目录
18 关系: 力保美达,ATC代码 (A11),吡咯并喹啉醌,世界卫生组织基本药物标准清单,碳-氮键,糙皮病,紅牛能量飲料,纈草,维生素,烟酰胺腺嘌呤二核苷酸,烟酸,烟酸和烟酰胺代谢,菸鹼素,邻位定向金属化反应,Γ-氨基丁酸A型受体,NMNAT1,3-氨基吡啶,98-92-0。
力保美达
力保健(日语:リポビタンD,英语:Lipovitan,或简称"Livita"、產品印刷為"Libogen",中国大陆及香港地区中文譯法:力保健,台灣中文譯法:力保美達,新加坡中文譯法:利必大),是日本大正製藥推出的一款能量饮料,至2009年為止,在日本已銷售了47年,銷售量達200億瓶以上,是日本機能飲料的第一品牌。产品在1960年代首次投入市场。在东亚地区有着较大的产量,零售包装为棕色100mL的玻璃瓶装。饮品为特制的鲜黄色,有缓解身心疲劳之功效,其中最主要的成分有牛磺酸和維他命B1、B2、B6等。 在日本有着力保健全部的产品,其中功效最强大的有'Lipovitan D Super',其中包含了2000mg的牛磺酸、300mg精氨酸和'MAXIO',含有3000mg的牛磺酸。精氨酸是日本销售的改良红牛饮料的主要活性成分。 力保健(Lipovitan)以Libogen之名在一些英语国家市场中销售。.
查看 烟酰胺和力保美达
ATC代码 (A11)
Category:药物 A11.
吡咯并喹啉醌
吡咯并喹啉醌(Pyrroloquinoline quinone,简称为PQQ)是由J·G·豪格(J.G. Hauge)发现的在细菌中存在的继烟酰胺和黄素以外的第三种氧化还原辅因子(尽管他们事先假设它是萘醌)。安东尼与札特曼亦在醇脱氢酶中发现了这种未知的氧化还原辅因子并将它命名为“methoxatin”。.
查看 烟酰胺和吡咯并喹啉醌
世界卫生组织基本药物标准清单
世界卫生组织基本药物标准清单(法語: Listes modèles OMS des médicaments essentiels; 英語:WHO Model List of Essential Medicines)是世界卫生组织(WHO)的出版物,內容包含最有效、最安全並能滿足最基本需求的藥物。 此清單分為核心清單與補充清單,核心清單能花費較少的醫療資源解決健康問題;補充清單需要額外的醫療措施,如需要醫生或醫療器材,成本相對高。約有25%的藥物屬於補充清單,而有些藥物同時在核心與補充清單。清單中大部分的藥物屬非专利产品,而有些藥物有專利。 截至2016年,共有155个国家根据世界卫生组织基本药物标准清单制定了本国的基本药物清单(如中华人民共和国国家基本药物目录)。 第一份清单发布于1977年,共包括204种药物。世界卫生组织每两年更新这份清单一次。以下内容基于世界卫生组织在2015年4月发布的的第19版,共包含410藥物。第20版預計將於2017年出版。 2007年,世卫组织针对未满12岁的儿童制定并公布了第一份,并在2013年4月发布了第四版。.
碳-氮键
碳-氮键是碳原子和氮原子之间形成的共价键,它也是有机化学和生物化学中最常见的化学键之一。 氮原子有五个价电子,在通常的胺中的化合价为3,剩下的两个电子形成一对孤对电子。通过那对电子,氮可以与氢形成配位键使自身的配位数达到4,并形成带有一个正电荷的铵盐。许多氮化合物因此具有碱性,但强弱取决于结构:酰胺中的氮原子不具碱性,这是由于其孤对电子离域而与羰基形成共轭效应(类似于羰基的烯醇式),使得N-C键具有部分双键的性质。在吡咯中孤对电子成为6电子芳香共轭体系的一部分因而其氮原子也不具碱性。 与碳-碳键类似,碳氮之间也可以形成稳定的双键,例如亚胺,而腈中还存在三键。键长随着键级的增加而缩短,从胺的147.9pm到C-N.
查看 烟酰胺和碳-氮键
糙皮病
糙皮病又称癞皮病,是一种维生素缺乏性疾病,主要诱因是缺乏维生素B3(烟酸)和蛋白质,特别是含必需氨基酸色氨酸的蛋白质。色氨酸能被转化为烟酸,大约60mg色氨酸能被转化成1mg烟酸,过程中需要维生素B1、B2和B6的参与。因此色氨酸含量丰富但不含烟酸的食物,比如牛奶也能有效预防糙皮病。然而,如果通过食物摄入的色氨酸全部被用于蛋白质合成,则仍有可能引起糙皮病。 糙皮病是一种地区性流行病,主要发生于非洲,墨西哥,印度尼西亚以及中国。在较发达的地区,糙皮病患者一般是贫穷、酗酒的无家可归者或者是拒绝进食的精神病患者。 色氨酸是一种必需氨基酸,在黄豆、肉类、禽类、鱼类以及蛋类中含量丰富。 亮氨酸与糙皮病是否存在一定的关系,目前尚不清楚。.
查看 烟酰胺和糙皮病
紅牛能量飲料
紅牛能量飲料(Red Bull Energy Drink;กระทิงแดง, Krating Daeng)是一款最早起源於泰國,並在奧地利以及全球120多个国家和地区销售的知名機能性飲料品牌。其中歐洲版的紅牛屬於含碳酸軟性飲料的一種,它以強態能量飲料的形象出現,含有多種營養素及咖啡因,因此常被用來當作提神甚至健身飲料來使用。而以泰國為主的部份亚洲國家所銷售的紅牛,則是屬於不含氣的傳統提神飲料,其中,菲律宾及泰国红牛甚至还有生产红牛咖啡饮料。.
查看 烟酰胺和紅牛能量飲料
纈草
缬草(學名:Valeriana officinalis)是一種多年生耐寒開花植物,在北半球每年6月至9月是其花期,會開出芬芳的白色或粉紅色花朵。當花朵被放在花瓶裡時,其散發出來的香味因過於濃烈,會令人難以忍受。 纈草原产於亚洲部分地区和欧洲,现在已被栽培到北美洲。其茎叶被一些鱗翅目物种(蝴蝶及蛾)的幼虫当作食物。 纈草在药理学和本草疗法中是一种草药,其根部作为膳食补充剂使用。纈草经浸软、研磨、脱水后被放入方便的包装中,如胶囊,具有镇静和抗焦虑等作用。而16世纪时人们曾利用纈草制作香料。纈草常用於治療失眠,它可以被認為是安眠藥物的替代療法。它有時也被用作鎮靜劑,如在治療某些焦慮症苯二氮平的替代藥物。 人体必需氨基酸中的纈氨酸就是根据此植物命名的。.
查看 烟酰胺和纈草
维生素
维生素(Vitamin)是一系列有机化合物的统称,曾依音译,称作“维他命”。它们是生物体所需要的微量营养成分,而一般又无法由生物体自己生产,需要通过饮食等手段获得。 维生素不能像醣类、蛋白质及脂肪那样可以產生能量,组成细胞,但是它们对生物体的新陳代谢起調節作用。缺乏维生素会导致严重的健康问题;適量攝取維生素可以保持身體強壯健康;過量攝取維生素卻會導致中毒。.
查看 烟酰胺和维生素
烟酰胺腺嘌呤二核苷酸
烟酰胺腺嘌呤二核苷酸(简称:辅酶Ⅰ,Nicotinamide adenine dinucleotide,NAD+),是一种转递質子(更准确来说是氢离子)的辅酶,它出现在细胞很多代谢反应中。NADH或更准确NADH + H+是它的还原形式,最多携带两个質子(写为NADH + H+),其標準電極電勢為-0.32V。 NAD+是脱氢酶的辅酶,如乙醇脱氢酶(ADH),用于氧化乙醇。它在糖酵解、糖异生、三羧酸循环及呼吸链中发挥着不可替代的作用。中间产物会将脱下的氢递给NAD,使之成为NAD + H+。 而NAD+ H+则会作为氢的载体,在電子傳遞鏈中通过化学渗透偶联的方式,合成ATP。 在吸光方面,NADH在260nm和340nm处各有一吸收峰,而NAD+则只有260nm一处吸收峰,这是区别两者的重要属性。这同时也是很多代谢试验中,测量代谢率的物理依据。NAD在260nm的吸光系数为1.78x104L /(mol·cm),而NADH在340nm的吸光系数为6.2x103 L/(mol·cm)。 在生物體內中,NAD可以由簡單的構建塊與氨基酸色氨酸或天冬氨酸合成。以替代方式,將更複雜的酶組合從食物中攝取,這維生素被稱為烟酸。通過分解NAD結構的反應釋放相似的化合物。這些預製組件然後通過一個回收通道,將其回收成活性形式。一些NAD也轉化為煙酰胺腺嘌呤二核苷酸磷酸(NADP);這種相關輔酶的化學成分與NAD類似,但在新陳代謝中具有不同的作用。在代謝中,NAD+參與氧化還原反應,將電子從一個反應攜帶到另一個反應。因此,輔酶在細胞中以兩種形式存在:NAD+是一種氧化劑,能接受來自其他分子的電子。該反應形成NADH,然後又可以用作為還原劑來給電子。這些電子轉移反應是NAD的主要功能。然而,它也用於其他細胞過程中,最顯著的是添加或除去蛋白質中的化學基團的酶的底物。由於這些功能的重要性,發現NAD代謝的酶是藥物的目標。儘管NAD+在特定氮原子上的正電荷而被寫入上標加號,但在生理pH大部分情況下,實際上是單電荷的陰離子(負電荷為1),而NADH為雙電荷陰離子。.
烟酸
烟酸(niacin、nicotinic acid,也称維他命B3、維他命PP、吡啶-3羧酸),分子式:C6H5NO2,耐热,能升华。首次描述於Hugo Weidel於1873年對尼古丁的研究。它是人体必需的13种维生素之一,是一种水溶性维生素,属于维生素B族。烟酸在人体内转化为烟酰胺,烟酰胺是辅酶Ⅰ和辅酶Ⅱ的组成部分,参与体内脂质代谢,组织呼吸的氧化过程和糖类无氧分解的过程。.
查看 烟酰胺和烟酸
烟酸和烟酰胺代谢
见烟酸、烟酰胺。 Der Nikotinsäure-Bestandteil von NAD+ wird zu 2/3 so wie oben dargestellt aus dem Tryptophan-Stoffwechsel bezogen, daher kann es nur bei einem kombinierten Niacin-Tryptophan-Mangel zu Unterversorgungserscheinungen kommen, z.B. bei sehr einseitiger Ernährung auf der Basis von Mais (Entwicklungsländer).
查看 烟酰胺和烟酸和烟酰胺代谢
菸鹼素
菸鹼素包括菸鹼酸、菸鹼醯胺及其他具有類似之生物活性的衍生物。.
查看 烟酰胺和菸鹼素
邻位定向金属化反应
邻位定向金属化反应(DoM)是基于芳香族亲电取代反应的一种变化反应:亲电试剂通过芳基锂化合物中间体,仅与定向金属化基团或称DMG的邻位发生取代。 DMG与锂通过一个杂原子相互作用,常见的DMG,如:甲氧基,季胺基及酰胺基团。 “反应式1”概括了总反应机理:由于DMG基团上的杂原子属于路易斯碱,而锂属于路易斯酸,因此带有DMG基团的芳香环1与烷基锂试剂,如正丁基锂的特定聚合态((R-Li)n)发生反应并形成中间态2。极强碱性的烷基锂而后将芳环的邻位去质子化并形成芳基锂3,在此其间仍有酸-碱平衡存在。亲电试剂在下一步发生芳香族亲电取代反应,并极其倾向于锂原子的本位被亲电试剂所取代。 普通带有活化基团的亲电取代反应倾向于邻位、对位两个取代位点,而定向邻位金属化反应则提高了反应的区域选择性,使只有邻位取代成为可能。 该反应类型于20世纪40年代被化学家Henry Gilman 与格奥尔格·维蒂希 分别独立发现。.
Γ-氨基丁酸A型受体
GABAA受体(又称作γ-氨基丁酸A型受体)是一种离子型受体,而且是一类配体门控型离子通道。此通道的内源性配体是一种被称为GABA的神经递质。GABA是中枢神经系统里的一种主要的递质,虽然GABA在神经递质的释放过程中产生的是抑制性效应,但GABA本身并非一种抑制性而是一种刺激性递质,因为GABA激活GABA受体的开放。在GABAA受体被激活后,可以选择性的让Cl-通过,引起神经元的超极化。这种超极化引起了神经信号传递抑制,因为降低了动作电位产生的成功率GABAA,在正常条件下产生的抑制性突触后电位的翻转电位是-75 mV,高于GABAB受体的-100 mV。 GABAA受体的活性位点可与GABA以及许多药物诸如蝇蕈醇、、等结合。受体也包含许多异构调节,可间接调节受体活性,可调控异构位点的药物包括草字头下加「卓」字类、、巴比妥类药物、乙醇、、、等。 药物导致GABAA受体对神经元活动的中度抑制可使患者消除焦虑感(抗焦虑作用),而更强的抑制作用则会产生全身麻醉。药物的严重过量鲜有出现,而产生的反应是延长麻醉时间,甚至出现死亡。.
NMNAT1
NMNAT1是烟酰胺单核苷酸腺苷转移酶1,是烟酰胺腺嘌呤二核苷酸生物合成中一种关键的酶,在人类中由NMNAT1基因编码。除了脾脏,NMNAT1在人体其他组织器官中均有表达。小鼠中NMNAT1基因的缺失导致胚胎期死亡。 NMNAT1基因的突变可导致莱伯先天性黑蒙症。一些患者具有特异性的黄斑退化症状。.
查看 烟酰胺和NMNAT1
3-氨基吡啶
3-氨基吡啶是一种有机化合物,化学式为C5H6N2,为单氨基取代吡啶三种同分异构体中的一种。它可用于合成有机配体3-吡啶基烟酰胺。.
查看 烟酰胺和3-氨基吡啶
98-92-0
#重定向 烟酰胺.
查看 烟酰胺和98-92-0
亦称为 维生素PP,菸鹼醯胺。