曼炸彈測試問題(Elitzur-Vaidman bomb testing problem)是由阿舍朗·伊利澤(Avshalom Elitzur)與列夫·威德曼(Lev Vaidman)於1993年提出的思想實驗,其使用來檢試一個物體是否處於某位置。「零作用測量」是一種量子測量,其能夠探測物體是否存在於某位置,而又不與該物體發生相互作用。奧地利因斯布魯克大學的安東·蔡林格、保羅·奎艾特(Paul Kwiat)、哈勞德·溫弗特(Harald Weinfurter)、湯瑪斯·荷紹葛(Thomas Herzog)與美國史丹佛大學的馬克·凱瑟威(Mark Kasevich)於1994年成功體現這思想實驗。在這實際實驗裏,馬赫-曾德爾干涉儀被用來檢試一個物體是否存在,而又不與該物體發生相互作用。.

新!!: 相位和伊利澤-威德曼炸彈測試問題 · 查看更多 »

传递函数

在工程中,传递函数(也称系统函数、转移函数或网络函数,画出的曲线叫做传递曲线)是用来拟合或描述黑箱模型(系统)的输入与输出之间关系的数学表示。 通常它是零初始条件和零平衡点下,以空间或时间频率为变量表示的线性时不变系统(LTI)的输入与输出之间的关系。然而一些资料来源中用“传递函数”直接表示某些物理量输入输出的特性,(例如二端口网络中的输出电压作为输入电压的一个函数)而不使用变换到S平面上的结果。.

新!!: 相位和传递函数 · 查看更多 »

伯特蘭定理

在經典力學裏,伯特蘭定理闡明,只有兩種位勢V可以給出閉合軌道:.

新!!: 相位和伯特蘭定理 · 查看更多 »

伽利略·伽利莱

伽利略·伽利莱(Galileo Galilei, ;)Drake(1978, p.1).伽利略出生日期用的是儒略曆,當時所有基督教國家都使用這個曆法。義大利及幾個天主教國家於1582年改用公曆。除非特別註明,條目中的日期皆為公曆。,義大利物理學家、數學家、天文學家及哲學家,科學革命中的重要人物。其成就包括改進望遠鏡和其所帶來的天文觀測,以及支持哥白尼的日心说。伽利略做实验证明,感受到引力的物体并不是呈等速運動,而是呈加速度運動;物體只要不受到外力的作用,就會保持其原來的靜止狀態或勻速運動狀態不變。他又發表惯性原理阐明,未感受到外力作用的物体会保持不变其原来的静止状态或匀速运动状态。伽利略被譽為“現代觀測天文學之父”、“現代物理學之父”、“科學之父”及“現代科學之父”。Finocchiaro (2007).

新!!: 相位和伽利略·伽利莱 · 查看更多 »

低通滤波器

低通滤波器(Low-pass filter)容许低频信号通过,但减弱(或减少)频率高于截止频率的信号的通过。对于不同滤波器而言,每个频率的信号的减弱程度不同。当使用在音频应用时,它有时被称为高频剪切滤波器,或高音消除滤波器。 高通滤波器则相反,而带通滤波器则是高通滤波器同低通滤波器的组合。 低通滤波器概念有许多不同的形式,其中包括电子线路(如音频设备中使用的hiss滤波器、平滑数据的数字算法、音障(acoustic barriers)、图像模糊处理等等)。低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数(moving average)所起的作用;这两个工具都通过剔除短期波动、保留长期发展趋势提供了信号的平滑形式。.

新!!: 相位和低通滤波器 · 查看更多 »

位移電流

在電磁學裏,位移電流 (displacement current) 定義為電位移對於時間的變率。位移電流的單位與電流的單位相同。如同真實的電流,位移電流也有一個伴隨的磁場。但是,位移電流並不是移動的電荷所形成的電流;而是電位移對於時間的偏導數。 於 1861 年,詹姆斯·馬克士威發表了一篇論文《論物理力線》,提出位移電流的概念。在這篇論文內,他將位移電流項目加入了安培定律。修改後的定律,現今稱為馬克士威-安培方程式。 在馬克士威的 1864 年論文《電磁場的動力學理論》內,他用這馬克士威-安培方程式推導出電磁波方程式。由於這導引將電學、磁學和光學聯結成一個統一理論。這創舉現在已被物理學術界公認為物理學史的重大里程碑。位移電流對於電磁波的存在是基要的。.

新!!: 相位和位移電流 · 查看更多 »

彩虹色

彩虹色或虹彩(Iridescence),是一种结构色。彩虹色常见于肥皂泡、蝴蝶翅膀、贝壳等物体。.

新!!: 相位和彩虹色 · 查看更多 »

圆二色性

圓二色性(Circular dichroism, 缩写:CD)是涉及圆偏振光的二色性,即左旋光的和右旋光的差分吸收。左旋圆(LHC)的和右旋圆(RHC)的偏振光表示一个光子的两种可能的自旋角动量状态,因此圆形二色性也被称为自旋角动量的二色性 。这种现象在19世纪上半叶被让-巴蒂斯特·毕奥(Jean-Baptiste Biot),奥古斯丁·菲涅耳(Augustin Fresnel)和(Aime Cotton)发现。它在光学活性手性分子的吸收带中被显示。CD光谱学在许多不同领域中具有广泛的应用。最值得注意的是,使用UVCD来研究蛋白质的二级结构。UV/可见光CD被用于研究电荷转移跃迁。近红外CD被用于通过探测过渡金属的d→d跃迁来研究分子的几何和电子结构。,其使用来自红外能量区的光,被用于小有机分子的结构研究,并且最近被用于研究蛋白质和DNA。.

新!!: 相位和圆二色性 · 查看更多 »

利萨茹曲线

数学上,利萨茹(Lissajous)曲线(又称利萨茹图形、李萨如图形或鲍迪奇(Bowditch)曲线)是两个沿着互相垂直方向的正弦振动的合成的轨迹。 纳撒尼尔·鲍迪奇在1815年首先研究这一族曲线,朱尔·利萨茹在1857年作更详细研究。.

新!!: 相位和利萨茹曲线 · 查看更多 »

和谐号CRH1型电力动车组

CRH1型电力动车组,是中华人民共和国铁道部為進行中国铁路第六次大提速,於2004年起向龐巴迪運輸和青岛四方庞巴迪铁路运输设备有限公司(BST)(前称“青島四方-龐巴迪-鮑爾鐵路運輸設備有限公司”、BSP)訂購的CRH系列高速電力動車組車款之一。中国鐵道部将所有引进国外技术、联合设计生产的中国铁路高速(CRH)車輛均命名為「和谐号」。.

新!!: 相位和和谐号CRH1型电力动车组 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

新!!: 相位和傅里叶变换 · 查看更多 »

哈密頓-雅可比方程式

在物理學裏,哈密頓-雅可比方程 (Hamilton-Jacobi equation,HJE) 是經典力學的一種表述。哈密顿-雅可比方程、牛頓力學、拉格朗日力學、哈密頓力學,這幾個表述是互相全等的。而哈密顿-雅可比方程在辨明守恆的物理量方面,特別有用處。有時候,雖然物理問題的本身無法完全解析,哈密顿-雅可比方程仍舊能夠正確的辨明守恆的物理量。 HJE 是经典哈密顿量一个正则变换,经过该变换得到的结果是一个一阶非线性偏微分方程,方程式之解描述了系统的行为。与哈密顿运动方程的不同之处在于 HJE 是一个偏微分方程,每个变量对应于一个坐标,而哈密顿方程是一个一阶线性方程组,每两个方程对应于一个坐标。HJE 可以漂亮地解析一些重要问题,例如开普勒问题。 HJE 是唯一能夠將粒子運動表達為波動的一種力學表述。因此,HJE 滿足了一個長久以來理論物理的研究目標(早至 18 世紀,約翰·白努利和他的學生皮埃爾·莫佩爾蒂的年代);那就是,尋找波傳播與粒子運動的相似之處。力學系統的波動方程式與薛丁格方程式很相似;但並不相同。稍後會有詳細說明。HJE 被認為是從經典力學進入量子力學最近的門階。.

新!!: 相位和哈密頓-雅可比方程式 · 查看更多 »

哈密顿-雅可比-爱因斯坦方程

在廣義相對論中,哈密頓-雅可比-爱因斯坦方程(Hamilton–Jacobi–Einstein equation,簡稱HJEE)是一道哈密頓形式、描述超空間中的幾何力學的方程。創於「幾何力學年代」,這方程由亚瑟·佩雷斯(Asher Peres)在1960給出,目的是更正廣義相對論以令其成為量子理論的半古典近似,就像量子力學與古典力學一樣對應關係。 這方程包含了全部10道愛因斯坦場方程式(EFEs),亦是古典力學中哈密頓-雅可比方程式(HJE)的修正,並可以從ADM形式中的愛因斯坦-希爾伯特作用量,以最小作用量原理推導。.

新!!: 相位和哈密顿-雅可比-爱因斯坦方程 · 查看更多 »

几何光学

几何光学是利用幾何學研究光學的學術方法。几何光学有几个基本原理Moritz von Rohr, p2。.

新!!: 相位和几何光学 · 查看更多 »

全息摄影

全像術(Holography),又稱--,是一种记录被摄物体反射(或透射)光波中全部信息(振幅、相位)的照相技术,而物体反射或者透射的光线可以通过记录胶片完全重建,仿佛物体就在那里一样。通过不同的方位和角度观察照片,可以看到被拍摄的物体的不同的角度,因此记录得到的像可以使人产生立体视觉。.

新!!: 相位和全息摄影 · 查看更多 »

共模訊號

共模訊號(Common-mode signal)是所有導體上模擬信號中的成份之一。在电信中,传输线模型上的共模訊號稱為縱向電壓(longitudinal voltage)。 在电子学中,若訊號是用二個電壓的差值來傳輸,其共模訊號為電壓和的一半 若參考個別的公共點或是地點,在二線纜線上的二條線上都會有共模訊號,兩者相位相同,大小也相同。技術上,共模電壓是每個導體到個別的公共點(或是地點)向量和的一半。以下的信號源都會產生共模訊號:.

新!!: 相位和共模訊號 · 查看更多 »

共模抑制比

共模抑制比(common-mode rejection ratio, CMRR)是模拟电路中差分放大器(或者其他电子器件)的一个用于衡量其抑制两端输入信号共模部分的一个参数。在实际应用中,例如,当有用信号为低电压信号且叠加在一个可能较高的电压补偿,或者是相关信息表示为在两个信号的差值时,较高的共模抑制比就十分重要。 理想状态下,一个差分放大器两个输入端分别输入V_+和V_-,输出V_\mathrm.

新!!: 相位和共模抑制比 · 查看更多 »

光学

光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.

新!!: 相位和光学 · 查看更多 »

光学显微镜

光学显微镜是一种利用光学透镜产生影像放大效应的显微镜。 由物体入射的光被至少两个光学系统(物镜和目镜)放大。首先物镜产生一个被放大实像,人眼通过作用相当于放大镜的目镜观察这个已经被放大了的实像。一般的光学显微镜有多个可以替换的物镜,这样观察者可以按需要更换放大倍数。这些物镜一般被安置在一个可以转动的物鏡盤上,转动物镜盘就可以使不同的物镜方便地进入光路,物鏡盤的英文是Nosepiece,又譯作鼻輪。 十八世纪,光学显微镜的放大倍率已经提高到了1000倍,使人们能用眼睛看清微生物体的形态、大小和一些内部结构。直到物理学家发现了放大倍率与分辨率之间的规律,人们才知道光学显微镜的分辨率是有极限的,分辨率的这一极限限制了放大倍率的无限提高,1600倍成了光学显微镜放大倍率的最高极限,使得形态学的应用在许多领域受到了很大限制。 光学显微镜的分辨率受到光波长的限制,一般不超过0.3微米。假如显微镜使用紫外线作为光源或物体被放在油中的话,分辨率还可以得到提高。 光学显微镜依樣品的不同可分為反射式和透射式。反射显微镜的物体一般是不透明的,光从上面照在物体上,被物体反射的光进入显微镜。这种显微镜经常被用来观察固体等,多應用在工學、材料領域,在正立顯微鏡中,此類顯微鏡又稱作金相顯微鏡。透射显微镜的物体是透明的或非常薄,光从可透过它进入显微镜。这种显微镜常被用来观察生物组织。 光學顯微鏡依其聚光鏡(condenser)和物鏡(Objective)的設計,可用來觀察不同的樣品。明視野(Brightfield)用來觀察薄的染色生物組織樣品,暗視野(Darkfield)功能的視野下,背景為黑色,能突顯樣品的細微面貌,觀察未染色樣品時,如活細胞,可利用相位差(Phase)功能。另外還有微分干涉差(differential interference contrast,DIC)功能,都常搭配在光學顯微鏡上。 依光源的不同,還有螢光顯微鏡、共聚焦顯微鏡等類別。 2014年10月8日,诺贝尔化学奖颁给了艾力克·贝齐格 (Eric Betzig),W·E·莫尔纳尔 (William Moerner)和斯特凡·W·赫尔 (Stefan Hell),奖励其发展超分辨荧光显微镜 (Super-Resolved Fluorescence Microscopy),这将带来光学显微镜进入纳米级尺度中。.

新!!: 相位和光学显微镜 · 查看更多 »

光伏逆变器

光伏逆变器(PV inverter或solar inverter)可以將光伏(PV)太陽能板產生的可變直流電壓轉換為市電頻率交流電(AC)的逆变器,可以回饋回商用輸電系統,或是供的電網使用。光伏逆变器是光伏陣列系統中重要的(BOS)之一,可以配合一般交流供電的設備使用。太陽能逆變器有配合光伏陣列的特殊功能,例如最大功率點追踪及保護的機能。.

新!!: 相位和光伏逆变器 · 查看更多 »

光弹性

光弹性(Photoelasticity)是某些透明材料(主要是塑料、玻璃、环氧树脂等非晶体)在承受载荷出现应变的状态下由各向同性变成各向异性并展现出对光的双折射的现象。基于这种材料性质发展出的描绘物体应力应变分布的试验物理学方法称为光测弹性学。相比于应力-应变的分析学方法(数学方法)的局限,光弹性法对于描绘复杂几何结构以及复杂载荷下的物体的应力应变尤其有效,即使对于材料的突然断裂处也能够给出相对准确的应力分布图像,是用于检测临界应力点和应力集中的重要方法。.

新!!: 相位和光弹性 · 查看更多 »

光程

光程(英语:Optical path length)是指在均匀介质中,光行径的几何路径的长度 s 与光在该介质中的折射率 n 的乘积,用 Δ 表示,即: 两条光线光程的差值叫做光程差。光程的重要性在于确定光的相位,相位决定光的干涉和衍射行为。.

新!!: 相位和光程 · 查看更多 »

光栅

光栅(Grating)是一种非常重要的光学元件。 广义的光栅定义为:可以使入射光的振幅或相位(或两者同时)受到周期性空间调制的光学元件。只能使光受到振幅调制或相位调制的光栅,分别称为振幅光栅和相位光栅。按工作方式分,光栅又可分为透射光栅(透射光受调制)和反射光栅(反射光受调制)。 光栅每单位长度内的刻痕多少,主要决定于所分光的波长范围(两刻痕距离应与该波长数量级相近),单位长度内的刻痕多,色散度越大。光栅的分辨本领决定于刻痕多少。利用全息摄影技术制备的光栅称“全息光栅”,不像机刻光栅刻痕有周期性误差。 通常所说的光栅,是指利用衍射效应对光进行调制的衍射光栅。但也存在利用其它原理对光进行调制的光栅,如晶体折射率光栅。.

新!!: 相位和光栅 · 查看更多 »

CDDA

CDDA是數位音樂光碟(Compact Disc Digital Audio)的縮寫,為在CD收錄音樂的規格。一般稱音樂CD時指的便是CDDA。.

新!!: 相位和CDDA · 查看更多 »

Complex.h

complex.h是C標準函数庫中的头文件,提供了复数算术所需要的宏定义与函数声明。.

新!!: 相位和Complex.h · 查看更多 »

环加成反应

环加成反应(英文:Cycloaddition)是两个或多个不饱和化合物(或同一化合物的不同部分)结合生成环状化合物,并伴随有系统总键级数减少的化学反应。它可以是周环反应或非协同的分步反应。逆过程称为环消除反应。 环加成反应的两种主要类型是狄尔斯-阿尔德反应和1,3-偶极环加成反应。 根据前线轨道理论,两个分子之间的环加成反应符合以下几点:.

新!!: 相位和环加成反应 · 查看更多 »

磁矢势

磁矢势,又稱磁位、磁勢(magnetic potential),通常標記為 \mathbf 。磁向量勢的旋度是磁場,以方程式表示 其中,\mathbf 是磁場。 直觀而言,磁向量勢似乎不及磁場來得「自然」、「基本」,而在一般電磁學教科書亦多以磁場來定義磁向量勢。以前,很多學者認為磁向量勢並沒有實際意義,只是人為的物理量,除了方便計算以外,別無其它用途。但是,詹姆斯·馬克士威頗不以為然,他認為磁向量勢可以詮釋為「每單位電荷儲存的能量」,就好像電勢被詮釋為「每單位電荷儲存的能量」。相關論述,稍後會有更詳盡解釋。 磁向量勢並不是唯一定義的;其數值是相對的,相對於某設定數值。因此,學者會疑問到底儲存了多少動量?不論如何,磁向量勢確實具有實際意義。尤其是在量子力學裏,於1959年,阿哈諾夫-波姆效應闡明,假設一個帶電粒子移動經過某零電場、零磁場、非零磁向量勢場區域,則此帶電粒子的波函數相位會有所改變,因而導致可觀測到的干涉現象 。現在,越來越多學者認為電勢和磁向量勢比電場和磁場更基本。不單如此,有學者認為,甚至在經典電磁學裏,磁向量勢也具有明確的意義和直接的測量值。 磁向量勢與電勢可以共同用來設定電場與磁場。許多電磁學的方程式可以以電場與磁場寫出,或者以磁向量勢與電勢寫出。較高深的理論,像量子力學理論,偏好使用的是磁向量勢與電勢,而不是電場與磁場。因為,在這些學術領域裏所使用的拉格朗日量或哈密頓量,都是以磁向量勢與電勢表達,而不是以電場與磁場表達。 開爾文男爵最先於1851年引入磁向量勢的概念,並且給定磁向量勢與磁場之間的關係。.

新!!: 相位和磁矢势 · 查看更多 »

神经振荡

经振荡是中枢神经系统中存在的一种节律性,或是重复性的神经元活动。神经组织可以通过多种方式产生振荡,这种振荡主要是靠单个神经元或者神经元之间的相互作用引发。在单个神经元中,神经振荡既可以表现为膜电位的振荡,又可以表现为动作电位的节律性活动,这些电活动继而引发突触后膜电位的振荡。在群体神经元水平,大量神经元的同步发放可以引起宏观水平的振荡,这种振荡活动可以通过脑电图记录到。群体神经元的振荡活动通常由神经元之间的反馈活动引起。这些神经元之间的相互作用会引起与单个神经元发放不同频率的振荡。最为人所熟知的宏观的神经元振荡活动就是大脑的。 神经振荡最早是由Hans Berger发现的,但是它们的生理功能至今仍然不是完全清楚。神经振荡的可能作用包括特征绑定,信息传递机制以及节律运动输出的产生。这一领域在近几十年的研究中,通过神经影像学手段取得了一些突破性的进展。神经科学对这一现象的研究重点在于确定神经振荡是怎样产生的以及神经振荡的功能是什么。从多个层面对大脑中神经振荡的研究中发现,神经振荡在神经信息处理中具有重要的作用。但到目前为止,仍然缺乏大量的实验证据来证明神经振荡的功能,因此目前还无法对神经振荡的功能做出一个完善的解释。.

新!!: 相位和神经振荡 · 查看更多 »

神盾戰鬥系統

戰鬥系統(Aegis combat system),正式編號是Weapon System Mk7,是全世界第一種全數位化的艦載戰鬥系統,是美國海軍第一種具備決策輔助功能的系統,美國海軍現役最重要的整合式水面艦艇作戰系統,由洛克希德所設計與製造。 起初美國海軍提出一個「先進水面飛彈系統」(ASMS/the Advanced Surface Missile System)的提案,經過不斷發展,在1969年12月改名為空中預警與地面整合系統(Advanced Electronic Guidance Information System/Airborne Early-warning Ground Integrated System),英文縮寫Aegis剛好是希臘神話中宙斯之盾,台灣翻譯為「--戰鬥系統」、中國大陆則翻譯為「--系統」。.

新!!: 相位和神盾戰鬥系統 · 查看更多 »

科学大纲

以下大綱是科學的主題概述: 科学(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 相位和科学大纲 · 查看更多 »

穩定態自由旋進造影

穩定態自由旋進造影(steady-state free precession, SSFP, imaging)利用到核磁共振中的一種特殊穩定態達成的造影方式,一般分類上屬於梯度迴訊家族。旋進亦稱為進動,因而在翻譯上,此技術可能有些不一樣的名字,中國譯作穩態自由進動成像、定常态自由进动成像。.

新!!: 相位和穩定態自由旋進造影 · 查看更多 »

筑波快線

筑波快線(,Tsukuba Express,簡稱TX)是位於日本關東地方東部的鐵路線,為首都圈新都市鐵道的唯一營運路線,起於東京都千代田區的秋葉原站、訖於茨城縣筑波市的筑波站。內登載的名稱為常磐新線(),此因該鐵路線原始規劃為「第二常磐線」而得名,但在旅客資訊上並不使用。.

新!!: 相位和筑波快線 · 查看更多 »

紅米Note 3

紅米Note 3是小米科技於2015年11月24日所推出的中階智能手機,為紅米手機系列中的首款全金屬機身手機,共有兩種版本,全網通版本採用Qualcomm Snapdragon 650 64位元處理器,雙網通版本則採用MediaTek Helio™ X10 64位元處理器,搭載Android 6.0、5.5吋Full HD螢幕、2GB / 3GB記憶體、16GB / 32GB 儲存空間,新增了指紋辨識。2016年6月16日推出台灣特製版,支援台灣4G全頻段。此機硬體上支持VoLTE。.

新!!: 相位和紅米Note 3 · 查看更多 »

紅米Note 4

紅米Note 4是小米科技於2016年8月26日所推出的中階智慧型手機,為紅米手機系列中的首款全金屬機身手機,全網通版本採用MTK Helio X20 64位元處理器,搭載Android 6.0、5.5吋Full HD螢幕、2GB / 3GB記憶體、16GB / 64GB 儲存空間,新增了指紋辨識。2016年9月27日推出台灣/香港版。紅米Note4印度版因為銷售禁令,不得使用聯發科SOC,所以改用高通驍龍625 SOC,於2017年一月推出。後來以紅米Note 4X的名稱,於中國大陸、香港、和台灣分別上市。.

新!!: 相位和紅米Note 4 · 查看更多 »

紅米Pro

紅米Pro是小米科技於2016年7月27日所推出的中階智慧型手機,為紅米手機系列中首款雙鏡頭設計的手機,也是紅米系列的旗艦機種,共有三種版本,尊享版搭配Helio™ X25、4GB記憶體、128GB儲存空間,預計2016年8月6號發售。.

新!!: 相位和紅米Pro · 查看更多 »

线性时不变系统理论

线性非时变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振頻譜學、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非時變平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非時變平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。.

新!!: 相位和线性时不变系统理论 · 查看更多 »

电偶极矩

在物理學裏,电偶极矩衡量正電荷分佈與負電荷分佈的分離狀況,即电荷系统的整體极性。 对于分别带有正电量 q 、負电量 - q 的两个点电荷的简单案例,电偶极矩 \mathbf 为: 其中,\mathbf 是从负电荷位置指至正电荷位置的位移向量。 这方程式意味着电偶极矩 \mathbf 的方向是从负电荷指向正电荷。注意到这跟在正电荷与负电荷之间的电场线的方向相反——从正电荷开始,在负电荷结束。这裏并没有矛盾,因为电偶极矩与電偶極子的取向有關,即與电荷的相对位置有关;它不能單獨直接地表示出電場線的方向。 稱這雙電荷系統為「物理電偶極子」。在距離超遠於兩個點電荷相隔距離之處,物理電偶極子所產生的電場,可以近似為其電偶極矩所產生的電場。令物理電偶極子的兩個點電荷相隔距離 \mathbf 趨向於 0 ,同時保持其電偶極矩 \mathbf 不變,則極限就是「點電偶極子」,又稱為「純電偶極子」。物理電偶極子產生的電場,其多極展開式的一次項目就是點電偶極子產生的電場。.

新!!: 相位和电偶极矩 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 相位和电子 · 查看更多 »

电磁场

電磁場(electromagnetic field)是由帶電粒子的運動而產生的一種物理場。處於電磁場的帶電粒子會受到電磁場的作用力。電磁場與帶電粒子(電荷或電流)之間的交互作用可以用馬克士威方程組和勞侖茲力定律來描述。 電磁場可以被視為電場和磁場的連結。追根究底,電場是由電荷產生的,磁場是由移動的電荷(電流)產生的。對於耦合的電場和磁場,根據法拉第電磁感應定律,電場會隨著含時磁場而改變;又根據馬克士威-安培方程式,磁場會隨著含時電場而改變。這樣,形成了傳播於空間的電磁波,又稱光波。無線電波或紅外線是較低頻率的電磁波;紫外光或X-射線是較高頻率的電磁波。 電磁場涉及的基本交互作用是電磁交互作用。這是大自然的四個基本作用之一。其它三個是重力相互作用,弱交互作用和強交互作用。電磁場倚靠電磁波傳播於空間。 從經典角度,電磁場可以被視為一種連續平滑的場,以類波動的方式傳播。從量子力學角度,電磁場是量子化的,是由許多個單獨粒子構成的。.

新!!: 相位和电磁场 · 查看更多 »

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

新!!: 相位和电磁辐射 · 查看更多 »

电荷守恒定律

在物理學裏,電荷守恒定律(law of charge conservation)是一種關於電荷的守恆定律。電荷守恒定律有兩種版本,「弱版電荷守恒定律」(又稱為「全域電荷守恒定律」)與「強版電荷守恒定律」(又稱為「局域電荷守恒定律」)。弱版電荷守恒定律表明,整個宇宙的總電荷量保持不變,不會隨著時間的演進而改變。注意到這定律並沒有禁止,在宇宙這端的某電荷突然不見,而在宇宙那端突然出現。強版電荷守恒定律明確地禁止這種可能。強版電荷守恒定律表明,在任意空間區域內電荷量的變化,等於流入這區域的電荷量減去流出這區域的電荷量。對於在區域內部的電荷與流入流出這區域的電荷,這些電荷的會計關係就是電荷守恒。 定量描述,這強版定律的方程式乃是一種連續方程式: 其中,Q(t)是在時間t某設定體積內的電荷量,Q_、Q_是在時間間隔內分別流入與流出這設定體積的電荷量。 上述兩種守恆定律建立於一個基礎原則,即電荷不能獨自生成與湮滅。假設帶正電粒子接觸到帶負電粒子,兩個粒子帶有電量相同,則因為這接觸動作,兩個粒子會變為中性,這物理行為是合理與被允許的。一個中子,也可以因貝他衰變,生成帶正電的質子、帶負電的電子與中性的反微中子。但是,任何粒子,不可能獨自地改變電荷量。物理學明確地禁止這種物理行為。更仔細地說,像電子、質子一類的亞原子粒子會帶有電荷,而這些亞原子粒子可以被生成或湮滅。在粒子物理學裏,電荷守恆意味著,在那些生成帶電粒子的基本粒子反應裏,雖然會有帶正電粒子或帶負電粒子生成,在反應前與反應後,總電荷量不會改變;同樣地,在那些湮滅帶電粒子的基本粒子反應裏,雖然會有帶正電粒子或帶負電粒子湮滅,在反應前與反應後,總電荷量絕不會改變; 雖然全域電荷守恒定律要求宇宙的總電荷量保持不變,到底總電荷量是多少仍舊是有待研究問題。大多數跡象顯示宇宙的電荷量為零,即正電荷量與負電荷量相同。.

新!!: 相位和电荷守恒定律 · 查看更多 »

电抗

类似于直流电路中电阻对电流的阻碍作用,在交流电路(如串联RLC电路)中,电容及电感也会对电流起阻碍作用,称作电抗(Reactance),其计量单位也叫做欧姆。在交流电路分析中,电抗用 X 表示,是复数阻抗的虚数部分,用于表示电感及电容对电流的阻碍作用。电抗随着交流电路频率而变化,并引起电路电流与电压的相位变化。.

新!!: 相位和电抗 · 查看更多 »

物理光学

物理光學(physical optics),又稱波動光學(wave optics)是光學的一個分支,研究的是關於干涉、衍射、偏振與其它在幾何光學裏射線近似不成立的種種現象。假設光波的波長超小於儀器的尺寸,能取波長趨向於零的極限為近似,則可以使用幾何光學的方法來解析問題;對於小尺寸儀器,必需假設光波具有有限波長,改使用物理光學的方法來解析問題。 在光學通信(optical communication)裏,像量子噪音(quantum noise)一類的效應是包括在干涉理論(coherence theory)的研究領域,通常不會包括在物理光學的研究領域。 物理光學是建立在惠更斯原理的基礎,可以計算複波前(包括振幅与相位)通过光学系统的模型。这一技术能够利用计算机数值仿真模拟或计算衍射、干涉、偏振、像差 等各种複杂光学现象。由於仍然會用到近似,物理光学不能像电磁波理论模型一樣地能够全面描述光传播。对于大多数实际问题来说,完整电磁波理论模型需要的计算量太大,在现在的一般计算机硬件条件下并不十分实用,但小尺度的问题可以使用完整波动模型进行计算。.

新!!: 相位和物理光学 · 查看更多 »

盲目去迴旋積

在電子工程以及應用數學的領域中,盲目去迴旋積(Blind deconvolution)指的是當在對進行摺積的脈衝響應函數缺乏明確的了解時而進行的過程。 而在顯微鏡學的領域中,盲目去迴旋積通常指的是當在無法得到顯微鏡的点扩散函数(PSF)時進行了反摺積。這個過程通常是經由分析輸出的結果來得到對於輸入訊號適當的猜測。.

新!!: 相位和盲目去迴旋積 · 查看更多 »

直接数字合成

接数字合成(Direct Digital Synthesizer,簡稱DDS)是一种数字电子方式,它从一个单一(或混合)的频率源中产生任意波形和频率。.

新!!: 相位和直接数字合成 · 查看更多 »

可以有以下含义:;觀察表象.

新!!: 相位和相 · 查看更多 »

相干性

在物理學裏,相干性(coherence)指的是,為了產生顯著的干涉現象,波所需具備的性質。更廣義地說,相干性描述波與自己、波與其它波之間對於某種內秉物理量的相關性質。 當兩個波彼此相互干涉時,因為相位的差異,會造成相长干涉或相消干涉。假若兩個正弦波的相位差為常數,則這兩個波的頻率必定相同,稱這兩個波「完全相干」。兩個「完全不相干」的波,例如白炽灯或太陽所發射出的光波,由於產生的干涉圖樣不穩定,無法被明顯地觀察到。在這兩種極端之間,存在著「部分相干」的波。 相干性又大致分類為時間相干性與空間相干性。時間相干性與波的頻寬有關;而空間相干性則與波源的有限尺寸有關。 波與波之間的的相干性可以用來量度。是波與波之間的干涉圖樣的輻照度對比,相干度可以從干涉可見度計算出來。.

新!!: 相位和相干性 · 查看更多 »

相位偏移調變

位偏移調變,又稱相位移鍵(PSK,Phase Shift Keying)是一種利用相位差異的訊號來傳送資料的調變方式。該傳送訊號必須為正交訊號,其基底更須為單位化訊號。 一般調變訊號的改變部份可分為振幅A(ASK用)、相位\theta (PSK用)及頻率f_o (FSK用)三種。其中PSK即利用相位差異來產生的調變方式。 PSK又可稱M-PSK或MPSK,目前有BPSK、QPSK、16PSK、64PSK等等,常用的只有QPSK。而M是代表傳送訊號的符號(symbol)種類。符號越多,傳送的位元數越多,自然在固定時間可傳送越多的資料量(bps)。 假設各MPSK皆在同一能量下傳送,PSK會因為符號種類(M)的提昇使位元錯誤率(Bits Error Rate,BER)快速上升。所以在符號數M大於16後都由QAM來執行調變工作。QPSK如果用格雷碼對映的方式,其BER會和BPSK一樣。所以目前常用的只有QPSK。.

新!!: 相位和相位偏移調變 · 查看更多 »

相位因子

在量子力學裏,相位因子是一個絕對值為 1 的複數因子。假若,兩個量子態 |\psi_1\rangle\,\! 與 |\psi_2\rangle\,\! 的機率相等: 則這兩個量子態只差別於相位因子 e^\,\! ,也就是說,|\psi_1\rangle.

新!!: 相位和相位因子 · 查看更多 »

相位聲碼器

位聲碼器是聲碼器的一種,它藉由改變聲音訊號的相位資訊,而達到音訊時域與頻域上的延展。時域與頻域的延展分別對應到此音訊在時間上的縮放(速度快慢改變),與聲音音高的改變。.

新!!: 相位和相位聲碼器 · 查看更多 »

相位裕度

在电子放大器中,相位裕度(PM)是在零dB增益時,放大器的输出信号(相对于其输入)的相位与180°之间的差(单位为度)。 通常开环相位延迟(相对于输入)随频率变化,逐步增加到超过180°,此频率下输出信号(相对于输入)反相。PM为正值,但会随着频率下降,在截止频率(PM.

新!!: 相位和相位裕度 · 查看更多 »

相位角

#重定向 相位.

新!!: 相位和相位角 · 查看更多 »

相位陣列

位陣列(phased array),是由一群天線組成的陣列。送往各個天線的訊號的相對相位經過適當調整,最後會強化訊號在指定方向的強度,並且壓抑其他方向的強度。此技術本來是為射電天文學開發。後來也為主動電子掃描陣列雷達所用。 許多地區的調幅廣播電臺都使用這個技術,可以限定廣播的範圍,減少對其他地區的干擾。.

新!!: 相位和相位陣列 · 查看更多 »

相衬显微技术

衬显微技术是一种光学显微技术,光线在穿过透明的样品时会产生微小的相位差,而这个相位差可以被转换为图象中的幅度或对比度的变化,这样就可以利用相位差来成像。 光线在穿过非真空介质时,会与介质发生作用从而产生幅度和相位的变化,这种变化与介质的性质相关。幅度的变化通常是由于介质对光的吸收,变化程度与波长也就是光的颜色相关,而介质的厚度、折射率的变化会导致光线相位的改变。人的眼睛仅能测量到达视网膜的光线的能量强度,而很难观察到相位的改变,普通的光学显微镜也无法检测相位的改变。然而相位的变化通常也会携带相当多的信息,但是在对光线进行测量的时候这部分信息就全部丢弃了。为了使相位变化的信息可以被观察到,就需要将穿过样品的光线与参考光源l相结合,相干的结果可以显示出样品的相位结构。 相衬显微镜观察样品时不需要进行染色,在观察细胞的时候也就不会对细胞标本产生伤害,因此这种显微镜可以用来研究细胞周期。.

新!!: 相位和相衬显微技术 · 查看更多 »

相量

物理和工程領域中,常會使用到正弦信號(例如交流電路的分析),这时可以使用相量来简化分析。相量(Phasor)是振幅(A)、相位(θ)和频率(ω)均为非時變的正弦波的一个复数,是更一般的概念解析表示法的一个特例。Bracewell, Ron.

新!!: 相位和相量 · 查看更多 »

相速度

波的相速度或相位速度(phase velocity),或簡稱相速,是指波的相位在空間中傳遞的速度,換句話說,波的任一頻率成分所具有的相位即以此速度傳遞。可以挑選波的任一特定相位來觀察(例如波峰),則此處會以相速度前行。相速度可藉由波的頻率f與波長λ,或者是角頻率ω與波數(wave number)k的關係式表示: 注意到波的相速度不必然與波的群速度相同,相速是波包中某一单频波的相位移动速度;群速度代表的是「振幅變化」(或說波包)的傳遞速度,表示一段波包的包络面上具有某特性(如幅值最大或最小)的点的传播速度。 群速和相速只有是混合波(非单频波)在频散介质中传播时才有差别。 電磁輻射的相速度可能在一些特定情況下(例如:出現異常色散的情形)超過真空中光速,但這不表示任何超光速的--或者是能量移轉。物理學家阿諾·索末菲與里昂·布里於因(Léon Brillouin)對此皆有理論性描述。 參閱色散以對波的各種速度有更完整的了解。.

新!!: 相位和相速度 · 查看更多 »

Direct Stream Digital

Direct Stream Digital(DSD)是一項屬於Sony和飛利浦的專利,利用脈衝密度調變(pulse-density modulation)編碼將音頻訊號儲存在數位媒體上的科技,這項技術的應用對象是SACD。 訊號本身以ΔΣ調變後的數位音訊儲存,連續單一個位元的序列以64倍於CD取樣率(44.1 kHz)的頻率來取樣,即2.8224 MHz。藉由64倍過取樣(oversample)來達成noise shaping,把以往由於量化不精確的聲音訊號而造成的噪音和失真,減少至一個位元以內的誤差。可議的是,1-bit Sigma-Delta運算是否真的可能解決失真問題見 。由於1-bit Sigma-Delta轉換的運作方式,以DSD編碼的聲音在中低頻上有著比PCM更好的解析度、高頻的相位誤差更是降到極低,然而在高頻的動態較PCM差。有些人認為,相較於PCM的失真,DSD的失真更不容易被人類的聽覺系統所察覺;但也有人認為,CD音質比SACD差,並不是PCM與DSD的差距、而是CD使用過低的取樣頻率及數位母帶的頻率與CD不同所造成的(SACD所使用的DSD格式,與於176.4Khz/16bits的PCM格式具有相同的未壓縮大小,略大於96/24的PCM格式;而DVD-Audio支援多種解析度,代表可以採取與數位母帶相同的解析度,避免頻率轉換造成的音質減損)。DSD編碼的另一個缺點是無法進行音樂後製,必需轉換成PCM訊號來處理,容易同時繼承兩者的缺點;但也有人認為,DSD的優勢在於多數DAC是處理DSD數位訊號及類比訊號的互相轉換,如果要輸出或輸入PCM格式,則必須加上DSD及PCM訊號的轉換機制,這個機制需要相當的計算量、在音樂後製者的電腦處理可以算得比DAC的即時轉換來得精確——只要原始錄音及後製時的解析度夠高就可以了。 在DSD或者PCM編碼方式之間的孰優孰劣之間有著許多爭議。滑铁卢大学的教授Stanley Lipschitz和John Vanderkooy主張單位元的轉換器(如DSD所使用的)有高度失真的緣故,並不適合高階的音訊應用。即使只有8-bit和四倍過取樣的PCM和noise shaping,加上適當的dithering,僅有DSD一半資料量,在底噪和頻率響應上也比DSD來得好。但是在2002年,飛利浦發佈了一篇論文反駁這樣的說法。James Angus教授在Audio Engineering Society發表會上具細節地反駁Lipschitz和Vanderkooy的論文。Lipschitz等人對此也做了回應。 但是除了規格上的爭論外,SACD與DVD-Audio都面臨了一個問題,就是數位母帶品質的問題,一些SACD/DVD-Audio的規格看似很高,但卻是採用軟體升頻出來的,這些產品的實際音質不可能超過原始取樣解析度的音質。 實用的DSD轉換器領域是由Ed Meitner開闢的,他是奧地利EMM Labs的工程師和老闆。而商業化的DSD技術則由Sony和飛利浦開發,標準的CD規格也是由他們所開發的。而飛利浦的DSD部門則在2005年轉移至Sonic Studio, LLC,做持續的設計和開發。 DSD技術在視訊方面或許有著相同的潛力。Laserdisc光碟就是使用脈衝寬度調變(pulse-width modulation)編碼的架構,解碼方式和DSD相同;LD光碟的畫質也廣受稱讚。.

新!!: 相位和Direct Stream Digital · 查看更多 »

音分

音分(英语:cent)是一个用于度量音程的对数标度单位。在十二平均律中,將一個八度音程分為12個半音。每一个半音的音程(相当于相邻钢琴键间的音程)等于100音分。音分通常用於度量极小的音程,或是用于对比不同调律系统中可比音程的大小差异。然而事實上,若是兩個相鄰音符間的音程只有相差1音分時,由於差距极为微小,人耳很难辨別。.

新!!: 相位和音分 · 查看更多 »

聲碼器

聲碼器(Vocoder,),源自人聲編碼器(voice encoder)的縮寫,又稱语音信号分析合成系统,對聲音進行分析與合成的系統,主要應用於合成人類語音。此編碼器主要的概念是將聲音編碼之後再進行傳輸,允許更多的語音頻道共享同一個的無線電電路或海底電纜。聲碼器可以用硬體或軟體的方式來實作,目前被廣泛應用於電子樂器上。.

新!!: 相位和聲碼器 · 查看更多 »

頻域

在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.

新!!: 相位和頻域 · 查看更多 »

頻率

频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

新!!: 相位和頻率 · 查看更多 »

衍射

--(diffraction),又稱--,是指波遇到障碍物时偏离原来直线传播的物理现象。 在古典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后會发生不同程度的弯散传播。假設將一个障碍物置放在光源和观察屏之间,則會有光亮区域與陰暗区域出現於观察屏,而且這些区域的边界並不銳利,是一种明暗相间的复杂图样。這现象称为衍射,當波在其传播路径上遇到障碍物时,都有可能發生这种现象。除此之外,当光波穿过折射率不均匀的介质时,或当声波穿过声阻抗不均匀的介质时,也会发生类似的效应。在一定条件下,不仅水波、光波能够产生肉眼可见的衍射现象,其他类型的电磁波(例如X射线和无线电波等)也能够发生衍射。由於原子尺度的實際物體具有類似波的性質,它們也會表现出衍射现象,可以通过量子力学进行研究其性质。 在適當情况下,任何波都具有衍射的固有性质。然而,不同情况中波发生衍射的程度有所不同。如果障碍物具有多个密集分布的孔隙,就会造成较为复杂的衍射强度分布图样。这是因為波的不同部分以不同的路径传播到观察者的位置,发生波叠加而形成的現象。 衍射的形式論还可以用來描述有限波(量度為有限尺寸的波)在自由空间的传播情况。例如,激光束的發散性質、雷达天线的波束形状以及超声波传感器的视野范围都可以利用衍射方程来加以分析。.

新!!: 相位和衍射 · 查看更多 »

衍射光栅

衍射光栅(diffraction grating)是光栅的一种。它通过有规律的结构,使入射光的振幅或相位(或两者同时)受到周期性空间调制。衍射光栅在光学上的最重要应用是作为分光器件,常被用于单色仪和光谱仪上。 实际应用的衍射光栅通常是在表面上有沟槽或刻痕的平板。这样的光栅可以是透射光栅或反射光栅。可以调制入射光的相位而不是振幅的衍射光栅现在也能生产。 衍射光栅的原理是苏格兰数学家詹姆斯·格雷戈里发现的,发现时间大约在牛顿的棱镜实验的一年后。詹姆斯·格雷戈里大概是受到了光线透过鸟类羽毛的启发。公认的最早的人造光栅是德国物理学家夫琅禾费在1821年制成的,那是一个极简单的金属丝栅网。但也有人争辩说费城发明家戴维·里滕豪斯于1785年在两根螺钉之间固定的几根头发才是世界上第一个人造光栅。.

新!!: 相位和衍射光栅 · 查看更多 »

表面声波

表面声波(Surface acoustic wave)是一种沿弹性材料表面传播,其振幅随深入表面深度指数衰减的弹性波(1)。 1885年瑞利首先解析表面声波的性质及其传播特性。 表面声波有广泛的应用;主要依据它的二方面特性:.

新!!: 相位和表面声波 · 查看更多 »

频谱

頻譜是指一個時域的信號在頻域下的表示方式,可以針對信號進行傅立葉變換而得,所得的結果會是以分別以振幅及相位為縱軸,頻率為橫軸的兩張圖,不過有時也會省略相位的資訊,只有不同頻率下對應振幅的資料。有時也以「振幅頻譜」表示振幅隨頻率變化的情形,「相位頻譜」表示相位隨頻率變化的情形 。 簡單來說,頻譜可以表示一個訊號是由哪些頻率的弦波所組成,也可以看出各頻率弦波的大小及相位等資訊。.

新!!: 相位和频谱 · 查看更多 »

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

新!!: 相位和馬克士威方程組 · 查看更多 »

馬赫-曾德爾干涉儀

赫-曾德爾干涉儀(Mach–Zehnder interferometer)是一種干涉儀,可以用來觀測從單獨光源發射的光束分裂成兩道之後,經過不同路徑與介質所產生的相對相移變化。這儀器是因德国物理学者(恩斯特·马赫之子)和路德维·曾德尔而命名。曾德尔首先於1891年提出這構想,後來馬赫於1892年發表論文對這構想加以改良。 為了方便敘述,本文使用術語「馬曾干涉儀」來簡稱馬赫-曾德爾干涉儀。.

新!!: 相位和馬赫-曾德爾干涉儀 · 查看更多 »

駐波

波(standing wave或stationary wave)為兩個波長、週期、頻率和波速皆相同的正弦波相向行進干涉而成的合成波。与行波不同,駐波的波形無法前進,因此無法傳播能量,故名之。 駐波通過時,每一個質點皆作簡諧運動。各質點振盪的幅度不相等,振幅為零的點稱為節點或波節(Node),振幅最大的點位於兩節點之间,稱為腹點或波腹(Antinode)。由於節點靜止不動,所以波形沒有傳播。能量以動能和勢能的形式交換儲存,亦傳播不出去。两列传播方向相反的相干波相遇而产生干涉,或介质沿波速的相反方向运动时,均可产生这个现象。常见的驻波现象是谐振器中,一列波与自身的反射波产生干涉而形成的。 1860年,首次发现,并创造了“驻波”(stehende Welle或Stehwelle)一词。.

新!!: 相位和駐波 · 查看更多 »

规范场论

规范场论(Gauge Theory)是基于对称变换可以局部也可以全局地施行这一思想的一类物理理论。非交换对称群(又称非阿贝尔群)的规范场论最常見的例子为杨-米尔斯理论。物理系統往往用在某种变换下不变的拉格朗日量表述,当变换在每一时空点同时施行,它们有全局对称性。规范场论推广了这一思想,它要求拉格朗日量必须也有局部对称性—应该可以在时空的特定区域施行这些对称变换而不影响到另外一个区域。这个要求是广义相对论的等效原理的一个推广。 规范“对称性”反映了系统表述的一个冗余性。 规范场论在物理学上的重要性,在于其成功為量子电動力学、弱相互作用和强相互作用提供了一个统一的数学形式化架构——标准模型。這套理論精确地表述了自然界的三種基本力的实验预测,它是一个规范群为SU(3) × SU(2) × U(1)的规范场论。像弦论这样的现代理论,以及广义相对论的一些表述,都是某种意义上的规范场论。 有时,规范对称性一词被用于更广泛的含义,包括任何局部对称性,例如微分同胚。该术语的这个含义不在本条目使用。.

新!!: 相位和规范场论 · 查看更多 »

諧振子

古典力學中,一個諧振子(harmonic oscillator)乃一個系統,當其從平衡位置位移,會感受到一個恢復力F正比於位移x,並遵守虎克定律: 其中k是一個正值常數。 如果F是系統僅受的力,則系統稱作簡諧振子(簡單和諧振子)。而其進行簡諧運動——正中央為平衡點的正弦或餘弦的振動,且振幅與頻率都是常數(頻率跟振幅無關)。 若同時存在一摩擦力正比於速度,則會存在阻尼現象,稱這諧振子為阻尼振子。在這樣的情形,振動頻率小於無阻尼情形,且振幅隨著時間減小。 若同時存在跟時間相關的外力,諧振子則稱作是受驅振子。 力學上的例子包括了單擺(限於小角度位移之近似)、連接到彈簧的質量體,以及聲學系統。其他的相類系統包括了電學諧振子(electrical harmonic oscillator,參見RLC電路)。.

新!!: 相位和諧振子 · 查看更多 »

高階弦波輸入描述函數

階弦波輸入描述函數簡稱HOSIDF,最早是由P.W.J.M. Nuij開始使用的。是弦波輸入的延伸,描述在弦波輸入信號,系統在各諧波的響應(增益及相位)。HOSIDF和經典的频率响应函數有直觀上的相似性,定義一個穩定、因果、时不变的非線性系統在以下弦波輸入下的週期性輸出: u(t).

新!!: 相位和高階弦波輸入描述函數 · 查看更多 »

谱密度

時間序列 x(t) 的功率谱 S_(f) 描述了信号功率在频域的分布状况。根据傅里叶分析,任何物理信号都可以分解成一些离散频率或连续范围的频谱。对特定信号或特定种类信号(包括噪声)频率内容的分析的统计平均,称作其频谱。 当信号的能量集中在一个有限时间区间的时候,尤其是总能量是有限的,就可以计算能量频谱密度。更常用的是应用于在所有时间或很长一段时间都存在的信号的功率谱密度。由于此种持续存在的信号的总能量是无穷大,功率谱密度(PSD)则是指单位时间的光谱能量分布。频谱分量的求和或积分会得到(物理过程的)总功率或(统计过程的)方差,这与帕塞瓦尔定理描述的将 x^2(t) 在时间域积分所得相同。 物理过程 x(t) 的频谱通常包含与 x 的性质相关的必要信息。比如,可以从频谱分析直接确定乐器的音高和音色。电磁波电场 E(t) 的频谱可以确定光源的颜色。从这些时间序列中得到频谱就涉及到傅里叶变换以及基于傅里叶分析的推广。许多情况下时间域不会具体用在实践中,比如在攝譜儀用散射棱镜来得到光谱,或在声音通过内耳的听觉感受器上的效应来感知的过程,所有这些都是对特定频率敏感的。 不过本文关注的是时间序列(至少在统计意义上)已知,或可以直接测量(如经麦克风采集再由电脑抽样)的情形。功率谱在与随机过程的统计研究以及物理和工程中的许多其他领域中都很重要。通常情况下,该过程是时间的函数,但也同样可以讨论空间域的数据按空間頻率分解。.

新!!: 相位和谱密度 · 查看更多 »

龐蒂科夫-牧-中川-坂田矩陣

在粒子物理學中,龐蒂科夫-牧-中川-坂田矩陣(Pontecorvo-Maki-Nakagawa-Sakata Matrix,簡稱PMNS矩陣),又稱牧-中川-坂田矩陣(MNS矩陣)、輕子混合矩陣或中微子混合矩陣,是一個么正矩陣在翹翹板模型中,PMNS矩陣並不是么正矩陣。,內含自由轉播中與弱相互作用中的輕子間量子態的相異之處,因此是研究中微子振蕩的重要工具。此矩陣最早由牧二郎、中川昌美與坂田昌一於1962年提出,用於解釋布魯諾·龐蒂科夫所預測的中微子振蕩現象。.

新!!: 相位和龐蒂科夫-牧-中川-坂田矩陣 · 查看更多 »

迈克尔·贝里

迈克尔·贝里(Michael Berry,),英国数学物理学家,布里斯托尔大学教授。1982年成为皇家学会会员,1996年被授以爵位。2006年起任《Proceedings of the Royal Society》编辑。他主要以贝里相位而知名,该现象可以在量子力学和光学实验中观察到,是一種拓樸相位。於1996年指出旋轉的磁體可以不受恩紹定理而懸浮,於2000年因為懸浮青蛙實驗與安德烈·海姆共同獲得獲得搞笑諾貝爾獎。.

新!!: 相位和迈克尔·贝里 · 查看更多 »

舊量子論

舊量子論是一些比現代量子力學還早期,出現於1900年至1925年之間的量子理論。雖然並不很完整或一致,這些啟發式理論是對於經典力學所做的最初始的量子修正。舊量子論最亮麗輝煌的貢獻無疑應屬波耳模型。自從夫朗和斐於1814年發現了太陽光譜的譜線之後,經過近百年的努力,物理學家仍舊無法找到一個合理的解釋。而波耳的模型居然能以簡單的算術公式,準確地計算出氫原子的譜線。這驚人的結果給予了科學家無比的鼓勵和振奮,他們的確是朝著正確的方向前進。很多年輕有為的物理學家,都開始研究量子方面的物理。因為,可以得到很多珍貴的結果。 直到今天,舊量子論仍舊有聲有色地存在著。它已經轉變成一種半古典近似方法,稱為WKB近似。許多物理學家時常會使用WKB近似來解析一些極困難的量子問題。在1970年代和1980年代,物理學家Martin Gutzwiller發現了怎樣半經典地解析混沌理論之後,這研究領域又變得非常熱門。(參閱量子混沌理論 (quantum chaos))。.

新!!: 相位和舊量子論 · 查看更多 »

阻抗

阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗是一个复数,实部称为电阻,虚部称为电抗;其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,容抗和感抗合称为电抗。阻抗將電阻的概念加以延伸至交流電路領域,不僅描述電壓與電流的相對振幅,也描述其相對相位。當通過電路的電流是直流電時,電阻與阻抗相等,電阻可以視為相位為零的阻抗。阻抗的概念不仅存在与电路中,在力学的振动系统中也有涉及。 阻抗通常以符號 Z 標記。阻抗是複數,可以用相量 Z_m \angle \theta 或 Z_m e^ 來表示;其中,Z_m是阻抗的大小,\theta 是阻抗的相位。這種表式法稱為「相量表示法」。 具體而言,阻抗定義為電壓與電流的頻域比率。阻抗的大小 Z_m 是電壓振幅與電流振幅的絕對值比率,阻抗的相位 \theta 是電壓與電流的相位差。採用國際單位制,阻抗的單位是歐姆(Ω),與電阻的單位相同。阻抗的倒數是導納,即電流與電壓的頻域比率。導納的單位是西門子 (單位)(舊單位是姆歐)。 英文術語「impedance」是由物理學者奧利弗·黑維塞於1886年發表論文《電工》給出。於1893年,電機工程師亞瑟·肯乃利(Arthur Kennelly)最先以複數表示阻抗。.

新!!: 相位和阻抗 · 查看更多 »

阿利·伯克級驅逐艦

阿利·伯克級驅逐艦 (Arleigh Burke class destroyer)),簡稱為伯克級,是美國海軍装备的一型配備了「宙斯盾」作战系统和AN/SPY-1 3D相控阵雷达的驅逐艦,主要任務要求為協同航母战斗群的防空作戰。第一艘阿利·伯克級驅逐艦於1991年7月4日下水,以替換史普魯恩斯級驅逐艦(USS Cushing DD-985),之後同級艦陸續加入美國海軍以替代其他較為舊型的驅逐艦級,並在2005年9月21日之後一度成為美國海軍唯一操作中的現役驅逐艦級。本艦級的命名源自美國海軍上將阿利·伯克,是二戰時代最有名的驅逐艦軍官。伯克本人在一號艦阿利·伯克號下水時仍在世,其在服役典禮上說:「此艦為戰而生,你們擁有的是世上最好的战舰。」包含進入21世紀後重啟的新艦建造計畫,同級艦共计划建造89艘。在--取消之后,美国海军被迫采用伯克Flight III方案,以加强航母打击群的防空能力。 這些戰艦被設計為多用途驅逐艦,為適應防空作戰他們有強大的宙斯盾作战系统和标准系列防空導彈;反潛则有、魚雷、ASROC反潛火箭,和反潛直升機;水面戰有魚叉導彈和;並可配備戰斧巡航导弹進行對地打擊。.

新!!: 相位和阿利·伯克級驅逐艦 · 查看更多 »

阿哈罗诺夫-玻姆效应

 效應,全名阿哈羅诺夫-玻姆效應,是個物理學實驗。它證明即使在磁場為零的區域,仍舊會存在磁效應,然而,這並不能用來測量磁矢勢,因為只有磁通量會出現在表達效應的公式裡,而且整個理論始終維持規範不變性。阿哈羅诺夫-玻姆效應是量子力学和电动力学发展史上的重要实验,說明了量子力學的非局域性質。 「」這個名稱取自在1959年设计这个实验的两位理论物理家亞基爾·阿哈羅诺夫(Yakir Aharonov)和大衛·玻姆(David Bohm)姓名的首字,前者因這個實驗而得到1998年沃爾夫物理學獎。巧合的是,物理学家也用A表示磁矢勢,B表示磁场,赋予 效应这个名字更加深刻的涵义(见下文)。.

新!!: 相位和阿哈罗诺夫-玻姆效应 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: 相位和薛定谔方程 · 查看更多 »

肥皂泡

肥皂泡是非常薄的形成一个带虹彩表面的空心形体的肥皂水的膜。肥皂泡的存在時間通常很短,它们會因触碰其它物体或維持於空氣中太久而破裂(地心吸力令肥皂泡上方的膜變薄)。由于它们很脆弱,它们也成为美好但不实际的东西的隐喻。它们经常被用作孩童的玩物,但他们在艺术表演中的使用也表明它们对于成人也是很有吸引力的。肥皂泡还可能帮助解决空间的复杂的数学问题,因为他们总是会找到点或者边之间的最小表面。.

新!!: 相位和肥皂泡 · 查看更多 »

锁相环

鎖相迴路(PLL: Phase-locked loops)是一种利用反馈(Feedback)控制原理实现的频率及相位的同步技术,其作用是将电路输出的时钟与其外部的参考时钟保持同步。当参考时钟的频率或相位发生改变时,鎖相迴路会检测到这种变化,并且通过其内部的反馈系统来调节输出频率,直到两者重新同步,这种同步又称为“鎖相”(Phase-locked)。.

新!!: 相位和锁相环 · 查看更多 »

锁模技术

锁模是光学里一种用于产生极短时间激光脉冲的技术,脉冲的长度通常在皮秒(10-12秒)甚至飞秒(10-15秒)。 该技术的理论基础是在激光共振腔中的不同模式间引入固定的相位关系,这样产生的激光被称为锁相激光或锁模激光。这些模式之间的干涉会使激光产生一系列的脉冲。根据激光的性质,这些脉冲可能会有极短的持续时间,甚至可以达到飞秒的量级。.

新!!: 相位和锁模技术 · 查看更多 »

脈波

在信號處理中,脈波(pulse)有以下兩種意義:.

新!!: 相位和脈波 · 查看更多 »

量子纏結

在量子力學裏,當幾個粒子在彼此相互作用後,由於各個粒子所擁有的特性已綜合成為整體性質,無法單獨描述各個粒子的性質,只能描述整體系統的性質,則稱這現象為量子--或量子--(quantum entanglement)。量子糾纏是一種純粹發生於量子系統的現象;在經典力學裏,找不到類似的現象。 假若對於兩個相互糾纏的粒子分別測量其物理性質,像位置、動量、自旋、偏振等,則會發現量子關聯現象。例如,假設一個零自旋粒子衰變為兩個以相反方向移動分離的粒子。沿著某特定方向,對於其中一個粒子測量自旋,假若得到結果為上旋,則另外一個粒子的自旋必定為下旋,假若得到結果為下旋,則另外一個粒子的自旋必定為上旋;更特別地是,假設沿著兩個不同方向分別測量兩個粒子的自旋,則會發現結果違反貝爾不等式;除此以外,還會出現貌似佯谬般的現象:當對其中一個粒子做測量,另外一個粒子似乎知道測量動作的發生與結果,儘管尚未發現任何傳遞信息的機制,儘管兩個粒子相隔甚遠。 阿爾伯特·愛因斯坦、鮑里斯·波多爾斯基和納森·羅森於1935年發表的爱因斯坦-波多尔斯基-罗森佯谬(EPR佯谬)論述到上述現象。埃爾溫·薛丁格稍後也發表了幾篇關於量子糾纏的論文,並且給出了「量子糾纏」這術語。愛因斯坦認為這種行為違背了定域實在論,稱之為「鬼魅般的超距作用」,他總結,量子力學的標準表述不具完備性。然而,多年來完成的多個實驗證實量子力學的反直覺預言正確無誤,還檢試出定域實在論不可能正確。甚至當對於兩個粒子分別做測量的時間間隔,比光波傳播於兩個測量位置所需的時間間隔還短暫之時,這現象依然發生,也就是說,量子糾纏的作用速度比光速還快。最近完成的一項實驗顯示,量子糾纏的作用速度至少比光速快10,000倍。這還只是速度下限。根據量子理論,測量的效應具有瞬時性質。可是,這效應不能被用來以超光速傳輸經典信息,否則會違反因果律。 量子糾纏是很熱門的研究領域。像光子、電子一類的微觀粒子,或者像分子、巴克明斯特富勒烯、甚至像小鑽石一類的介觀粒子,都可以觀察到量子糾纏現象。現今,研究焦點已轉至應用性階段,即在通訊、計算機領域的用途,然而,物理學者仍舊不清楚量子糾纏的基礎機制。.

新!!: 相位和量子纏結 · 查看更多 »

量子退相干

在量子力學裏,開放量子系統的量子相干性會因為與外在環境發生量子糾纏而隨著時間逐漸喪失,這效應稱為--(Quantum decoherence),又稱為--。量子退相干是量子系統與環境因量子糾纏而產生的後果。由於量子相干性而產生的干涉現象會因為量子退相干而變得消失無蹤。量子退相干促使系統的量子行為變遷成為經典行為,這過程稱為「量子至經典變遷」(quantum-to-classical transition)。德國物理學者最先於1970年提出量子退相干的概念。自1980年以來,量子退相干已成為熱門研究論題。 實際而言,不存在孤立系統,特別是不存在孤立宏觀系統,通過某種方式,每個量子系統都會持續地與外在環境耦合,發生量子糾纏,從而形成糾纏態。因此,量子退相干可以視為存在於量子系統內部的相干性隨著時間流易而退定域(delocalize)至量子系統與環境所組成的糾纏系統,換句話說,量子系統內部的幾個成分彼此之間的相位關係,會逐漸地退定域至整個系統,也就是說,量子系統的相位信息會持續地洩露至環境,從而有效地促使伴隨著相干性的干涉現象消失無蹤。 量子退相干能夠解釋為什麼不會觀察到干涉現象,但是,量子退相干能否解釋波函數塌縮的後果,這論題至今仍舊存在巨大爭議,一個很重要的原因就是,很難將這論題跟量子力學的詮釋做分割,而人們各自有各自青睞的詮釋。量子退相干是一種標準量子力學效應,關於它是否能夠解釋波函數塌縮的後果,存在有很多種觀點,大多數過於樂觀或過於悲觀的觀點,皆可追溯至對於量子退相干運作範圍的誤解。 量子退相干不是一種量子力學詮釋,而是利用量子力學分析獲得的結果。它嚴格遵守量子力學,並沒有對量子力學的基礎表述做任何修改。很多完成的量子實驗已證實量子退相干的存在與正確性。 在實現量子計算機方面,量子退相干是一種必須面對的挑戰,因為量子計算機的運作倚賴維持量子相干態的演化不被環境攪擾。簡言之,必需良好維持量子相干態與管控量子退相干,才能夠實際進行量子運算。.

新!!: 相位和量子退相干 · 查看更多 »

量子擦除實驗

在量子力學裏,量子擦除实验(quantum eraser experiment)是一種干涉儀實驗,它可以用來演示量子糾纏、量子互補等等基本理論。本條目所論述的量子擦除實驗使用雙縫干涉儀來製成干涉圖樣,這實驗有三個步驟:.

新!!: 相位和量子擦除實驗 · 查看更多 »

金屬疲勞

勞一詞在材料科學領域, 意指物件因持續受到動態變化的應力而造成結構劣化。引起疲勞的動態變化應力通常遠小於靜態的極限拉伸應力或極限屈變應力。疲勞是漸進且局部的結構損壞過程,由於長時間日積月累而產生,所引起的破裂往往在毫無預警的情況下發生,可能直接導致事故(例如空難)的發生,因此相關的預防、檢查、處理格外重要。 疲勞現象發生於物件反覆受應力時,可大致分為三階段: 若應力超過一定閾值,在高應力集中點會形成微小裂縫(應力集中點包括:表面刮痕、尖銳填角、鍵槽、缺口......等等)  Kim, W.H>; Laird, C. (1978).

新!!: 相位和金屬疲勞 · 查看更多 »

鉴频鉴相器

在电子学中,鉴频鉴相器(Phase Frequency Detector)是一种能将两种输入信号的相位进行比较并输出频率误差和相位误差信息的设备,是锁相环电路的一个关键部件。它有两个不同的输入信号。在锁相环中,输入信号通常一个来自压控振荡器,另一个由外部信号源提供,其输出信号将指导后续环路如何调整来继续锁相。 在锁相环中,鉴频鉴相器输出的相差信号被积分电路平滑,反馈到环路滤波器和分频电路(可能存在)。通过环路滤波器和分频电路后,平滑的信号继续被馈送到压控振荡器,该振荡器产生一个与输入电压成比例的频率输出信号。压控振荡器的输出信号继续被反馈到鉴频鉴相器,以使频率稳定。 早期的锁相环的相位比较器,也提供了一个频率误差输出和一个相位误差信号,鉴频鉴相器就是在此基础上改进的。.

新!!: 相位和鉴频鉴相器 · 查看更多 »

電是靜止或移動的電荷所產生的物理現象。在大自然裏,電的機制給出了很多眾所熟知的效應,例如閃電、摩擦起電、靜電感應、電磁感應等等。 很久以前,就有許多術士致力於研究電的現象,但所得到的結果乏善可陳。直到十七和十八世紀,才出現了一些在科學方面重要的發展和突破,不過在那時,電的實際用途並不多。十九世紀末,由於電機工程學的進步,電才進入了工業和家庭裡。從那時開始,日新月異、突飛猛進的快速發展帶給了工業和社會巨大的改變。作為能源的一種供給方式,電有許多優點,這意味著電的用途幾乎是無可限量。例如,交通、取暖、照明、電訊、計算等等,都必須以電為主要能源。進入二十一世紀,現代工業社會的骨幹仍是電能。.

新!!: 相位和電 · 查看更多 »

電子掃描陣列雷達

電子掃描陣列雷達(electronically scanned array,簡稱:ESA radar),是指一類藉由改變天線表面陣列所發出波束(wave beam)的合成方式,來改變波束掃描方向的雷達。這種設計有別於機械掃描的雷達天線,可以減少或完全避免使用機械馬達驅動雷達天線便可達到涵蓋較大偵測範圍的目的。当然,这并非表示電子掃描雷达就不可以采用机械转动的方式来增大扫描范围,事实上采用机械转动電子掃描雷达基座的方式可以进一步增大雷达波所能覆盖的范围,比如俄国现代级、英国45型等防空驱逐舰都装备或将装备双面電子掃描陣列雷达(而不是如美国神盾舰上的四面阵),这就使它们不得不采用旋转阵面的方式来覆盖360度圆周,是「電子掃描」+「机械转动」结合的典型实例。 目前使用的電子掃描方式包括改變頻率或者是改變相位的方式,將合成的波束發射的方向加以變化。電子掃描的優點包含掃描速率高,改變波束方向的速率快,對於目標訊號測量的精確度高於機械掃描雷達,同時免去機械掃描雷達天線驅動裝置可能發生的故障。由于可以在极短的时间内迅速改变波束指向,电子扫描雷达比使用纯机械扫描的传统雷达有更强的多目标接战能力,边扫描边跟踪能力,以及空对空-空对地多模式同时工作的能力等等。 電子掃描天線使用的陣列包含「一維線性陣列」與「二維陣列」兩種,兩種陣列代表波束可以控制方向上的差異。.

新!!: 相位和電子掃描陣列雷達 · 查看更多 »

雙縫實驗

在量子力學裏,雙縫實驗(double-slit experiment)是一種演示光子或電子等等微觀物體的波動性與粒子性的實驗。雙縫實驗是一種「雙路徑實驗」。在這種更廣義的實驗裏,微觀物體可以同時通過兩條路徑或通過其中任意一條路徑,從初始點抵達最終點。這兩條路徑的程差促使描述微觀物體物理行為的量子態發生相移,因此產生干涉現象。另一種常見的雙路徑實驗是马赫-曾德尔干涉仪實驗。 雙縫實驗的基本儀器設置很簡單,如右圖所示,將像激光一類的相干光束照射於一塊刻有兩條狹縫的不透明板,通過狹縫的光束,會抵達照相膠片或某種探測屏,從記錄於照相膠片或某種探測屏的輻照度數據,可以分析光的物理性質。光的波動性使得通過兩條狹縫的光束相互干涉,形成了顯示於探測屏的明亮條紋和暗淡條紋相間的圖樣,明亮條紋是相長干涉區域,暗淡條紋是相消干涉區域,這就是雙縫實驗著名的干涉圖樣。 在古典力學裏,雙縫實驗又稱為「楊氏雙縫實驗」,或「楊氏實驗」、「楊氏雙狹縫干涉實驗」,專門演示光波的干涉行為,是因物理學者托馬斯·楊而命名。假若,光束是以粒子的形式從光源移動至探測屏,抵達探測屏任意位置的粒子數目,應該等於之前通過左狹縫的粒子數量與之前通過右狹縫的粒子數量的總和。根據定域性原理(principle of locality),關閉左狹縫不應該影響粒子通過右狹縫的行為,反之亦然,因此,在探測屏的任意位置,兩條狹縫都不關閉的輻照度應該等於只關閉左狹縫後的輻照度與只關閉右狹縫後的輻照度的總和。但是,當兩條狹縫都不關閉時,結果並不是這樣,探測屏的某些區域會比較明亮,某些區域會比較暗淡,這種圖樣只能用光波動說的相長干涉和相消干涉來解釋,而不是用光微粒說的簡單數量相加法。 雙縫實驗也可以用來檢試像中子、原子等等微觀物體的物理行為,雖然使用的儀器不同,仍舊會得到類似的結果。每一個單獨微觀物體都離散地撞擊到探測屏,撞擊位置無法被預測,演示出整個過程的機率性,累積很多撞擊事件後,總體又顯示出干涉圖樣,演示微觀物體的波動性。 2013年,一個檢試分子物理行為的雙縫實驗,成功演示出含有810個原子、質量約為10000amu的分子也具有波動性。 理查德·費曼在著作《費曼物理學講義》裏表示,雙縫實驗所展示出的量子現象不可能、絕對不可能以任何古典方式來解釋,它包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。透過雙縫實驗,可以觀察到量子世界的奧秘。.

新!!: 相位和雙縫實驗 · 查看更多 »

逆變器

逆變器(又称變流器、反流器,或稱反用換流器、電壓轉換器;Inverter)是一個利用高频电桥电路將直流電變換成交流電的电子器件,其目的与整流器相反。.

新!!: 相位和逆變器 · 查看更多 »

Gross-Pitaevskii方程

Gross–Pitaevskii 方程(以Eugene P. Gross命名与Lev Petrovich Pitaevskii) 描述了全同玻色子量子体系的基态,其中使用了Hartree-Fock近似与赝势相互作用模型。 在Hartree-Fock近似中,N个玻色子体系的总波函数\Psi为单粒子波函数\psi之积 \Psi(\mathbf_1,\mathbf_2,\dots,\mathbf_N).

新!!: 相位和Gross-Pitaevskii方程 · 查看更多 »

Hartley oscillator

哈特萊振盪器(Hartley oscillator),又稱赫特利振盪器,是一種由电容和电感的调谐电路(即LC振荡器)决定振荡频率的电子振荡器电路。该电路是美国工程师於1915年發明的。Hartley振荡器的特点是调谐电路由一个电容器与串联的两个电感(或单抽头电感)并联,振荡所需的反馈信号取自两电感连接的中心。.

新!!: 相位和Hartley oscillator · 查看更多 »

Φ

Phi(大写Φ,小写φ,中文音译:佛爱、斐),是第二十一个希腊字母。 希腊小写字母\varphi\,\!,左上角的弯是开口的;而用作符号时,通常会写作\phi\,\!,变成了一个縮小了的大写Φ的形狀(Unicode:U+03D5)。.

新!!: 相位和Φ · 查看更多 »

MIDI

音樂數位介面(Music Instrument Digital Interface,簡稱MIDI)是一個工業標準的電子通訊協定,為電子樂器等演奏裝置(如合成器)定義各種音符或彈奏碼,容許電子樂器、電腦、手機或其它的舞台演出配備彼此連接,調整和同步,得以即時交換演奏資料。 MIDI不傳送聲音,只傳送像是音調和音樂強度的數據,音量,顫音和相位等參數的控制訊號,還有設定節奏的時鐘信號。在不同的電腦上,輸出的聲音也因音源器不同而有差異。 MIDI演出控制協議(MSC Protocol)是為MIDI而設的工業標準,由MIDI產業協會在1991年制定。它允許不同種類的媒體控制裝置在相互之間的通訊,借助電腦可以現場進行演出控制的功能與娛樂應用。與音樂MIDI相同,MSC並不傳輸實際顯示的媒體- 它只是簡單地傳輸有關多媒體性能的指令。 現在幾乎所有的錄音工程都將MIDI作為一項關鍵開放技術來紀錄音樂。除此之外,MIDI也用來控制包括錄音設備的硬體,如舞台燈、效果器踏板等高性能的設備。近十年,MIDI已經堂堂邁入行動電話領域。MIDI用來播放支援MIDI行動電話的鈴聲。MIDI還可為某些電子遊戲、電腦遊戲提供背景音樂。 MIDI標準是在1981年由工程師向提出的的一篇論文,MIDI 1.0於1983年8月發布。 MIDI使得電腦、合成器、音效卡以及電子樂器(電子鼓、電子琴等)能互相控制、交换訊息。現在電腦的音效卡都是與MIDI相容的,並能逼真地模擬樂器的聲音。 許多音樂的文件格式,都建構於MIDI檔之上。這些格式可說就是電子樂器在看的電子樂譜,所以通常一個文件只需幾十KB,就能夠讓電子樂器演奏出一首很完整的音樂。.

新!!: 相位和MIDI · 查看更多 »

P波

穿越地球內部的波(例如,地震波)被稱為體波。相對於體波的是表面波。體波分為兩種,P波(P-wave or primary wave)與S波(secondary wave)。P波意指(primary wave)或是壓力波(pressure wave)。在所有地震波中,P波傳遞速度最快。因此發生地震時,P波最早抵達測站,並被地震儀紀錄下來,這也是P波名稱的由來。P波的P也能代表壓力(pressure),來自於其震動傳遞類似聲波,屬於縱波的一種(或疏密波),傳遞時介質的震動方向與震波能量的傳播方向平行。 對於地球內部構造的瞭解和推論,大部分是藉由觀測地震波中的體波。地震波在不同介質有不同傳播時間和路徑,在介質交界面時會引起反射、折射,以及相位的改變。地震學家利用這些特性來獲得地球內部資訊。當體波穿越地球液態層時,P波在經過下部地函與外地核時會稍許折射。造成P波在104°至140°間會有陰影區,令地震儀無法記錄。.

新!!: 相位和P波 · 查看更多 »

RLC电路

RLC电路是一种由电阻(R)、电感(L)、电容(C)组成的电路结构。LC电路是其简单的例子。RLC电路也被称为二阶电路,电路中的电压或者电流是一個二阶微分方程的解,而其係數是由电路结构决定。 若电路元件都视为线性元件时,一个RLC电路可以被视作电子谐波振荡器。 这种电路的固有频率一般表示为:(单位:赫兹Hz) f_c.

新!!: 相位和RLC电路 · 查看更多 »

Super Audio CD

Super Audio CD(SACD)是由Sony及飛利浦兩家公司所訂定的音源儲存媒體,於1999年創立。.

新!!: 相位和Super Audio CD · 查看更多 »

WKB近似

在量子力學裏,WKB近似是一種半經典計算方法,可以用來解析薛丁格方程式。喬治·伽莫夫使用這方法,首先正確地解釋了阿爾法衰變。WKB近似先將量子系統的波函數,重新打造為一個指數函數。然後,半經典展開。再假設波幅或相位的變化很慢。通過一番運算,就會得到波函數的近似解。.

新!!: 相位和WKB近似 · 查看更多 »

WWVB

WWVB是由美國國家標準技術研究所(NIST, National Institute of Standards and Technology)所擁有的時碼發播台,位於美國科羅拉多州科林斯堡,其姊妹站是WWV。在北美地區,當地大部分電波時鐘都使用WWVB的時碼訊號,以設定正確的時間。WWVB 擁有一個 70千瓦的有效輻射功率發射機並利用 60 千赫的頻率發射對時訊號。而WWVB的對時訊號是利用原子鐘來作訊號來源,其不確定度為10。WWVB每一比特每秒時間代碼,這是基於的時間代碼格式,是由同一組的原子鐘產生,然後調製到使用載波脈衝寬度調變及幅移键控。而時間代碼的單一完整的幀是開始於每分鐘的開始,每一幀持續一分鐘,當中包含年份,小時,分鐘等信息。 雖然大部分授時台都是廣播該國的當地時間,但是美國跨越多個時區,所以WWVB廣播的時間訊號是協調世界時。而當地所售買的電波時鐘都可以設定為美國的四個時區及夏令時間而顯示出正確的本地時間。 在2011年,國家標準技術研究所估計超過50萬部時鐘及手錶配備了接收WWVB的對時訊號的能力。.

新!!: 相位和WWVB · 查看更多 »

X射线晶体学

X射線晶體學是一門利用X射線來研究晶體中原子排列的學科。更準確地說,利用電子對X射線的散射作用,X射線晶體學可以獲得晶體中電子密度的分佈情況,再從中分析獲得关于原子位置和化学键的資訊,即晶體結構。 由于包括盐类、金属、矿物、半导体在内的许多物质都可以形成晶体,X射线晶体学已经是许多学科的基本技术。在前十年这项技术主要被用于测量原子大小、化学键的类型和键长,以及其他的许多物质,尤其是矿物和合金。X射线晶体学也揭示了许多生物分子的结构和功能,例如维生素、药物、蛋白质以及脱氧核糖核酸(DNA)。X射线晶体学如今仍然是从原子尺度研究物质结构的主要方法。.

新!!: 相位和X射线晶体学 · 查看更多 »

抗噪耳機

抗噪耳機,亦稱為主動式抗噪耳機,為藉由主動噪音控制機制(ANC)可消除周遭令人不快之聲音(亦即噪音)的耳機。原理為使用一個以上靠近耳朵之麥克風接收外界噪音,並以電子電路產生和噪音音波相位相反之訊號。當此反相訊號產生時,破壞性干涉消除了配戴耳機者本來所能聽到之外界噪音。相對於主動式抗噪耳機,強調隔音機制之耳機稱之為被動式抗噪耳機或隔噪耳機,然而機制和主動式完全不同,主要目的為隔絕防止噪音進入耳道。 抗噪機制使人不提高過多音量即可享受音樂。也可不放音樂只是使用降噪功能,幫助飛機或列車之乘客睡眠。 抗噪耳機通常使用 ANC 消除低頻噪音,以主動方式消除高頻噪音效果不佳。所以高頻噪音仍然得依靠傳統隔音機制(即被動抗噪),同時這也可簡化複雜的電子電路裝置。真正要完全消除高頻噪音,感應器和麥克風必須置放於聽者鼓膜旁,故技術上來說不可行。.

新!!: 相位和抗噪耳機 · 查看更多 »

柯尼卡美能達A卡口

美能达AF系统(英文作Minolta AF,亦称作α系统)是照相机制造商美能达所生产的一系列围绕自动对焦照相机器材的一个集合,该系统的诞生以1985年美能达Alpha 7000及相关镜头,闪光灯等附件发布为代表。该系统使用了同样的Minolta AF来命名其镜头卡口。 此系统在经历了美能达时期(1985年~2003年),柯尼卡美能达时期(2003年~2006年)后,随着柯美照相机事业部门被收购,而转交到Sony公司,进入Sony α时期(2006年至今)。 除了Sony α兼容Minolta AF卡口外,2013年哈苏公司以SLT-α99为原型推出的HV机型也使用兼容卡口。.

新!!: 相位和柯尼卡美能達A卡口 · 查看更多 »

橢圓偏振技術

橢圓偏振技術(ellipsometry)是一種多功能和強大的光學技術,可用以取得薄膜的介電性質(複數折射率或介電常數)。它已被應用在許多不同的領域,從基礎研究到工業應用,如半導體物理研究、微電子學和生物學。橢圓偏振是一個很敏感的薄膜性質測量技術,且具有非破壞性和非接觸之優點。 分析自樣品反射之偏振光的改變,橢圓偏振技術可得到膜厚比探測光本身波長更短的薄膜資訊,小至一個單原子層,甚至更小。橢圓儀可測得複數折射率或介電函數張量,可以此獲得基本的物理參數,並且這與各種樣品的性質,包括形態、晶體質量、化學成分或導電性,有所關聯。它常被用來鑑定單層或多層堆疊的薄膜厚度,可量測厚度由數埃(Angstrom)或數奈米到幾微米皆有極佳的準確性。 之所以命名為橢圓偏振,是因為一般大部分的偏振多是橢圓的。此技術已發展近百年,現在已有許多標準化的應用。然而,橢圓偏振技術對於在其他學科如生物學和醫學領域引起研究人員的興趣,並帶來新的挑戰。例如以此測量不穩定的液體表面和顯微成像。.

新!!: 相位和橢圓偏振技術 · 查看更多 »

欧姆定律

在電路學裏,欧姆定律(Ohm's law)表明,导电体两端的电压与通过导电体的电流成正比,以方程式表示, 其中,V是電壓(也可以標記為U,方程式表示為U.

新!!: 相位和欧姆定律 · 查看更多 »

正交幅度调制

正交幅度调制(QAM,Quadrature Amplitude Modulation)是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度(π/2)的正弦波,因此被称作正交载波。这种调制方式因此而得名。.

新!!: 相位和正交幅度调制 · 查看更多 »

正弦曲線

正弦曲線或正弦波(Sinusoid/Sine wave)是一種來自數學三角函數中的正弦比例的曲線。也是模拟信号的代表,與代表數位信號的方波相對。.

新!!: 相位和正弦曲線 · 查看更多 »

汉伯里·布朗及特维斯效应

汉伯里 布朗及特维斯效应(Hanbury Brown and Twiss effect);由于量子力学的相干性,将一束不相干的光分成二束,它们的强度也能发生干涉,这种现象称为「汉伯里 布朗及特维斯效应」。它是由和这两人于1956年发现的。此后,相干和不相干的一束光为二个探测器接受强度相干的现象,统称为「汉伯里 布朗及特维斯效应」。 经典的干涉仪是以观察二束相位相干的光的干涉而工作的。自发现「汉伯里 布朗及特维斯效应」后,也可利用此效应制成光强度相干的干涉仪。测量有距离的星角大小。现在,物理学家依赖这个效应去试验复杂光源的量子性质。.

新!!: 相位和汉伯里·布朗及特维斯效应 · 查看更多 »

波动方程

波动方程或稱波方程(wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 1746年,达朗贝尔发现了一维波动方程,欧拉在其后10年之内发现了三维波动方程。Speiser, David.

新!!: 相位和波动方程 · 查看更多 »

波德圖

波德圖(Bode plot,“Bode”的英文發音類似Boh-dee,荷蘭文的發音則類似Bow-dah),又名伯德图、波特图,是線性非時變系統的傳遞函數對頻率的半對數座標圖,其橫軸頻率以對數尺度表示,利用波德圖可以看出系統的頻率響應。波德圖一般是由二張圖組合而成,一張幅頻圖表示頻率響應增益的分貝值對頻率的變化,另一張相頻圖則是頻率響應的相位對頻率的變化。 波德圖可以用電腦軟體(如MATLAB)或儀器繪製,也可以自行繪製。利用波德圖可以看出在不同頻率下,系統增益的大小及相位,也可以看出大小及相位隨頻率變化的趨勢。 波德圖的圖形和系統的增益,極點、零點的個數及位置有關,只要知道相關的資料,配合簡單的計算就可以畫出近似的波德圖,這是使用波德圖的好處。.

新!!: 相位和波德圖 · 查看更多 »

波包

在任意時刻,波包(wave packet)是局限在空間的某有限範圍區域內的波動,在其它區域的部分非常微小,可以被忽略。波包整體隨著時間流易移動於空間。波包可以分解為一組不同頻率、波數、相位、波幅的正弦波,也可以從同樣一組正弦波構成;在任意時刻,這些正弦波只會在空間的某有限範圍區域相長干涉,在其它區域會相消干涉。 描繪波包輪廓的曲線稱為包絡線。依據不同的演化方程,在傳播的時候,波包的包絡線(描繪波包輪廓的曲線)可能會保持不變(沒有色散),或者包絡線會改變(有色散)。 在量子力學裏,波包可以用來代表粒子,表示粒子的機率波;也就是說,表現於位置空間,波包在某時間、位置的波幅平方,就是找到粒子在那時間、位置的機率密度;在任意區域內,波包所囊括面積的絕對值平方,就是找到粒子處於那區域的機率。粒子的波包越狹窄,則粒子位置的不確定性越小,而動量的不確定性越大;反之亦然。這位置的不確定性和動量的不確定性,兩者之間無可避免的關係,是不確定性原理的一個標準案例。 描述粒子的波包滿足薛定諤方程,是薛定諤方程的數學解。通過含時薛定諤方程,可以預測粒子隨著時間演化的量子行為。這與在經典力學裏的哈密頓表述很類似。.

新!!: 相位和波包 · 查看更多 »

波動力學

波動力學是量子力學的一種表述形式,主要是以波函數及其模數的平方去表示物體的狀態及該狀態出現的機率。對於波函數隨時間的變化,是遵從薛丁格方程式。.

新!!: 相位和波動力學 · 查看更多 »

波的传播

波的传播是指波行进的任何方式。 通过比较振动方向与行进方向的关系,我们可以区分纵波和横波。 电磁波和引力波(又称“重力波”)可以在真空中传播,也可以在材料介质中传播,但其他大部分类型的波都不能在真空中传播,需要在传输介质中才能存在。 另一个解释波的传播的实用参数是波速,多由介质的某种密度决定。.

新!!: 相位和波的传播 · 查看更多 »

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

新!!: 相位和波长 · 查看更多 »

波束赋形

波束赋形(Beamforming)又叫波束成型、空域滤波,是一种使用传感器阵列定向发送和接收信号的信号处理技术。 波束赋形技术通过调整相位阵列的基本单元的参数,使得某些角度的信号获得相长干涉,而另一些角度的信号获得相消干涉。波束赋形既可以用于信号发射端,又可以用于信号接收端。.

新!!: 相位和波束赋形 · 查看更多 »

波數

在物理學裏,波數是波動的一種性質,定義為每  長度的波長數量(卽每單位長度的波長數量乘以 )。更明確地說,波數是每  長度內,波動重複的次數(一個波動取同樣相位的次數)。波數與波長成反比。用方程的語言說, 其中,\lambda\,\! 是波長。 角频率是單位時間內的角度變化,而波數為單位長度內的角度變化,因此波數即是空間上的角频率。波數對應向量爲波向量。 有時候,波數也會定義為每單位長度的波長的數目。但這樣定義比較不好使用。 從隨著時間而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個頻率譜;而從隨著位置而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個波數譜。 採用國際單位制,波數的單位是m^\,\!。.

新!!: 相位和波數 · 查看更多 »

法拉第效应

在物理學,法拉第效应(又叫法拉第旋转)是一种磁光效应(magneto-optic effect),是在介質內光波與磁場的一種相互作用。法拉第效應會造成偏振平面的旋轉,這旋轉與磁場朝著光波傳播方向的分量呈線性正比關係。 於1845年,麥可·法拉第发现了法拉第效應。這是最先揭示光波和電磁現象之間關係的實驗證據。由於法拉第效應顯示出,在穿過介質時,偏振光波會因為外磁場的作用,轉變偏振的方向,因此,馬克士威認為磁場是一種旋轉現象。這效應給予馬克士威重要的啟發。在於1861年發表的巨作《論物理力線》第四部份,為了突顯出自己設計的「分子渦流模型」的威力,他應用這模型來推導出法拉第效應。在1870年代,詹姆斯·馬克士威進一步發展出電磁輻射(包括可見光)的基礎理論。大多數對於光波呈透明狀況的介質(包括液體),當感受到磁場作用時,會出現這種效應。 法拉第效應會使得左旋圓偏振光波與右旋圓偏振光波各自以不同的速度傳播於某些介質,這性質稱為圓雙折射。由於線性偏振可以分解為兩個圓偏振部份的疊加,而這兩個圓偏振部份之間的振幅相同、螺旋性(helicity)不同、相位不同,法拉第效應所感應出的相對的相移,會造成線性偏振取向的旋轉。 法拉第效應可以應用於測量儀器。例如,法拉第效應被用於測量旋光度、或光波的振幅調變、或磁場的遙感。在自旋電子學裏,法拉第效應被用於研究半導體內部的電子自旋的極化。(Faraday rotator) 可以用於光波的調幅,是光隔離器與(optical circulator)的基礎組件,在光通訊與其它激光領域必備組件。.

新!!: 相位和法拉第效应 · 查看更多 »

滤波器设计

频域电子滤波器的设计必须首先考虑任务所需滤波器的类型。首先必须确定滤波器的基本功能,如低通滤波器、高通滤波器、带通滤波器、全通滤波器或者是更为复杂的功能。.

新!!: 相位和滤波器设计 · 查看更多 »

漸逝波

漸逝波(evanescent wave) ,又稱為消逝波或,隱失波,是指當光波從光密介質入射到光疏介質時,發生全反射而光疏介質一侧所產生的一種電磁波。由於其振幅隨與分界面垂直的深度的增大而呈指数形式衰减,而隨切線方向改變相位,因此也是一種表面波。漸逝波是近场的,强度随着呈指数衰减的,没有被吸收的,其解是距边界的距离x的函数。漸逝波作为波动方程的解,可以运用于任何波动方程。形成于两种拥有不同的波动性质的介质的边界上。。特别的,漸逝波可以发生在除了光学的其它情况下,如电磁辐射、声学、机械波的情况下。.

新!!: 相位和漸逝波 · 查看更多 »

激光干涉引力波天文台

光干涉引力波天文台(Laser Interferometer Gravitational-Wave Observatory,缩写:LIGO)是探测引力波的一个大规模物理实验和天文观测台,其在美國華盛頓州的汉福德與路易斯安那州的利文斯頓,分別建有激光干涉儀。利用兩個幾乎完全相同的干涉儀共同進行篩檢,可以大幅度減少誤判假引力波的可能性。干涉儀的靈敏度極高,即使臂長為4千米的干涉臂的長度發生任何變化小至質子的電荷直徑的萬分之一,都能夠被精確地察覺。 LIGO是由美国国家科学基金会(NSF)资助,由加州理工学院與麻省理工学院的物理学者基普·索恩、朗納·德瑞福與莱纳·魏斯領導創建的一个科學项目,兩個學院共同管理與營運LIGO的日常操作。在2002年至2010年之間,LIGO進行了多次探測實驗,蒐集到大量數據,但並未探測到引力波。為了提升探測器的靈敏度,LIGO於2010年停止運作,進行大幅度改良工程。2015年,LIGO重新正式探测引力波。負責组织参与该项目的人員,估計全球約有1000多个科学家參與探測引力波,另外,在2016年12月約有44萬名活跃的Einstein@Home用户。。 在2016年2月11日,和Virgo协作共同发表论文表示,在2015年9月14日检测到引力波信号,其源自於距离地球約13亿光年处的两个質量分別為36太阳质量與29太阳质量的黑洞併合。因為「對LIGO探測器及重力波探測的決定性貢獻」,索恩、魏斯和LIGO主任巴里·巴里什榮獲2017年諾貝爾物理學獎。.

新!!: 相位和激光干涉引力波天文台 · 查看更多 »

激光干涉空间天线

光干涉空间天线(Laser Interferometer Space Antenna,LISA)是一个由美国国家航空航天局(NASA)和欧洲空间局(ESA)合作的引力波探测计划,由於募款問題,美国国家航空航天局於2011年宣布終止合作關係。欧洲空间局因此修改任務概念,於2013年宣布改名為演化激光干涉空间天线(Evolved Laser Interferometer Space Antenna,eLISA),目前仍在设计阶段,计划于2034年投入运行,这将是人类第一座太空中的引力波天文台。 LISA也是美国国家航空航天局的项目的一部分。“超越爱因斯坦”是一组实验上验证爱因斯坦广义相对论理论的计划,其中包含两个空间天文台(HTXS——X射线天文台和LISA)和数个以宇宙学相关观测为目的的探测器。LISA将利用激光干涉的方法精确测量信号相位,从而对于来自宇宙间遥远的引力波源的低频且微弱的引力波进行探测。这将对引力波天文学的理论和实验研究,广义相对论的一些实验观测以及早期宇宙的天体物理学和宇宙学研究有重要意义。.

新!!: 相位和激光干涉空间天线 · 查看更多 »

振动

振动(vibration),指一个物体相对于静止参照物或处于平衡状态的物体的往复运动。一般来说振动的基础是一个系统在两个能量形式间的能量转换,振动可以是周期性的(如单摆)或随机性的(如轮胎在碎石路上的运动)。.

新!!: 相位和振动 · 查看更多 »

振幅調變

振幅調變(Amplitude Modulation,AM),也可簡稱為调幅,是在电子通信中使用的一种調變方法,最常用于无线电载波传输信息。在振幅调制中,载波的振幅(信号强度)是与所发送的波形成比例变化的。例如,该波形可能是与揚聲器再现的声音相对应,也有可能与电视像素的光强度相对应。这种方法与载波頻率变化的频率调制,以及相位变化的相位调制均形成对比。 AM是最早用于通过无线电传送声音的调制方法。它在20世纪头二十年间发展,开始于Roberto Landell De Moura与范信達的在1900年的无线电话实验。 在今天,它仍在多种通信形式中使用;例如用在便携式、VHF航空无线电、与电脑的调制解调器中。 “AM”通常指中波调幅无线电广播。.

新!!: 相位和振幅調變 · 查看更多 »

月球

没有描述。

新!!: 相位和月球 · 查看更多 »

惠更斯-菲涅耳原理

惠更斯-菲涅耳原理(Huygens–Fresnel principle)是研究波传播问题的一种分析方法,因荷蘭物理學者克里斯蒂安·惠更斯和法国物理学者奥古斯丁·菲涅耳而命名。這个原理同时适用于远场极限和近场衍射。 惠更斯-菲涅耳原理能夠正確地解釋與計算波的傳播。基爾霍夫衍射公式給衍射提供了一個嚴格的數學基礎,這基礎是建立於波動方程式和格林第二恒等式。從基爾霍夫衍射公式,可以推導出惠更斯-菲涅耳原理。菲涅耳在惠更斯-菲涅耳原理裏憑空提出的假定,在這推導過程中,會自然地表現出來。 舉一個簡單例子來解釋這原理。假设有两个相邻房间A、B,这两个房间之間有一扇敞开的房门。当声音从房间A的角落裏发出时,则处於房间B的人所听到的这声音有如是位於门口的波源传播而来的。對於房间B的人而言,位於门口的空气振动是声音的波源。 光波对於狹縫或孔徑的衍射也可以用這方式處理,但直观上并不明显,因为可见光的波长很短,因此很难观测到这种效应。.

新!!: 相位和惠更斯-菲涅耳原理 · 查看更多 »

战斗机

戰鬥機(Fighter aircraft)係一種空對空戰鬥用的軍用飛機,主要用以對抗敵方的航空器,攻擊空中目標,奪取、維護戰場上的制空權,故其設計著重於提升機動力與運動性能。戰鬥機通常也被視為一個國家最重要的空中戰力。 史上第一款名義上的的戰鬥機是1913年法國的莫蘭-索尼耶L單翼機。法國人率先實現了在螺旋槳上安裝鋼鐵製子彈偏導片,使機槍子彈不會擊中螺旋槳。這個系統讓飛行員可專​​心駕駛飛機並進行射擊,同時也無須額外配置機槍手,但會使機槍的射速變慢。 過往的戰鬥機根據用途又細分為殲擊機與攔截機(Interceptor)。殲擊機即大眾熟知的傳統戰鬥機,用途是消滅敵方軍用飛機、控制空域,掌握制空權可避免己方地面受到攻擊,亦有利於己方攻擊敵方地面。由於殲擊機隨時可能進行空中纏鬥,對機動力、運動性能的要求遠高於其他機種。攔截機的用途則是在敵方轟炸機和偵察機進入己方空域前,以其速度和爬升能力爭取時間及高度優勢並將其摧毀。由於攔截機是針對飛行高度較高的轟炸機與偵察機,在設計上以爬升率和飛行速度為優先。二次大戰後,有鑑於原子彈的威脅,許多國家一度將攔截機視為與殲擊機同等重要的機種。不過由於飛彈科技的成熟,以及超音速巡航的出現,攔截機的功能已可通過殲擊機配備飛彈來滿足,成為現今趨勢之多用途戰機,不再發展專門的攔截機。.

新!!: 相位和战斗机 · 查看更多 »

斯涅尔定律

光波從一種介質傳播到另一種具有不同折射率的介質時,會發生折射現象,其入射角與折射角之間的關係,可以用斯涅尔定律(Snell's Law)來描述。斯涅尔定律是因荷兰物理学家威理博·斯涅尔而命名,又稱為「折射定律」。 在光學裏,光線跟蹤科技應用斯涅尔定律來計算入射角與折射角。在實驗光學與寶石學裏,這定律被應用來計算物質的折射率。對於具有負折射率的负折射率超材料(metamaterial),這定律也成立,允許光波因負折射角而朝後折射。 斯涅尔定律表明,當光波從介質1傳播到介质2時,假若兩種介質的折射率不同,則会发生折射現像,其入射光和折射光都處於同一平面,稱為「入射平面」,并且与界面法线的夹角满足如下关系: 其中,n_1、n_2分别是两種介质的折射率,\theta_1和\theta_2分别是入射光、折射光与界面法线的夹角,分别叫做「入射角」、「折射角」。 這公式稱為「斯涅尔公式」。 斯涅尔定律可以從費馬原理推導出來,也可以從惠更斯原理、平移對稱性或馬克士威方程組推導出來。.

新!!: 相位和斯涅尔定律 · 查看更多 »

新幹線0系電聯車

新幹線0系是日本新幹線的第一代車輛,於1964年東海道新幹線通車時投入服務。除了是日本新幹線列車的始祖,0系更是世界上第一種高速鐵路車輛。1965年獲鐵道友之會頒發第8屆藍絲帶獎,2007年8月被列為日本機械遺產。 0系由日本國有鐵道(日本國鐵)設計,並由六家公司(日本車輛製造、川崎重工業、近畿車輛、日立製作所、汽車製造(1972年和川崎重工業合併)、東急車輛製造(1970年加入)) 承造。在1963年至1986年間,分38批共生產了3,216輛,至今仍是產量最高的新幹線車輛。 日本國鐵分割民營化後,0系被分配給繼承東海道新幹線的東海旅客鐵道(JR東海)和山陽新幹線的西日本旅客鐵道(JR西日本)繼續服務。雖然後來新幹線車輛一直有新型車輛登場,但0系並沒有完全退役,並繼續在山陽新幹線維持有限度的服務。2008年11月30日,服務44年 的0系完全退出定期服務,並在同年12月14日服務最後的告別班次後正式退役。 0系的設計在當時是非常創新和具有速度感。採用和飛機(特別是客機)相似的車頭,加上藍色和白色為主色的簡潔塗裝,令人留下深刻的印象。另外,由於是首代新幹線車輛,加上長時間服務,0系在國內外都是新幹線,甚至是日本的象徵。在日本國內,不少新幹線有關的指示牌都會被加上0系正面的繪圖(現逐漸被更換為700系圖樣朝日新聞2009年3月2日(東京紙面)專欄「青鉛筆」)。在其他地區,不少人收到的日本明信片都是0系(或其後的100系)在富士山下駛過的圖片。此外,0系也被視為日本戰後經濟快速增長時代的象徵。 除了日常服務外,0系也常常被日本皇室徵召,供皇室人員使用和招待國賓。前日皇裕仁、英女王伊麗莎白二世、中国前副总理邓小平等多國领导人均曾是0系的座上客。此外,0系也是不少日本電影、電視劇和小說的題材。.

新!!: 相位和新幹線0系電聯車 · 查看更多 »

新视野号

新視野號(New Horizons)又譯新地平線號,是美國國家航空暨太空總署旨在探索矮行星冥王星(在發射時間仍然被認為是一顆行星)和柯伊伯带的行星際機器人太空船任務,它是第一艘飛越和研究冥王星和它的衛星,凱倫、尼克斯和許德拉的太空探測器。NASA可能還會批准它飛越一個或两個古柏帶天體。任務概要是由美国西南研究院首席研究員所領導的一個團隊提出。 經過在發射地點的幾個延誤後,新視野號于2006年1月19日在卡纳维拉尔角發射,直接進入地球和太陽逃逸軌道,在最後關閉引擎時相對於地球的速度是16.26公里/秒,或58,536公里/小時(10.10英里/秒或36,373英里/小時)。因此,它是有史以來以最快的發射速度離開地球的人造物體。2015年7月14日新视野号飛越冥王星系统。随后,新視野號将繼續進入古柏帶。 經過與小行星132524 APL一個短暫的相遇後,新視野號飛往木星,在2007年2月28日使得其最接近木星的距離为。木星飛掠提供重力助推给新視野號的速度增加了。木星相遇也被用來作為新視野號科技性能的全面測試,傳回關於行星的大氣層,衛星和磁層的數據。在飛掠木星後,探測器繼續前往冥王星。在木星後的大部分旅行中,太空船是处于休眠模式度過,以保護太空船上的系統。在2006年9月,新視野號第一次拍攝了冥王星,其次是在2013年7月拍攝了區分冥王星和它的衛星冥卫一作為兩個單獨的對象的圖像。無線電信號从新視野號太空船旅行到地球需要用4個多小時。 格林威治時間2015年7月14日上午11時49分,新視野號接近冥王星12,500公里,為旅程中最接近冥王星的位置。 它成為了第一艘探索冥王星的航天器。 協調世界時7月15日00時52分37秒(美國東部時間7月14日20時52分37秒),美國國家航空暨太空總署收到了新視野號傳來的訊息,證實了探測器在預定的時間成功地飛越了冥王星,探測器各方面的運作一切正常,和先前預料的一樣。.

新!!: 相位和新视野号 · 查看更多 »

无线电

無線電,又稱无线电波、射頻電波、電波,或射頻,是指在自由空間(包括空氣和真空)傳播的電磁波,在電磁波譜上,其波長長於紅外線光(IR)。頻率範圍為300 GHz以下 ,其對應的波長範圍為1公釐以上。就像其他電磁波一樣,無線電波以光速前進。經由閃電或天文物體,可以產生自然的無線電波。由人工產生的無線電波,被應用在無線通訊、廣播、雷達、通訊衛星、導航系統、電腦網路等應用上。 無線電發射機,藉由交流電,經過振盪器,變成高頻率交流電,產生電磁場,而經由電磁場可產生無線電波。無線電波像磁鐵,有同性相斥、異性相吸的現象。同類電子會互相排斥,因此當無線電波射出時,會將前方電波往前推,當連續電波一直射出來時,電波就會在空氣中傳播。 無線電技術是通過無線電波傳播信號的技術,其原理在於,導體中電流強弱的改變會產生無線電波。利用這一現象,通過調製可將信息加載於無線電波之上。當電波通過空間傳播到達收信端,電波引起的電磁場變化又會在導體中產生電流。通過解調將訊息從電流變化中提取出來,就達到了資訊傳遞的目的。 麥克斯韋最早在他遞交給英國皇家學會的論文《電磁場的動力理論》中闡明了電磁波傳播的理論基礎。他的這些工作完成於1861年至1865年之間。 海因里希·魯道夫·赫茲在1886年至1888年間首先通過試驗驗證了麥克斯韋爾的理論。他證明了無線電輻射具有波的所有特性,並發現電磁場方程可以用偏微分方程表達,通常稱為波動方程。 1906年聖誕前夜,范信達在美國麻薩諸塞州採用外差法實現了歷史上首次無線電廣播。范信達廣播了他自己用小提琴演奏「平安夜」和朗誦《聖經》片段。位於英格蘭切爾姆斯福德的馬可尼研究中心在1922年開播世界上第一個定期播出的無線電廣播娛樂節目。.

新!!: 相位和无线电 · 查看更多 »

日本國鐵ED71型電力機車

ED71型电力机车(ED71形電気機関車)是日本国有铁道的交流电力机车车型之一,适用于供电制式为20千伏50赫兹的工频单相交流电气化铁路,于1959年研制成功、1960年投入批量生产,至1963年停产,共生产了55台。.

新!!: 相位和日本國鐵ED71型電力機車 · 查看更多 »

日本國鐵ED72型電力機車

ED72型电力机车(ED72形電気機関車)是日本国有铁道的交流电力机车车型之一,适用于供电制式为20千伏60赫兹的工频单相交流电气化铁路,1961年由东芝公司研制成功。.

新!!: 相位和日本國鐵ED72型電力機車 · 查看更多 »

日本國鐵ED77型電力機車

ED77型電力機車(ED77形電気機関車)是日本國有鐵道的交流電力機車車型之一,适用于供电制式为20千伏50赫兹的工频单相交流电的电气化铁路。.

新!!: 相位和日本國鐵ED77型電力機車 · 查看更多 »

日本國鐵ED78型電力機車

ED78型電力機車(ED78形電気機関車)是日本國有鐵道的交流電力機車車型之一,适用于供电制式为20千伏50赫兹的工频单相交流电的电气化铁路,由日立制作所设计及制造。首台原型车于1967年完成试制,当时称之为ED94型电力机车,也是日本国铁第一种带有再生制动的交流电力机车。.

新!!: 相位和日本國鐵ED78型電力機車 · 查看更多 »

旋轉編碼器

旋轉編碼器(rotary encoder)也稱為軸編碼器,是將旋轉位置或旋轉量轉換成模拟或数字信号的機電設備。一般裝設在旋轉物體中垂直旋轉軸的一面。旋轉編碼器用在許多需要精確旋轉位置及速度的場合,如工業控制、机器人技术、專用鏡頭、電腦輸入裝置(如鼠标及轨迹球)等。 旋轉編碼器可分為絕對型(absolute)編碼器及增量型(incremental)編碼器兩種。增量型編碼器也稱作相對型編碼器(relative encoder),利用檢測脈衝的方式來計算轉速及位置,可輸出有關旋轉軸運動的資訊,一般會由其他設備或電路進一步轉換為速度、距離、每分鐘轉速或位置的資訊。絕對型編碼器會輸出旋轉軸的位置,可視為一種角度傳感器。.

新!!: 相位和旋轉編碼器 · 查看更多 »

感觉系统

感觉系统(英語:sensory system)是神经系统中处理感觉信息的一部分。感觉系统包括感受器、神经通路以及大脑中和感觉知觉有关的部分。通常而言感觉系统包括那些和视觉、听觉、触觉、味觉以及嗅觉相关的系统。简单而言,感觉系统是物理世界与内在感受之间的变换器,人類或是動物以此產生對外在世界的知觉。 感受野對應特定的感覺細胞或感覺器官,是指外在世界上可產生刺激,使感覺細胞或器官可以感知的部份。例如眼睛可見之處,就是眼睛的感受野,而视杆细胞或视锥细胞可以感受到的光,是這些細胞的感受野。感受野會因為對應视觉系统、聽覺系統、體感系統等,而有不同的感受野。.

新!!: 相位和感觉系统 · 查看更多 »

散射长度

量子力学中的散射长度是用于描述低能散射的一个物理量,其定义为: 其中的 a 为散射长度,k 为波数,\delta(k) 为散射后发出的球面波的相位差。 在理论中,若一中子被单一孤立的离子散射,其散射长度 a 被定义为使得中子的总散射截面 \sigma 等于 4\pi a^2(由玻恩近似给出)的长度。在速度较低的情形下,散射是各向同性的,散射截面与粒子的能量无关。然而,在电子的散射中,这一结果只适用于1eV以下的情形;对于能量更高的电子,散射截面与能量的大小相关(即)。.

新!!: 相位和散射长度 · 查看更多 »

效果器

效果器,或稱作踏板,是一種可以令電子樂器或音訊的音色加以修飾的電子器材。音樂人會在現場表演或是在錄音室時使用效果器,一般常用在電吉他、電子琴、電鋼琴或電貝斯。大多數的效果器被使用在電子樂器,然而也有少量設計用在原聲樂器、鼓與聲樂。一般效果器的例子為、、以及殘響效果器。 效果器的格式有內建在吉他音箱的、封裝在桌上式的、單顆效果器,以及機架式效果器,甚至也有內建在樂器上面的類型。單顆效果器是一個小型的金屬或塑膠盒,放置在樂手面前的地板上,並用(Patch cord,即導線)連接樂器與。它由一個或多個腳控切換開關來控制,而上面則有旋鈕控制音量、音調與效果的強度,通常僅提供一至兩個效果。裝置在的機架式效果器通常包含數種效果。 目前如何對效果器分類並沒有達到共識,但以下為七種常見分類:破音、動態(影響音量)、濾波器、調變器、音高 / 頻率、時間基礎,與回授 / 延音(Sustain)。吉他手從他們對樂器、拾音器、效果器,與吉他音箱的選擇,以及其不同的設定導出屬於他們自己的標誌聲音或是音色。.

新!!: 相位和效果器 · 查看更多 »

時頻分析的測不準原理

在訊號分析中,訊號的時間分布 x(t) 與頻率分布 X(\omega)之間是有關連的,如果其中一個是寬的,另一個必定是窄的,這是傅立葉轉換的基本觀念,同時也是物理學中測不準原理的精神。不論是物理學或是訊號分析,測不準原理必須討論兩個變量之間的關係,且這兩個變量在希爾伯特空間中必須是不可交換的運算子,而在訊號分析當中,經常討論的兩個變量是時間與頻率。.

新!!: 相位和時頻分析的測不準原理 · 查看更多 »

重定向到这里:

位相相位差相移

传出传入
嘿!我们在Facebook上吧! »