目录
亨利定律
亨利定律,是由威廉·亨利所發現的一个氣體的定律。這個式子説明在常溫下且密閉的容器中,溶於某溶劑的某氣體之體積摩尔濃度,會正好與此溶液達成平衡的氣體分壓成正比。.
查看 溶解熱和亨利定律
理想溶液
想溶液是溶质与溶剂混合为溶液时,既不放热,也不吸热,溶液体积适等于溶质体积和溶剂体积之和。 实际存在的溶液均不能合于理想溶液的定义,但是溶质分子结构和性质越是与溶剂分子相接近,混合后的溶液行为就越和理想溶液相近。一般来说,稀溶液的行为较浓溶液的行为更加接近理想溶液的行为。 在化學中代表該溶液溶解時的溶解熱(焓的改變量)為零;溶解熱越接近零,則該溶液的行為就越為「理想」。這個概念主要是奠基於化學熱力學及其應用。另一種說法是溶質與溶質之間、溶劑與溶質之間、溶劑與溶劑之間的作用力都相等,則為理想溶液。.
查看 溶解熱和理想溶液
異麥芽酮糖醇
麥芽酮糖醇(Isomalt)又稱巴糖醇,屬於二糖醇,因其類似糖的物理性質,可作為一種甜味劑添加在食品中。1960年代被發現,從80年代至今廣泛的在世界超過70個國家使用。.
查看 溶解熱和異麥芽酮糖醇
麥凱布-蒂勒方法
麥凱布-蒂勒方法(McCabe–Thiele method)被視為分析雙成份蒸餾最簡易且最具啟發性的方法。本方法利用於每個理論塔板(氣液平衡板)上的組成皆可由其中一成分之摩尔分数決定,且建立在等摩尔流率的假設之上。欲達成等摩尔流率之假設,則需滿足下列條件:.
查看 溶解熱和麥凱布-蒂勒方法
锫
锫(--;Berkelium)是一種放射性化學元素,符號為Bk,原子序為97,屬於錒系元素和超鈾元素。位於美國加州伯克利的勞倫斯伯克利國家實驗室在1949年12月發現錇元素,因此錇以伯克利(Berkeley)命名。錇是繼鎿、鈈、鋦和鎇後第五個被發現的超鈾元素。 最常見的錇同位素是錇-249,主要經高通量核反應爐產生。目前製造該同位素的有美國田納西州的橡樹嶺國家實驗室和俄羅斯季米特洛夫格勒的核反應器研究所。第二重要的同位素錇-247要用高能量α粒子向鋦-244進行撞擊而產生。 從1967年至今,在美國生產的錇元素僅僅超過1克。除在科學研究中用來合成更重的超鈾元素和超錒系元素外,錇沒有實際的用途。2009年,在進行250天的輻射後,橡樹嶺國家實驗室製成了22毫克的錇-249,並在其後的90天內對該樣本進行了純化處理。純化後的錇元素同年被送到俄羅斯聯合核研究所,以鈣-48離子向其撞擊150天後,合成了Ts(117號元素)。 錇是一種柔軟的銀白色放射性金屬。錇-249同位素輻射的是低能電子,所以相對安全。不過,其半衰期為330天,衰變後會產生鉲-249,而該同位素會釋放高能量的α粒子,十分危險。這種衰變的現象在研究錇元素及其化合物屬性時尤其重要,因為不斷生成的鉲不但會污染化學樣本,還會釋放輻射,破壞樣本的結構。.
查看 溶解熱和锫
镅
鋂(Americium,--)是一種放射性超鈾元素,符號為Am,原子序為95。鋂屬於錒系元素,在元素週期表中位於鑭系元素銪之下。鋂是以發現所在的美洲大陸(America)命名的。 位於伯克利加州大學由格倫·西奧多·西博格領導的團隊在1944年首次合成了鋂元素。雖然鋂是第三個超鈾元素,但它卻是繼鋦以後第四個被發現的超鈾元素。這項發現最初被列爲機密,直到1945年才公諸於世。大部分的鋂都是在核反應爐中以中子撞擊鈾或鈈而形成的:一噸乏核燃料含有大約100克鋂。鋂元素主要用在商業電離煙霧探測器和儀表中,或用作中子源。有人提出用242mAm同位素製造核電池和太空船的核推進燃料,但因該同核異構體的稀少和昂貴而尚待實現。 鋂是一種質軟的放射性金屬,外表呈銀白色。鋂的同位素中最常見的有241Am和243Am。在化合物中,特別是溶液中,鋂的氧化態通常是+3。鋂還有+2到+7之間的其他氧化態,可通過測量吸收光譜分辨出來。由於輻射變晶效應,鋂固體和鋂化合物的晶體結構本身含有缺陷。這些缺陷隨時間而增加,因此其物質屬性會進行變化。.
查看 溶解熱和镅
水合焓
水合焓(Hydration enthalpy),又称水合能(Hydration energy)、水合热,指一摩尔气态离子与水结合的热效应。水合焓是溶剂化热在溶剂为水时的特殊情况,它对自然过程和人工过程热力学模型的建立都有着重大作用。.
查看 溶解熱和水合焓
溶劑化
溶劑化,有時也稱為溶解,為一吸引帶有分子離子溶劑的溶液聚集的過程。當離子在溶劑中溶解,且會被溶劑分子所包圍。.
查看 溶解熱和溶劑化