徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

波长

指数 波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

397 关系: AN/SPY-1 3D相位陣列雷達加色法原子谱线偏振偏振計半导体激光十五度卧倒并掩护可见光史密斯图史匹哲太空望遠鏡吸光度吸收光谱学吸收截面同溫層紅外線天文台向日葵8號向日葵系列衛星塑膠添加劑塔利-费舍尔关系增色效应壁宿二声音多路复用多普勒效应大型毫米波望遠鏡大号大尺度結構大氣光學天空漫射天體光譜學天鵝座X-1天苑四天文學太陽單色光觀測鏡太陽望遠鏡契忍可夫輻射威廉·劳伦斯·布拉格威廉·维恩实验式宇宙学视界宇宙微波背景宇宙暴脹射电望远镜巨米波電波望遠鏡巴耳末公式不确定性原理中子温度中國五聲音階中國廣播公司中分辨率成像光谱仪...中性灰度滤镜布拉格定律三原色光模式平面波幽遊白書角色列表乔治·沃尔德乔治·斯托克斯乙烷亨利·莫塞莱人馬座A*二級結構二齒豬籠草二氧化碳激光器传输线模型伽馬射線天文學弗里斯传输方程引力波天文学引力时间延迟效应开口谐振环低輻射玻璃位错彩色视觉彩雲彩虹彗形像差微波微波辐射计德布罗意方程组土卫六地球長波輻射北冕座R國際單位制基本單位的重新定義分光光度法分光鏡分色稜鏡分散式布拉格反射器單色光周期函数哈伯序列哈勃超深空哈罗德·巴洛准分子激光八木天线共轭体系共振增強多光子離子化共振腔先驅者鍍金鋁板光声效应光子光学构件的制作和检测光學介質光學頻譜光學望遠鏡光導纖維光度函数光度测定 (天文学)光分解離子成像光的色聚光电二极管光电管光衰减器光谱仪光路计算光鑷光致變色鏡片光通量光速可變理論光束發散度光深度光敏电阻克爾效应克林顿·戴维孙前卫通用光盘国际单位制CDCIE1931色彩空间皮埃尔·让森状态方程 (宇宙学)短波短截线玫耳玻尔模型玻璃火烧云火星探路者火星探测漫游者碰撞碘化銫磷光科学科学大纲稜鏡稀有气体空間頻率穿透深度等離子體參數等效寬度粒子輻射紫外-可见分光光度法紫外線B光照治療紫外线紫外线指数細菌螢光素紅外線導引紅外線空間干涉儀紅寶石雷射經驗關係線性標準轉換線性正則變換红外线红色约翰·巴耳末约翰内斯·里德伯纵模纵波经典电磁学维恩位移定律结构色猎户座大星云瑞利-金斯定律瑞利距离瑞利散射生物组织光学窗口用於數學、科學和工程的希臘字母电子电光效应电磁辐射电离氢区無限深方形阱番茄紅素物理学史物理學重要著作列表物理光学物理符號表物質波物镜口径特高頻直射太陽輻射計直鏈澱粉相对电容率相對論性多普勒效應相干长度相干性相位因子相速度發光二極管發光效能發色團銀河系天文學韦尔代常数莫塞萊定律莫耳吸光度聚甲基丙烯酸甲酯聚氯乙烯人造革荧光光谱華沙電台廣播塔菲涅耳衍射菲涅耳數萊曼α森林非游離輻射面紗星雲青岛市广播电视台青色靛色蝙蝠算法頻率衍射分光鏡衍射光栅顯微鏡顯微鏡座AU颜色飞秒激光飛馬座IK西奥多·莱曼駐波观测天文学视觉视觉系统高斯光束譜指數鲁米诺貝林-布洛卡稜鏡貓眼星雲负折射率超材料超長基線陣列路易·德布罗意黑体 (物理学)黑体辐射龍魚星雲辐射度辐射计迴旋管迈克耳孙干涉仪过氧化氢范霍夫奇点都卜勒增寬背景 (天文)船尾座V445阻塞高氣壓阿塔卡馬大型毫米波/亞毫米波陣列阿尔伯特·爱因斯坦阿米西稜鏡阿貝稜鏡阿贝分辨率赫兹藍色藍月蒲芬德系铁木辛柯梁理论锗酸铋醫療級光觸媒膽固醇液晶重力紅移重力波 (相對論)重力波 (流體力學)量子阱針孔相機臭氧层空洞里德伯公式金属氢金屬銨金星長蛇座TW長波色域色差色度 (色彩学)色球色散 (光學)色散关系鋇星雪青色電磁波譜電磁波方程式電視天線雙縫實驗透射係數透射电子显微镜透明週期耀斑Foveon X3感光元件GRB 970508H-αHD DVDHSL和HSV色彩空间ΛKu波段LED燈MIMOPSR B1937+21SEA-ME-WE 4Sellmeier等式SOUL EATERWave lengthWWVBX射线X射线光电子能谱学X射线晶体学X光散射技术折射率折射望远镜柯西等式染料极紫外辐射恩斯特·鲁斯卡恒星恆星形成条形码格利澤876格里·诺伊格鲍尔極低頻極高頻橢圓偏振技術次声波每日一天文圖比尔-朗伯定律氫原子光譜氮化鋁水窗水母素气凝胶波分复用波函数波動角度波粒二象性波段波數泰坦尼克号法布里-珀罗干涉仪法拉第效应消色差透鏡消色差望遠鏡温度游離輻射減色法漏失 (天文學)潮汐能激光夜视照明器激光笔木卫三木卫一木卫四木星環振幅月球日食望远镜惠更斯-菲涅耳原理截面 (物理)戴維森-革末實驗星云流明海啸无线电无线电波日射强度计摄影散射数值孔径数量级 (长度)数量级 (时间)數碼寶貝03馴獸師之王普朗克-愛因斯坦關係式普朗克黑体辐射定律晶体学時頻分析130纳米制程1868年8月18日日食2005年格什姆地震21公分線22度暈2903,5-二硝基水杨酸308308nm准分子激光3203C 2739K34便攜式防空飛彈 扩展索引 (347 更多) »

AN/SPY-1 3D相位陣列雷達

AN/SPY-1,屬於被動式相位陣列雷達,是為神盾艦載作戰系統發展而來的,可提供神盾艦艇所需要的強大偵蒐與射控能力,在神盾艦上表現出優越的防空性能,目前裝備於提康德羅加級飛彈巡洋艦、亞里·勃克級驅逐艦、南森級巡防艦、金剛型護衛艦、愛宕級護衛艦、霍巴特级驱逐舰、世宗大王級驅逐艦和F100級護衛艦。.

新!!: 波长和AN/SPY-1 3D相位陣列雷達 · 查看更多 »

加色法

加色法是描述那些由不同顏色的光混合形成新顏色的情形。這是對比光線從各部分的可見光譜創建顏色的減色;電腦顯示器和電視是加色法最常見的形式,而在油漆、顏料和彩色濾光片會用減色。用加色產生顏色時,通常使用紅色,綠色和藍色光來產生其他顏色。把其中一個加色原色與另一個混合會出現加色間色​​:青色、洋紅色或黃色。彩色像素在顯示器屏幕上不會重疊,但足夠的距離時,光線從像素擴散到視網膜上的重疊。加光的另一個常見用途是用於舞台燈光,如戲劇,音樂會,馬戲表演,夜總會等。.

新!!: 波长和加色法 · 查看更多 »

原子谱线

物理学中,原子谱线是指原子内部电子跃迁形成的谱线,可分为两类:.

新!!: 波长和原子谱线 · 查看更多 »

偏振

偏振(polarization)指的是横波能夠朝著不同方向振盪的性質。例如電磁波、引力波都會展示出偏振現象。纵波则不會展示出偏振現象,例如傳播於氣體或液體的聲波,其只會朝著傳播方向振盪。如右圖所示,緊拉的細線可以展示出線偏振現象與圓偏振現象。 電磁波的電場與磁場彼此相互垂直。按照常規,電磁波的偏振方向指的是電場的偏振方向。在自由空間裏,電磁波是以橫波方式傳播,即電場與磁場又都垂直於電磁波的傳播方向。理論而言,只要垂直於傳播方向的方向,振盪的電場可以呈任意方向。假若電場的振盪只朝著單獨一個方向,則稱此為「線偏振」或「平面偏振」;假若電場的振盪方向是以電磁波的波頻率進行旋轉動作,並且電場向量的矢端隨著時間流意勾繪出圓型,則稱此為「圓偏振」;假若勾繪出橢圓型,則稱此為「橢圓偏振」;對於這兩個案例,又可按照在任意位置朝著源頭望去,電場隨時間流易而旋轉的順時針方向、逆時針方向,將圓偏振細分為「右旋圓偏振」、「左旋圓偏振」,將橢圓偏振細分為「右旋橢圓偏振」、「左旋橢圓偏振」;這性質稱為手徵性。 光波是一種電磁波。很多常見的光學物質都具有各向同性,例如玻璃。這些物質會維持波的偏振態不變,不會因偏振態的不同而展現出不同的物理行為。可是,有些重要的雙折射物質或光學活性物質具有各向異性。因此,偏振方向的不同,波的傳播狀況也不同,或者,波的偏振方向會被改變。起偏器是一種光學濾波器,只能讓朝著某特定方向偏振的光波通過,因此,可以將非偏振光變為偏振光。 在涉及到橫波傳播的科學領域,例如光學、地震學、無線電學、微波學等等,偏振是很重要的參數。激光、光纖通信、無線通信、雷達等等應用科技,都需要完善處理偏振問題。 極化的英文原文也是「polarization」,在英文文獻裏,偏振與極化兩個術語通用,都是使用同一個詞彙來表達,只有在中文文獻裏,才有不同的用法。一般來說,偏振指的是任何波動朝著某特定方向振盪的性質,而極化指的是各個帶電粒子因正負電荷在空間裡分離而產生的現象。.

新!!: 波长和偏振 · 查看更多 »

偏振計

偏振計是實驗室用來測量平面偏振光通過一個樣品材料時光學旋轉角度的設備 一個典型的偏振計包含一個光源、偏振鏡、樣品夾具和某種形式的觀測者和裝置。許多材料的偏振光偏振面轉動取決於波長和溫度,所以偏振計通常有方法控制這些。.

新!!: 波长和偏振計 · 查看更多 »

半导体激光

半导体激光(Semiconductor laser)在1962年被成功激发,在1970年实现室温下连续发射。后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管(Laser diode)等,广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是目前生产量最大的激光器。 在基本构造上,它属于半导体的P-N接面,但激光二极管是以金属包层从两边夹住发光层(活性层),是“双异质接合构造”。而且在激光二极管中,将界面作为发射镜(共振腔)使用。在使用材料方面,有镓(Ga)、砷(As)、铟(In)、磷(P)等。此外在多重量子井型中,也使用Ga·Al·As等。 由于具有条状结构,即使是微小电流也会增加活性区域的居量反转密度,优点是激发容易呈现单一形式,而且,其寿命可达10~100万小时。 激光二极体的优点是效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,P-N型也达到数%~25%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外到可见光范围,而光脉冲输出达50W(带宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易使用的激光的例子。.

新!!: 波长和半导体激光 · 查看更多 »

十五度

在音樂中,一個十五度或雙八度(簡稱15ma)是一個音符與另一個波長四分之一或頻率四倍的音符之間的音程。第四個泛音就是兩個八度。它之所以被稱為十五度是因為在音階中,一個音符和十五度之上的音符中間有十五個音符(就是:A->B->C->D->E->F->G->A->B->C->D->E->F->G->A)。兩個八度不是十六度,而是十五度。兩個八度比十五度常用。 例如,一個音符的頻率是400Hz,那從那音符開始計算的十五度之上就是1600Hz(15ma ),而且十五度之下就是100Hz(15mb )。那十五度的比例就是4:1。 由於十五度是由八度組成的,所以人的耳朵有把兩個音聽為同一個音的傾向。和八度相同,在西方的音樂記譜法中,兩個十五度相隔的音的名字相同—A的十五度之上也是A。但是由於兩音的頻率相差太大,所以十五度被聽為同一個音的機會率比八度被聽為同一個音的機會率少。平行十五度的出現次數也比平行八度的出現次數少。 八度的記號是8va,而十五度的記號是15ma()。它的意思是「把寫的音符高十五度彈」。它也能表示低十五度,但這通常用15mb表示。 有時16va和16vb會被錯誤地使用。.

新!!: 波长和十五度 · 查看更多 »

卧倒并掩护

《卧倒并掩护》(英文:Duck and Cover)是一部1951年由美国联邦政府民防管理局制作,用以教导民众应对原子弹攻击的民防社会指导影片,片长约9分钟。这一影片制作于苏联开始核试验后。影片剧本由雷蒙德·J·莫尔撰写并由安东尼·雷佐导演。这一影片告诉公众,核战争随时可能在毫无告知的情况下发生,每个美国公民应牢记这一点并随时做好准备。.

新!!: 波长和卧倒并掩护 · 查看更多 »

可见光

可見光(Visible light)是電磁波譜中人眼可以看見(感受得到)的部分。這個範圍中電磁輻射被稱為可見光,或簡單地稱為光。人眼可以感受到的波長範圍一般是落在390到700nm。對應於這些波長的頻率範圍在430–790 THz。但有一些人能够感知到波长大约在380到780nm之间的电磁波。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。.

新!!: 波长和可见光 · 查看更多 »

史密斯图

史密斯圖(Smith chart)是一款用於電機與電子工程學的圖表,主要用於傳輸線的阻抗匹配上。一條傳輸線(transmission line)的阻抗(impedance)會隨其物理長度而改變,要設計一套阻抗匹配(Impedance matching)的電路,需要通過不少繁複的計算程序,史密斯圖的特點便是省去一些計算程序。 該圖表是由菲利普·史密斯(Phillip Smith)於1939年發明的,當時他在美國無線電公司(RCA)工作,曾說過,「在我能夠使用計算尺的時候,我對以圖表方式來表達數學上的關聯很有興趣」。但的水橋東作在1937年所發表的論文中就已提出這種圖表,比菲利普·史密斯早2年。因此在日本有主張此圖應改名為「水橋圖」或「水橋-史密斯圖」。 史密斯圖的基本在於以下的算式 當中的Γ代表其線路的反射係數(reflection coefficient),即S參數(S-parameter)裡的S11,z_L是歸一負載(normalized impedance)值,即Z_L/Z_0。當中, 圖表中的圓形線代表電阻抗力的實數值,即電阻值,中間的橫線與向上和向下散出的線則代表電阻抗力的虛數值,即由電容或電感在高頻下所產生的阻力,當中向上的是正數,向下的是負數。圖表最中間的點(1+j0)代表一個已匹配(matched)的電阻數值(Z_L),同時其反射係數的值會是零。圖表的邊緣代表其反射係數的長度是1,即100%反射。在圖邊的數字代表反射係數的角度(0-180度)和波長(由零至半個波長)。 有一些圖表是以導納值(admittance)來表示,把上述的阻抗值版本旋轉180度即可。 自從有了計算機後,此種圖表的使用率隨之而下,但仍常用來表示特定的資料。對於就讀電磁學、微波工程及射頻電子學的學生來說,在解決課本問題仍然很實用,因此史密斯圖至今仍是重要的教學用具。 在學術論文裡,量度儀器的結果也常會以史密斯圖來表示。.

新!!: 波长和史密斯图 · 查看更多 »

史匹哲太空望遠鏡

斯皮策空间望远镜(Spitzer Space Telescope,缩写为SST),是美國國家航空暨太空總署2003年发射的一颗红外天文卫星,是大型轨道天文台计划的最后一台空间望远镜。.

新!!: 波长和史匹哲太空望遠鏡 · 查看更多 »

吸光度

當大部分光經過一個樣本時,部分光會被吸收。在光譜學,透光率\mathcal是透射光和入射光的光強比: 其中,I_0是入射光光強,I_1是透射光光強。 吸光度A_\lambda的定義為: 對於不同波長(λ)的光,樣本的吸光度未必一樣。 對於較稀的溶液,吸光度和濃度成正比,兩者關係可用比爾-朗伯定律說明: 其中,l \,是光在樣本中經過的距離,c \,是濃度,\alpha \,是吸收係數,是材質的性質。 實驗中,吸光度或透光率可用色度計求得。 Category:光譜學 Category:光滤波器.

新!!: 波长和吸光度 · 查看更多 »

吸收光谱学

吸收光谱学是指一门光谱学技术,它通过测量电磁辐射的吸收,形成频率或波长对与试样交互的函数。试样从辐射域吸收能量,如光子。吸收强度的变化与频率构成函数关系,这种变化就是吸收光谱。吸收光谱学也应用于整个电磁波谱。 吸收光谱学被用作分析化学的工具,它可以确定试样中是否存在某种特殊物质,以及在许多情况下量化该物质存在的数量。红外和紫外-可见光光谱学是分析应用中特别常见的。吸收光谱学也被用于分子和原子物理学、天文光谱学和遥感的研究。 测量吸收光谱的实验方法很多。最常见的方法是将产生的无线电波导向试样,并探测透射电波的强度。透射的能量可以用来计算吸收。辐射源、试样布置和探测技术的选择,很大程度上依赖于频率范围和实验目的。.

新!!: 波长和吸收光谱学 · 查看更多 »

吸收截面

吸收截面指某種物質對不同波長的光(或能量,光的波長愈短表示光的能量越大。)的吸收率。更一般地,術語"截面"被用於物理學量化某一特定的粒子与粒子相互作用的概率,例如,散射,電磁波吸收等(注意,在這種情況下,光被描述為由粒子,即光子组成)。 吸收截面的符號為σ,公式為: \frac.

新!!: 波长和吸收截面 · 查看更多 »

同溫層紅外線天文台

同溫層紅外線天文台 (SOFIA, Stratospheric Observatory for Infrared Astronomy)是NASA、德國航空太空中心(DLR, Deutsches Zentrum für Luft- und Raumfahrt e.V.)和大學太空研究協會(URSA)共同合作,在1996年由NASA授權優先發展的計畫。.

新!!: 波长和同溫層紅外線天文台 · 查看更多 »

向日葵8號

向日葵8號是日本氣象衛星之一,為向日葵系列衛星其中之一款人造衛星,由日本氣象廳開發,三菱電機製造。於2014年10月7日由三菱重工业與宇宙航空研究開發機構將其送上軌道,屬於地球同步衛星。向日葵8號於2015年7月7日測試完成正式投入運作,目的是取代於2006年投入服務的MTSAT-2(向日葵7號)。.

新!!: 波长和向日葵8號 · 查看更多 »

向日葵系列衛星

向日葵(ひまわり、Himawari)是日本氣象廳用於氣象觀察的地球同步衛星之統稱,此名稱為該系列人造衛星的暱稱。氣象衛星1號至5號的正式名稱為GMS (Geostationary Meteorological Satellite),多功能運輸衛星6號與7號的正式名稱為MTSAT (Multi-functional Transport Satellite)。「向日葵」系列衛星是世界氣象組織 (WMO) 與國際科學理事會 (ICSU) 共同合作的全球大氣研究計劃 (GARP) 其中的計劃之一,其提供的氣象情報包括東亞至太平洋等週邊。.

新!!: 波长和向日葵系列衛星 · 查看更多 »

塑膠添加劑

了使生產的塑膠符合要求的一些特性、符合經濟的需求,一定都會加入或多或少『添加劑』。塑膠添加劑有很多種,有潤滑劑、氧化防止劑、熱穩定劑、強化劑等等。部份原料必須加入添加劑才能做的出塑膠成品。 早在聚合物工業(The Polymer Industry)發展的早期,人們就已經知道把一些添加劑加到聚合物結構(Polymer Matrix)中,以得到某些產品,最初把這種過程叫掺和(Compounding。).

新!!: 波长和塑膠添加劑 · 查看更多 »

塔利-费舍尔关系

塔利-費舍爾關係(Tully-Fisher relation)是天文學家和在1977年發表的,是天文學中螺旋星系的速度寬度 (自轉曲線的振幅) 和本質光度 (正比於恆星質量) 之間的關聯性經驗公式。發光度是星系在單位時間發出的光能量;當星系的距離已知時,它可以從星系的表面光度測量得到。速度寬度的測量是透過都卜勒效應的譜線寬度或位移。 光度和速度寬度之間的定量關係是測量光度的波長函數,但是粗略的說,光度與速度的四次方成正比。 這種關係直接聯繫到觀測到的速度寬度 (相對而言較容易) 取代了難以觀測的本質光度。因為光度 (容易觀察到) 與視亮度的關係和距離 (平方) 相關,所以塔利-費舍爾關係可以用來測量距離,或是,在天文學的說法是可以當成"輔助的 標準燭光"。 在星系內部的恆星動力來自於重力。由於這個理由,星系自轉曲線的幅度與星系的質量相關聯;塔利-費舍爾關係是直接觀測到的星系的恆星質量 (這設定了光度) 和總重力質量 (設定了自轉曲線的幅度)的密切關係。 這關係是使用主要的標準燭光測量和校準。 用於測量螺旋星系的距離:.

新!!: 波长和塔利-费舍尔关系 · 查看更多 »

增色效应

增色效应(Hyperchromic effect)Ben,Jeremy and Tymoczko, John(2006) Biochemistry 6 edition,W.H.Freeman and Company.

新!!: 波长和增色效应 · 查看更多 »

壁宿二

壁宿二(Alpha And / α And / α Andromedae)在英文的固有名稱是 Alpheratz和Sirrah(與Sirah的拼法相通),是在仙女座中最亮的一顆恆星,位置緊鄰在飛馬座的東北部,是構成飛馬四邊形的恆星之一。做為一顆與飛馬座相連接的恆星,它也曾經被稱為飛馬座δ,但這個名稱現在已經不再使用了。另一顆有雙重名稱的恆星是金牛座β ,The Internet Encyclopedia of Science, David Darling.

新!!: 波长和壁宿二 · 查看更多 »

声音

聲音是振動產生的聲波,通過介質(空氣或固体、液体)傳播并能被人或動物聽覺器官所感知的波動現象。 聲音的頻率一般會以赫兹表示,記為Hz,指每秒鍾周期性震動的次數。而分貝是用来表示聲音强度的单位,記為dB。.

新!!: 波长和声音 · 查看更多 »

多路复用

(Multiplexing,又稱「多工」)是一个通信和计算机网络领域的专业术语,在没有歧义的情况下,“多路复用”也可被称为“复用”。多路复用通常表示在一个信道上传输多路信号或数据流的过程和技术。因为多路复用能够将多个低速信道整合到一个高速信道进行传输,从而有效地利用了高速信道。通过使用多路复用,通信运营商可以避免维护多条线路,从而有效地节约运营成本。.

新!!: 波长和多路复用 · 查看更多 »

多普勒效应

多普勒效应是波源和观察者有相对运动时,观察者接受到波的频率与波源发出的频率並不相同的现象。远方急驶过来的火车鸣笛声变得尖细(即频率变高,波长变短),而离我们而去的火车鸣笛声变得低沉(即频率变低,波长变长),就是多普勒效应的现象,同樣現象也發生在私家車鳴響與火車的敲鐘聲。 这一现象最初是由奥地利物理学家多普勒1842年发现的。荷兰气象学家拜斯·巴洛特在1845年让一队喇叭手站在一辆从荷兰乌德勒支附近疾驶而过的敞篷火车上吹奏,他在站台上测到了音调的改变。这是科学史上最有趣的实验之一。 多普勒效应从19世纪下半叶起就被天文学家用来测量恒星的视向速度。现已被广泛用来佐證观测天体和人造卫星的运动。.

新!!: 波长和多普勒效应 · 查看更多 »

大型毫米波望遠鏡

大型毫米波望遠鏡(Gran Telescopio Milimétrico,縮寫:GTM;Large Millimeter Telescope,縮寫:LMT)是一座在墨西哥的電波望遠鏡,於2011年6月17日啟用。該望遠鏡是在毫米波段下口徑最大且最靈敏的單一天線電波望遠鏡。該望遠鏡的觀測範圍是波長大約在0.85到4 mm 的無線電波。大型毫米波望遠鏡的天線使用了主動反射面(Active surface)技術,口徑50公尺,電波收集面積為2000 m²。.

新!!: 波长和大型毫米波望遠鏡 · 查看更多 »

大号

低--音號(Tuba)(亦称“低音大喇叭”或“土巴号”,在大陸地區多稱之為“大--号”),是一种低音铜管乐器。在管弦乐队、管乐队中经常使用,是音域最低,体积最大的铜管乐器。.

新!!: 波长和大号 · 查看更多 »

大尺度結構

大尺度結構()在物理宇宙學中指可觀測宇宙在大範圍內(典型的尺度是十億光年)質量和光的分佈特徵。巡天和各種不同電磁波輻射波長的調查和描繪,特別是21公分輻射,獲得了宇宙結構的許多內容和特性。結構的組織看起來是跟隨著等級制度的模型,以超星系團和纖維狀結構的尺度為最上層,再大的似乎就沒有連續的結構了,這所指的就是浩瀚界限(end of greatness)現象。.

新!!: 波长和大尺度結構 · 查看更多 »

大氣光學

大氣光學是地球大氣層獨特的光學性質所造成大範圍且壯觀的光學現象。美麗的藍色天空是瑞利散射的直接結果,它重新定向了高頻(藍色光)的陽光,使它們重新回到觀測者的視野。由於藍色光比紅色光容易散射,當日出和日落時的陽光必須穿透濃厚的大氣層時,太陽看起來就呈現偏紅的色調。在天空中額外的顆粒會以不同的角度色散不同的顏色的光,在黎明和黃昏創造出多采多姿的發光天空。冰晶和其它顆粒將在大氣層中的光線散射,造成暈、晚霞餘暉、華 (光象)、雲隙光和幻日。這些種現象的變化是由於粒子大小和不同的幾何形狀。 海市蜃樓是光線受到大氣層的溫度變化而產生偏折彎曲的光學現象,會使遠方的影像流離失所或是嚴重的扭曲。與此相關的其它光學現象包括新地島效應,會使視太陽比預測的提早升起或是延後落下,並且造成形狀的扭曲。一種稱為複雜蜃景的壯觀形式是由溫度反演造成的,會將地平線上,甚至地平線下的物件,像是島嶼、崖、船舶或冰山拉長且升高,就像"童話城堡"。 彩虹是光線在雨滴內部反射和色散光的折色組合造成的結果。因為彩虹總是出現在天空中背向太陽的那一端,而且因為兩者相距遙遠的距離,太陽越接近地平面,彩虹越是突出和壯觀Chapter 34。.

新!!: 波长和大氣光學 · 查看更多 »

天空漫射

天空漫射(Diffuse sky radiation)是陽光直接被地球大氣層中的分子或懸浮粒子散射而改變了行進方向之後,經過才抵達地球表面的太陽輻射,這些以光子為主的輻射很可能經過不只一次的散射、反射,最終以疊加的型態進入觀測者的眼中,是天空會有顏色變化的主因,其變化就是隨著「輻射入射角」(時間)及「最短路徑上的阻礙」(天候狀況、空氣污染程度)造成顏色變化。它也被稱為天光(skylight)、 漫射天光(diffuse skylight)、或天空輻射(sky radiation)。來自太陽的陽光大約有總量的三分之二(根據在大氣層中的灰塵和煙霧含量,在太陽高懸時大約為有25%的入射輻射直接被散射)會在大氣層中被散射,最終成為彌散的天空輻射抵達地球表面。 在大氣層中的重要過程是瑞利散射和米氏散射的彈性過程,光線的波長不變,沒有被吸收,但從原有的路徑偏折。.

新!!: 波长和天空漫射 · 查看更多 »

天體光譜學

天體光譜學是天文學使用的光譜學技術。研究天體的電磁輻射光譜,包括可見光,是來自恆星和其它天體的輻射。光譜學可以用來推導出遠距離恆星和星系的許多性質,像是它們的化學組成,但也可以從都卜勒頻移測量它們的運動。.

新!!: 波长和天體光譜學 · 查看更多 »

天鵝座X-1

天鵝座X-1(簡稱Cyg X-1)是一個银河系内位于天鵝座的双星系统,是著名的X射線源。它在1964年的一次火箭彈道飛行時被發現,是從地球觀測最強的X射綫源之一,其頂峰X射綫通量為2.3 Wm−2Hz−1。天鵝座X-1是最先被廣泛承認為黑洞的候選星體,也是同類星體中最受研究關注的。現在估計其質量為太陽質量的8.7倍,而其密度之高使黑洞成爲唯一一種解釋。如果如此,它的事件視界半徑約為26公里。 天鵝座X-1屬於一個高質量X射線雙星系統,其距離太陽大約6,070光年,另一成員為一顆超巨星變星,編號為HDE 226868。兩者相互圍繞公轉,距離為0.2天文單位,即地球和太陽間距離的20%。該星的星風為X射綫源的吸積盤提供物質。盤的内部溫度達到幾百萬K,因此輻射出X射綫。兩條垂直于吸積盤的相對論性噴流將被吸進的物質噴射出星際空間。 這個系統可能屬於一個名為天鵝座OB3的星協,意味著天鵝座X-1的年齡超過500萬年,並源于一顆質量大於40個太陽質量的原星。這顆原星的大部分質量都散失了,很可能是以星風的形式。如果該星以超新星的形式爆炸,則其威力足以將剩餘物質噴射出這個系統。因此它可能直接坍縮成一個黑洞。 物理學家史蒂芬·霍金和基普·索恩曾拿天鵝座X-1作了一場科學的賭局。當中霍金賭天鵝座X-1不是一顆黑洞。1990年霍金讓步,因爲觀測證據顯示這個系統中存在著引力奇點。.

新!!: 波长和天鵝座X-1 · 查看更多 »

天苑四

天苑四(ε Eri / ε Eridani) 是一顆主序帶上分類為K2的恆星。它是波江座內最靠近我們,也是在近距離恆星列表上能以裸眼看見的全天第三靠近的恆星。估計他的年齡少於十億年,相對來說還是顆年輕的恆星,因此這顆恆星的磁場活動比太陽強,而恆星風的強度估計是太陽的30倍。自轉也比較快速,雖然有緯度上的變化,估計週期約為11.1 天。天苑四不僅質量和體積都比太陽小,它的金屬量(原子量大於氦的元素)也比較低。 虽然一些径向速度观测数据暗示可能存在一颗大行星,然而由于该恒星活跃的磁场导致数据中存在高水平背景噪音,因此该结果仍未被完全接受。如果真有這樣的一顆行星,它的軌道週期應該是2502天,與恆星的平均距離為3.4天文單位(5億5百萬公里)。迄2008年,天苑四是距離太陽最近的已知擁有行星的恆星。這顆恆星也有兩條小行星帶,一條在大約3天文單位的距離上,另一條在20天文單位,並且可能是受到尚未能確認的第二顆行星攝動的物質。它看起來也有柯伊伯带,有比太陽附近更多物質密集的在軌道上環繞著,證實了對這顆恆星尚年輕的懷疑。 由於它是相對接近且與太陽相似的恆星,所以天苑四經常出現在科幻作品中。與它最接近的鄰居是距離5.22光年遠的魯坦726-8(鯨魚座UV和鯨魚座BL)。.

新!!: 波长和天苑四 · 查看更多 »

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

新!!: 波长和天文學 · 查看更多 »

太陽單色光觀測鏡

太陽單色光觀測鏡是喬治·爾於1924年設計用於觀看所選擇波長太陽的一種太陽望遠鏡。這個英文字,spectrohelioscope,是由三個拉丁字組成的:Spectro,是光學光譜;Helio,是陽光;而Scope就是望遠鏡。 基本上,太陽單色光觀測鏡是使用分光鏡掃描太陽的表面的一個很複雜的機器。來自物鏡的太陽影像距焦在狹窄的狹縫,因而只顯露出細小的太陽表面。然後,這束陽光經過三稜鏡或繞射光柵分解成光譜。這道光譜再聚焦在另一個狹縫,重點是只有所需察看的波長(很窄的波長)可以通過。最後這些來自太陽表面的光線被聚焦在目鏡上觀察。然而,觀察到的只有太陽堡面商一條狹長的區域,所以這兩條狹縫需要同步移動,掃描過整個太陽表面才能得到完整的太陽影像。獨立擺動的反射鏡也可以取代移動的狹縫掃描整個太陽表面:第一片反射鏡選擇太陽的切片,第二變選擇波長。 太陽單色光照相儀是相似的裝置,但是在特定的波長下拍攝太陽,目前專業的天文台還在使用。.

新!!: 波长和太陽單色光觀測鏡 · 查看更多 »

太陽望遠鏡

太陽望遠鏡是專門用於太陽觀測,是用途特殊的光學望遠鏡。.

新!!: 波长和太陽望遠鏡 · 查看更多 »

契忍可夫輻射

契伦科夫辐射(Cherenkov radiation)是介質中運動的电荷速度超過該介質中光速時發出的一種以短波長為主的電磁輻射,其特徵是藍色輝光。這種輻射是1934年由苏联物理學家帕维尔·阿列克谢耶维奇·切连科夫發現的,因此以他的名字命名。1937年另兩名苏联物理學家伊利亞·弗蘭克和伊戈爾·塔姆成功地解釋了契忍可夫辐射的成因,三人因此共同獲得1958年的諾貝爾物理學獎。.

新!!: 波长和契忍可夫輻射 · 查看更多 »

威廉·劳伦斯·布拉格

威廉·劳伦斯·布拉格爵士,CH,OBE,MC,FRS(Sir William Lawrence Bragg,),出生於澳洲的物理学家,他擁有澳洲和英國雙重國籍,因為發現了關於X射線衍射的布拉格定律,1915年与其父威廉·亨利·布拉格一同获得诺贝尔物理学奖。.

新!!: 波长和威廉·劳伦斯·布拉格 · 查看更多 »

威廉·维恩

威廉·卡尔·维尔纳·奥托·弗里茨·弗兰茨·维恩(Wilhelm Carl Werner Otto Fritz Franz Wien,),德國物理學家,研究領域為熱輻射與電磁學等。1893年,維恩經由熱力學、光譜學、電磁學和光學等理論支援,發現了維恩位移定律,並應用於黑體等學術理論,揭開量子力學新領域。1911年,他因對於熱輻射等物理法則貢獻,而獲得諾貝爾物理學獎。.

新!!: 波长和威廉·维恩 · 查看更多 »

实验式

实验式(或稱简式、最简式)不能区分最简个数比相同的几种化学物质,更不能解释结构或区分同分异构体。如,对于正己烷而言,它的示性式为CH3CH2CH2CH2CH2CH3,可以表明它的直链结构及分子中的碳氢原子个数;而它的最簡式则为C3H7,3和7最大公因数为1。.

新!!: 波长和实验式 · 查看更多 »

宇宙学视界

宇宙学视界是指能够接收信息的可测量距离。这种对观测的限制来源于广义相对论,和宇宙学标准模型。宇宙学视界界定了我们可观测宇宙的范围。本文将解释宇宙学上的几种不同的视界的定义。本文中所用的距离单位是千秒差距(kpc)或百万秒差距(Mpc)。.

新!!: 波长和宇宙学视界 · 查看更多 »

宇宙微波背景

宇宙微波背景(英语:Cosmic Microwave Background,简称CMB,又稱3K背景輻射)是宇宙學中“大爆炸”遺留下來的熱輻射。在早期的文獻中,「宇宙微波背景」稱為「宇宙微波背景輻射」(CMBR)或「遺留輻射」,是一種充滿整個宇宙的電磁輻射。特徵和絕對溫標2.725K的黑體輻射相同。頻率屬於微波範圍。宇宙微波背景是宇宙背景輻射之一,為觀測宇宙學的基礎,因其為宇宙中最古老的光,可追溯至再復合時期。利用傳統的光學望遠鏡,恆星和星系之間的空間(背景)是一片漆黑。然而,利用靈敏的輻射望遠鏡可發現微弱的背景輝光,且在各個方向上幾乎一模一樣,與任何恆星,星系或其他對象都毫無關係。這種光的電磁波譜在微波區域最強。1964年美國射電天文學家阿諾·彭齊亞斯和羅伯特·威爾遜偶然發現宇宙微波背景 ,这一发现是基于於1940年代開始的研究,並於1978年獲得諾貝爾獎。 宇宙微波背景很好地解釋了宇宙早期發展所遺留下來的輻射,它的發現被認為是一個檢測大爆炸宇宙模型的里程碑。宇宙在年輕時期,恆星和行星尚未形成之前,含有緻密,高溫,充滿著白熱化的氫氣雲霧電漿。電漿與輻射充滿著整個宇宙,隨著宇宙的膨脹而逐漸冷卻。當宇宙冷卻到某個溫度時,質子和電子結合形成中性原子。這些原子不再吸收熱輻射,因此宇宙逐漸明朗,不再是不透明的雲霧。宇宙學家提出中性原子在「再復合」時期形成,緊接在「光子脫耦」之後,即光子開始自由穿越整個空間,而非在電子與質子所組成的電漿中緊密的碰撞。光子在脫耦之後開始傳播,但由於空間膨脹,導致波長隨著時間的推移而增加(根據普朗克定律,波長與能量成反比),光線越來越微弱,能量也較低。這就是別稱「遺留輻射」的來源。「最後散射面」是指我們由光子脫耦時的放射源接收到光子的來源點在空間中的集合。 因為任何建議的宇宙模型都必須解釋這種輻射,因此宇宙微波背景是精確測量宇​​宙學的關鍵。宇宙微波背景在黑體輻射光譜的溫度為 K。光譜輻射dEν/dν的峰值為60.2 GHz,在微波頻率的範圍內。(若光譜輻射的定義為dEλ/dλ,則峰值波長為1.063公釐。) 該光輝在所有方向中幾乎一致,但細微的殘留變化展現出各向異性,與預期的一樣,分佈相當均勻的熾熱氣體已經擴大到目前的宇宙大小。特別的是,在天空中不同角度的光譜輻射包含相同的各向異性,或不規則性,隨區域大小變化。它們已被詳細測量,若有因物質在極小空間的量子微擾而起的微小溫度變化,且膨脹到今日可觀測的宇宙大小,應該會與之吻合。這是一個非常活躍的研究領域,科學家同時尋求更好的數據(例如,普郎克衛星)和更好的宇宙膨脹初始條件。雖然許多不同的過程都可產生黑體輻射的一般形式,但沒有比大霹靂模型更能解釋漲落。因此,大多數宇宙學家認為,宇宙大霹靂模型最能解釋宇宙微波背景。 在整個可視宇宙中有高度的一致性,黯淡卻已測得的各向異性非常廣泛的支持大霹靂模型,尤其是ΛCDM模型。此外,威爾金森微波各向異性探測器及宇宙泛星系偏振背景成像實驗觀測相距大於再復合時期之宇宙視界角尺度上漲落間的相關性。此相關可能為非因果的微調,或因宇宙暴脹產生。.

新!!: 波长和宇宙微波背景 · 查看更多 »

宇宙暴脹

在物理宇宙學中,宇宙暴脹,簡稱暴脹,是早期宇宙的一種空間膨脹呈加速度狀態的過程。 暴脹時期在大爆炸後10−36秒開始,持續到大爆炸後10−33至10−32秒之間。暴脹之後,宇宙繼續膨脹,但速度則低得多。 「暴脹」一詞可以指有關暴脹的假說、暴脹理論或者暴脹時期。這一假說以及「暴脹」一詞,最早於1980年由美國物理學家阿蘭·古斯提出。 在微觀暴脹時期的量子漲落,經過暴脹放大至宇宙級大小,成為宇宙結構成長的種子,這解釋了宇宙宏觀結構的形成。很多宇宙學者認為,暴脹解釋了一些尚未有合理答案的難題:為什麼宇宙在各個方向都顯得相同,即各向同性,為甚麼宇宙微波背景輻射會那麼均勻分佈,為甚麼宇宙空間是那麼平坦,為甚麼觀測不到任何磁單極子? 雖然造成暴脹的詳細粒子物理學機制還沒有被發現,但是基本繪景所作出了多項預測已經被觀測所證實。導致暴脹的假想粒子稱為暴脹子,其伴隨的場稱為暴脹場。 2014年3月17日,BICEP2科學家團隊宣佈在B模功率譜中可能探測到暴脹所產生的重力波。這為暴脹理論提供了強烈的證據,對於標準宇宙學來說是一項重要的發現 。可是,BICEP2團隊於6月19日在《物理評論快報》發佈的論文承認,觀測到的信號可能大部分是由銀河系塵埃的前景效應造成的,對於這結果的正確性持保留態度。必需要等到十月份普朗克衛星數據分析結果發佈之後,才可做定論。9月19日,在對普朗克衛星數據進行分析後,普朗克團隊發佈報告指出,銀河系內塵埃也可能會造成這樣的宇宙信號,但是並沒有排除測量到有意義的宇宙信號的可能性。 除了暴脹理論之外,還有非標準宇宙學理論,包括前大爆炸理論和旋量時空理論等。一般來說,暴脹在前大爆炸理論中並不是必須的。路易斯·貢薩雷斯-梅斯特雷斯(Luis Gonzalez-Mestres)在1996至1997年所提出的旋量時空理論中,每一個隨動觀測者都會產生一個特殊的空間方向,而宇宙微波背景中也會自然存在B模。普朗克衛星數據可能證實了這一特殊空間方向的存在。 (University of Texas Mathematical Physics Archive, paper 14-16).

新!!: 波长和宇宙暴脹 · 查看更多 »

射电望远镜

射电望远镜(Radio telescope)是一个专门的天线和无线电接收机,在射电天文学用来接收天空中从天文射电源的无线电波。射电望远镜的外形差别很大,有固定在地面的单一口径的球面射电望远镜,有能够全方位转动的类似卫星接收天线的射电望远镜,有射电望远镜阵列,还有金属杆制成的射电望远镜。 1931年,美国贝尔实验室的央斯基用天线阵接收到了来自银河系中心的无线电波。随后美国人格羅特·雷伯在自家的后院建造了一架口径9.5米的天线,并在1939年接收到了来自银河系中心的无线电波,并且根据观测结果绘制了第一张射电天图。射电天文学从此诞生。雷伯使用的那架天线是世界上第一架专门用于天文观测的射电望远镜。 20世纪60年代天文学取得了四项非常重要的发现:脉冲星、类星体、宇宙微波背景辐射、星际有机分子,被称为“四大发现”。这四项发现都与射电望远镜有关。 天文望远镜的极限分辨率取决于望远镜的口径和观测所用的波长。口径越大,波长越短,分辨率越高。由于无线电波的波长要远远大于可见光的波长,因此射电望远镜的分辨本领远远低于相同口径的光学望远镜,而射电望远镜的天线又不能无限做大。这在射电天文学诞生的初期严重阻碍了射电望远镜的发展。 1962年,英国剑桥大学卡文迪许实验室的马丁·赖尔(Ryle)利用干涉的原理,发明了综合孔径射电望远镜,大大提高了射电望远镜的分辨率。其基本原理是:用相隔两地的两架射电望远镜接收同一天体的无线电波,两束波进行干涉,其等效分辨率最高可以等同于一架口径相当于两地之间距离的单口径射电望远镜。赖尔因为此项发明获得1974年诺贝尔物理学奖。.

新!!: 波长和射电望远镜 · 查看更多 »

巨米波電波望遠鏡

巨米波電波望遠鏡(Giant Metrewave Radio Telescope,GMRT),位於印度鄰近浦那,是一個米波長的電波望遠鏡陣列。它由國家電波天文物理中心操作,部分由孟買的塔塔基礎研究所運作。在它建造的時候,是世界上最大的干涉儀陣列,。.

新!!: 波长和巨米波電波望遠鏡 · 查看更多 »

巴耳末公式

巴耳末公式是1885年由瑞士数学教师巴耳末提出的用于表示氢原子谱线波长的经验公式 其中λ是谱线的波长,B.

新!!: 波长和巴耳末公式 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 波长和不确定性原理 · 查看更多 »

中子温度

中子温度,亦称中子能量,指的是自由中子的动能,单位通常是电子伏特。由于中子经过不同温度的减速剂会有不同的速度分布,一般可以使用温度来衡量中子的动能。中子的能量分布基本上符合热运动的麦克斯韦-玻尔兹曼分布。定性的来说,温度越高,自由中子的动能也越高。中子的动能、速度和波长之间满足物质波的德布罗意公式。.

新!!: 波长和中子温度 · 查看更多 »

中國五聲音階

五声调式,或稱五聲音階,是中國音樂中的音階,这5个音依次定名为宮、商、角(jué,ㄐㄩㄝˊ)、--(zhǐ,ㄓˇ)、羽,大致相当于西洋音乐简谱上的唱名(do)、(re)、(mi)、(so)、(la)。 将这五个音按高低次序移到一个八度之内,各音的名称便是:   1 2 3 5 6   宫 商 角 -- 羽 宫、商、角、--、羽这五个音相互间的音程关系是固定不变的。如: 五声调式中的任何一个音均可构成一种调式,以宫音作主音构成的调式叫宫调式;以商音作主音构成的调式叫商调式;以此类推。 后来,再加上变宫(宫的低半音,即(si))和变--(--的低半音,即(升fa)),称为七声或七音。.

新!!: 波长和中國五聲音階 · 查看更多 »

中國廣播公司

中國廣播公司(英語譯名:Broadcasting Corporation of China),簡稱中廣、BCC,是中華民國廣播事業的先驅,也是臺灣最大的電台廣播業者之一。創立於1928年,原先為中國國民黨之黨營事業,也是中國國民黨繼中央通訊社、《中央日報》之後創辦的第三個中央宣傳機構;之後先後經國民黨黨營事業華夏投資公司、中國時報系控股之「榮麗投資公司」擁有,現由前立法委員趙少康經營。總部設於臺北市松江路,擁有4個全國電台廣播頻道、3個地方電台廣播頻道。 中廣的運作體制完整,在董監事會、董事長之下,共設四部三處、一中心及七個地方分台。「四部」為節目企劃部、新聞部、業務行銷部、廣告管理部;「三處」為工程處、管理處、財務處及製播中心。迄2008年元月止,中廣員工共計兩百餘人,在全國擁有新竹台、苗栗台、臺灣台(位於臺中市忠明南路)、嘉義台、臺南台、高雄台、花蓮台等7個發射分台。使用發射機共55部(備機55部),發射總電力593.3千瓦(備機電力599.95千瓦)。每天播音1,320個頻率小時。 2017年4月15日,中廣音樂網及中廣寶島網宣布自零時起停播地面廣播(FM)訊號,4月24日音樂網改為「網路廣播」繼續播出,寶島網網路廣播播至6月11日,6月12日寶島網正式停播。.

新!!: 波长和中國廣播公司 · 查看更多 »

中分辨率成像光谱仪

中分辨率成像光谱仪 (Moderate Resolution Imaging Spectroradiometer,MODIS)為美国宇航局研發製造的空间遥感仪器,用以了解全球气候的变化情况以及人类活动对气候的影响。1999年随地球观测系统(EOS) 的Terra卫星发射到地球轨道,2002年随另一枚地球观测系统的Aqua卫星升空。该仪器可用36个光谱波段接收数据,波长范围为0.4微米到14.4微米,包含可见光到红外波段。影像解析度為250公尺到1公里之间,每1至2日可完整掃描地球表面一次。它们可提供大范围的全球数据,包括云层覆盖的变化、地表辐射能量变化,海洋與陆地的变化过程。.

新!!: 波长和中分辨率成像光谱仪 · 查看更多 »

中性灰度滤镜

中性灰度滤镜(Neutral density filter),简称中灰镜、減光鏡或ND镜,是一种无色至灰色的摄影滤镜。理想中的中灰镜可以减弱所有波长的光的亮度,而不会发生偏色。 中灰镜的用处在于于各种环境下(特别是光照强烈时)能让摄影师更好的控制快门速度和光圈大小来达到某些特殊效果,同时又不会因为快门速度过慢而导致过曝。.

新!!: 波长和中性灰度滤镜 · 查看更多 »

布拉格定律

在物理學中,布拉格定律給出晶格的相干及不相干散射角度。當X射線入射於原子時,跟任何電磁波一樣,它們會使電子雲移動。電荷的運動把波動以同樣的頻率再發射出去(會因其他各種效應而變得有點模糊);這種現象叫瑞利散射(或彈性散射)。散射出來的波可以再相互散射,但這種進級散射在這裏是可以忽略的。當中子波與原子核或不成對電子的相干自旋進行相互作用時,會發生一種與上述電磁波相近的過程。這些被重新發射出來的波來相互干涉,可能是相長的,也可能是相消的(重疊的波某程度上會加起來產生更強的波峰,或相互消抵),在探測器或底片上產生繞射圖樣。而所產生的波干涉圖樣就是繞射分析的基本部份。這種解析叫布拉格繞射。 布拉格繞射(又稱X射線繞射的布拉格形式),最早由威廉·勞倫斯·布拉格及威廉·亨利·布拉格於1913年提出,他們早前發現了固體在反射X射線後產生的晶體線(與其他物態不同,例如液體),而這項定律正好解釋了這樣一種效應。他們發現,這些晶體在特定的波長及入射角時,反射出來的輻射會形成集中的波峰(叫布拉格尖峰)。布拉格繞射這個概念同樣適用於中子繞射及電子繞射 。中子及X射線的波長都於原子間距離(~150 pm)相若,因此它們很適合在這種長度作“探針”之用。 威廉·勞倫斯·布拉格使用了一個模型來解釋這個結果,模型中晶體為一組各自分離的平行平面,相鄰平面間的距離皆為一常數d。他的解釋是,如果各平面反射出來的X射線成相長干涉的話,那麼入射的X射線經晶體反射後會產生布拉格尖峰。當相位差為2π及其倍數時,干涉為相長的;這個條件可經由布拉格定律表示: 其中n為整數,λ為入射波的波長,d為原子晶格內的平面間距,而θ則為入射波與散射平面間的夾角。注意移動中的粒子,包括電子、質子和中子,都有對應其速度及質量的德布羅意波長。 布拉格定律由物理學家威廉·勞倫斯·布拉格爵士於1912年推導出來,並於1912年11月11日首度於劍橋哲學會中發表。儘管很簡單,布拉格定律確立了粒子在原子大小下的存在,同時亦為晶體研究了提供了有效的新工具──X射線及中子繞射。威廉·勞倫斯·布拉格及其父,威廉·亨利·布拉格爵士獲授1915年諾貝爾物理學獎,原因為晶體結構測定的研究,他們測定了氯化鈉、硫化鋅及鑽石的結構。 他們是唯一一隊同時獲獎的父子隊伍,而威廉·勞倫斯·布拉格時年25歲,因此成了最年輕的諾貝爾獎得主。.

新!!: 波长和布拉格定律 · 查看更多 »

三原色光模式

三原色光模式(RGB color model),又称RGB颜色模型或红绿蓝颜色模型,是一种加色模型,将红(Red)、绿(Green)、蓝(Blue)三原色的色光以不同的比例相加,以产生多种多样的色光。 RGB颜色模型的主要目的是在电子系统中检测,表示和显示图像,比如电视和电脑,但是在传统摄影中也有应用。在电子时代之前,基于人类对颜色的感知,RGB颜色模型已经有了坚实的理论支撑。 RGB是一种依赖于设备的颜色空间:不同设备对特定RGB值的检测和重现都不一样,因为颜色物质(荧光剂或者染料)和它们对红、绿和蓝的单独响应水平随着制造商的不同而不同,甚至是同样的设备不同的时间也不同。.

新!!: 波长和三原色光模式 · 查看更多 »

平面波

在三維空間裏,平面波(plane wave)是一種波動,其波阵面(在任何時刻,波相位相等的每一點所形成的曲面)是相互平行的平面。平面波的傳播方向垂直於波前。假若平面波的振幅不是常數,例如,振幅是位置的函數,則稱此種平面波為「非均勻平面波」。 加以延伸,平面波這術語時常用來形容,在空間的一個局部區域裏,近似於平面波的波動。例如,一個局部區域波源,像發射無線電波的天線,所發射出的電磁波,在可以近似為平面波。等價地說,對於在一個均勻介質內,波的傳播距離超長於波長的案例,在幾何光學的正確極限內,射線區域性地對應於近似平面波。.

新!!: 波长和平面波 · 查看更多 »

幽遊白書角色列表

※備註:台灣版配音有中國電視公司(CTV)與Animax兩種不同的版本。.

新!!: 波长和幽遊白書角色列表 · 查看更多 »

乔治·沃尔德

乔治·沃尔德(George Wald,),美国科學家,以其研究視網膜色素的作品聞名,1967年與霍尔登·凯弗·哈特兰(Haldan Keffer Hartline)和拉格纳·格拉尼特(Ragnar Granit)共同獲得诺贝尔生理学或医学奖。.

新!!: 波长和乔治·沃尔德 · 查看更多 »

乔治·斯托克斯

乔治·加布里埃尔·斯托克斯爵士,第一代從男爵,FRS(Sir George Gabriel Stokes, 1st Baronet,),愛爾蘭數學家和物理學家,就讀和任教於劍橋大學,主要貢獻在流體動力學(如纳维-斯托克斯方程)、光學和數學物理學(如斯托克斯公式)。他曾任皇家學會秘書和會長。.

新!!: 波长和乔治·斯托克斯 · 查看更多 »

乙烷

乙烷是化学式为C2H6的烷烃。乙烷中的所有分子由共价键结合,通常在分子的书写中为了表现两个C(碳原子)之间只有一个化学键,写作CH3-CH3。它是由两个碳原子组成的烷烃中唯一的脂肪烃。 在标准状况下乙烷为可燃气体,无色无味,在一定的浓度下如遇火可产生爆炸。 工业生产的乙烷是从天然气分离出来的或者是煉油廠的副产品。在石油化工中它是生产乙烯的原材料。.

新!!: 波长和乙烷 · 查看更多 »

亨利·莫塞莱

亨利·格溫·傑弗里·莫塞莱(Henry Gwyn Jeffreys Moseley,),英国物理学家和化学家。莫塞莱对物理学和化学做出的最重大的贡献就是打破先前物理学理论的成见,发现了原子序数这一概念。莫塞莱定律通过对元素周期表中的元素的正确排列,修正了化学中的众多基础概念。 当玻尔为重构氢原子结构而创立了玻尔模型的同时,莫塞莱定律也首次通过实验验证了该模型,极大地推动了物理学的发展。这一理论完善了欧内斯特·卢瑟福和安东尼斯·范登布勒克的模型,后者设想元素周期表中的元素序数等于原子核中的有效核电荷数量。至今为止,莫塞莱定律仍得到物理学界的普遍认可。 第一次世界大战爆发后,莫塞莱毅然离开了牛津大学的研究室,成为英军的皇家工兵的一名志愿兵。1915年4月,他作为负责电话通讯的军官,受命前往土耳其的加里波利半岛。同年8月10日,他在加里波利之战中被敌军开枪击中死亡,年仅27岁。当时多位人士都感慨,如果莫塞莱能够幸存到1916年,他将极有可能获得诺贝尔物理学奖。.

新!!: 波长和亨利·莫塞莱 · 查看更多 »

人馬座A*

没有描述。

新!!: 波长和人馬座A* · 查看更多 »

二級結構

蛋白質二級結構(Protein secondary structure)在生物化學及結構生物學中,是指一個生物大分子,如蛋白質及核酸(DNA或RNA),局部區段的三維通式。然而它並不描述任何特定的原子位置(在三級結構中描述)。 二級結構是由生物大分子在原子分辨率結構中所观察到的氫鍵來定義的。蛋白質的二級結構通常是以主鏈中氨基之間的氫鍵模式來定義〈与主链-侧链间以及侧链-侧链间的氢键无关〉,亦即DSSP的定義。而核酸的二級結構是以鹼基之間的氫鍵來定義。 在二级结构中,特定的氫鍵模式往往伴随着其他一些結構特徵;但如果只考虑这些结构特征而忽略氢键本身,则会导致所定義的二級結構不准确。例如,蛋白質的螺旋中的残基都分布在拉氏图(以主鏈二面角为坐标)的特定區域,因此二面角位于这一区域的残基都會被认为参与形成「螺旋」,而不論它是否真正的存在对应氫鍵。其他稍微不准确的定義多是應用曲線微分幾何的觀念,如曲率及扭量。也有一些結構生物學家以肉眼观察通过软件显示的蛋白质结构來決定其二級結構。 對生物大分子的二級結構含量可以以光譜來初步估計。對於蛋白質,最常用的方法是圓二色性(Circular dichroism), (利用長紫外線,波長范围170-250nm)。在获得的光谱吸收曲线上,α螺旋結構会在208nm及222nm两处同时出现极小值,而204nm和207nm处出现单个极小值則分別表示存在无规卷曲和β折疊結構。另一個較常用的方法是紅外光譜,它可以偵測因氫鍵所造成胺基的震盪。而光譜中,测定二級結構最準確的方法是利用核磁共振光谱所纪录的化學位移,由于仪器和样品制备上的原因,这一方法较为少用。.

新!!: 波长和二級結構 · 查看更多 »

二齒豬籠草

二齒豬籠草(學名:Nepenthes bicalcarata),又称二距猪笼草,是婆羅洲西北部特有的热带食虫植物。其种加词来源于拉丁文,“bi”意为“二”,“calcaratus”意为“尖状物”,指其两个尖齿状结构。Phillipps, A. & A. Lamb 1996.

新!!: 波长和二齒豬籠草 · 查看更多 »

二氧化碳激光器

二氧化碳激光器(Carbon dioxide laser)是由贝尔实验室在1964年发明的世界上最早的气体激光器,也是目前使用最广泛的工业用激光。目前世界上功率最高的激光器就是以二氧化碳气体为能源。另外,二氧化碳激光器的效率非常高,能源的转化率达到20%。 二氧化碳激光器发出的激光波长为9.4-10.6微米,属于红外线。.

新!!: 波长和二氧化碳激光器 · 查看更多 »

传输线模型

在通信工程和电子工程中,传输线是一种专用电缆或者其他结构,用于传输无线电频率的交变电流,也就是说,电流的频率高到一定程度时必须考虑它们波的性质。传输线一般用于连接发送器与接收器的天线,传输有线电视信号,中继电信交换中心之间的路由呼叫,计算机网络连接以及高速计算机数据总线。 本文仅讨论双导体传输线,包含平行线(梯线)、同轴电缆、带状线和微带线。一些来源认为波导管、介质波导甚至光纤也是传输线,但这些线需要用其他方法来分析,所以不在此进行讨论;可参见电磁波导。.

新!!: 波长和传输线模型 · 查看更多 »

伽馬射線天文學

伽馬射線天文學是指以伽馬射線研究宇宙的天文學分支。伽馬射線是可穿透整個宇宙的電磁波中最高能量的波段,也是電磁波譜中波長最短的部分。 伽馬射線可由太空中的超新星、正電子湮滅、黑洞形成、甚至是放射衰變產生。例如超新星SN 1987A就發射了來自超新星爆炸的放射性產物鈷56釋放的伽馬射線。大多數天體釋放的伽馬射線一般認為並非來自放射衰變,而是和X射线天文学一樣來自加速的電子、電子和正電子作用(但因為能量較高而產生伽馬射線)。.

新!!: 波长和伽馬射線天文學 · 查看更多 »

弗里斯传输方程

弗里斯传输方程用于通信工程,表述为理想条件下给定距离外的天线发送一个已知功率的信号,则接收天线终端的接收功率等于入射波功率密度与接收天线有效孔径的乘积。 这个方程最先由丹麦裔美国无线电工程师工程师于1946年提出。 这个方程有时也被称为弗里斯传输等式。.

新!!: 波长和弗里斯传输方程 · 查看更多 »

引力波天文学

引力波天文学(Gravitational-wave astronomy)是观测天文学20世纪中叶以来逐渐兴起的一个新兴分支,其发展基础是广义相对论中引力的辐射理论在各类相对论性天体系统研究中的应用。传统天文学主要是使用电磁波來觀測各種天體系統,而引力波天文学則是通过引力波来观测发出引力辐射的天体系统。由于万有引力相互作用和电磁相互作用相比强度十分微弱,引力波的直接观测需要利用到當今最高端科技。 阿尔伯特·爱因斯坦於1915年发表广义相对论,隔年他又在理论上预言引力波的存在。然而,在之後一世紀時間,引力波都未能在实验上直接被检测到。間接的觀測最早是1974年普林斯顿大学的拉塞尔·赫尔斯和约瑟夫·泰勒发现的脉冲双星,PSR 1913+16,其軌道的演化遵守引力波理論的預測,兩人因此榮獲1993年諾貝爾物理學獎。隨後,又觀測到很多其它脈衝雙星,它們的軌道的演化都符合引力波理論的預測。 2016年2月11日,LIGO科學團隊與處女座干涉儀團隊於華盛頓舉行的一場記者會上宣布人類對於重力波的首個直接探測結果。所探測到的重力波來源於雙黑洞併合。兩個黑洞分別估計為29及36倍太陽質量,這次探測為物理學家史上首次由地面直接成功探測重力波。同年6月15日,LIGO團隊宣布,第二次直接探測到重力波。所探測到的重力波也來源於雙黑洞併合。兩個黑洞分別估計為14.2及7.8倍太陽質量,之後,又陸續確認探測到多次重力波事件。巴里·巴里什,莱纳·魏斯及基普·索恩因领导此项工作而荣获2017年诺贝尔物理学奖。.

新!!: 波长和引力波天文学 · 查看更多 »

引力时间延迟效应

引力时间延迟效应(Gravitational time delay),或经常称作夏皮罗时间延迟效应(Shapiro time delay)是在太阳系中能够进行的四个经典广义相对论的实验验证之一(另外三个是引力红移、水星近日点的进动、光线在太阳引力场中的偏折)。这种时间延迟效应是指当雷达信号途径一个大质量天体时,在观测者看来这个信号发射到指定目标以及返回的时间都要比没有大质量天体存在时所需的时间略长。与引力红移的区别在于它是引力场造成的纯粹时间延迟效应,并不改变信号的波长。.

新!!: 波长和引力时间延迟效应 · 查看更多 »

开口谐振环

开口谐振环,(split-ring resonator)是磁性超材料的一种。Pendry指出一对同心的亚波长大小的开口谐振环,互相反向放置,可以有效地提高磁导率1。事实上开口谐振环这一术语早在Pendry之前就被创建了。上个世纪80年代早期,Hardy用一种类似的结构和同样的术语描述了带有一条线状缺口的空心圆柱体在大约1GHz的频率上表现出来的磁谐振2。Pendry和他的伙伴们把这种结构改造成现在这种形式,这种设计在当今的超材料研究中被用作许多超磁单元的原型。.

新!!: 波长和开口谐振环 · 查看更多 »

低輻射玻璃

低輻射玻璃(Low-E glass)是一種表面具有一層極細薄的氧化金屬鍍膜的透明玻璃,這種膜層具有極低的表面輻射率,容許波長380nm至780nm的可見光波通過,但對波長780~3000nm以及3000nm以上的遠紅外線熱輻射的反射率相當高,因此有方向性的阻擋住熱的穿透,在寒帶地區可以隔熱保溫,在熱帶或亞熱帶地區可以減少室外陽光所傳遞的熱,以減輕空調負荷。.

新!!: 波长和低輻射玻璃 · 查看更多 »

位错

位错(dislocation),在材料科学中,指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。从几何角度看,位错属于一种线缺陷,可视为晶体中已滑移部分与未滑移部分的分界线,其存在对材料的物理性能,尤其是力学性能,具有极大的影响。“位错”这一概念最早由意大利数学家和物理学家维托·伏尔特拉于1905年提出。 理想位错主要有两种形式:刃位错(edge dislocations)和 螺旋位错(screw dislocations)。混合位错(mixed dislocations)兼有前面两者的特征。 数学上,位错属于一种拓扑缺陷,有时称为“孤立子”或“孤子”。这一理论可以解释实际晶体中位错的行为:可以在晶体中移动位置,但自身的种类和特征在移动中保持不变;方向(伯格斯矢量)相反的两个位错移动到同一点,则会双双消失,或称“湮灭”,若没有与其他位错发生作用或移到晶体表面,那么任何单个位错都不会自行“消失”(即伯格斯矢量始终保持守恒)。.

新!!: 波长和位错 · 查看更多 »

彩色视觉

彩色视觉(color vision)是一个生物体或机器基于物体所反射,发出或透过的光的波长(或频率) 以区分物体的能力。颜色可以以不同的方式被测量和量化;事实上,人对颜色的感知是一个主观的过程,即,脑响应当进入的光与眼中的若干种视锥细胞作用时所产生的刺激。在本质上,不同的人也许会以不同的方式看同一个物体。.

新!!: 波长和彩色视觉 · 查看更多 »

彩雲

彩雲(英文:Iridescent Clouds)通常為一種莢狀雲,具有明亮點或彩色邊緣,其色彩稱之為雲彩(英文:Irisation或Cloud Iridescence),屬於一種光象。常見的色彩是桃紅色或綠色,位在距太陽附近的雲上。彩雲的形成為一種「繞射現象」(Diffraction),其雲彩為大型日華的片段,但比例過小,無法觀察出圓弧。.

新!!: 波长和彩雲 · 查看更多 »

彩虹

彩虹,又稱天弓(客家話)、天虹、絳等,簡稱虹,是氣象中的一種光學現象,當太陽光照射到半空中的水滴,光線被折射及反射,在天空上形成拱形的七彩光譜,由外圈至内圈呈紅、橙、黃、綠、蓝、靛、紫 戴 八种颜色。事實上彩虹有无数種顏色,比如,在紅色和橙色之間還有許多種細微差別的顏色,但為了簡便起見,所以只用七種顏色作為區別。 其實只要空氣中有水滴,而陽光正在觀察者的背後以低角度照射,便可能產生可以觀察到的彩虹現象,彩虹最常在下午,雨後剛轉天晴時出現,這時空氣內塵埃少而充滿小水滴,天空的一邊因為仍有雨雲而較暗,而觀察者頭上或背後已沒有雲的遮擋而可見陽光,這樣彩虹便會較容易被看到。另一個經常可見到彩虹的地方是瀑布附近,在晴朗的天氣下背對陽光在空中灑水或噴灑水霧,亦可以製造人工彩虹。 月虹,又稱晚虹,是一種非常罕見的現象,在月光強烈的晚上可能出現,由於人類視覺在晚間低光線的情況下難以分辨顏色,故此晚虹看起來好像是全白色。.

新!!: 波长和彩虹 · 查看更多 »

彗形像差

彗形像差,又稱彗星像差,指的是類似彗星形狀的變形,為光學系統中的一種像差,這是一些透鏡固有的或是光學設計造成的缺點,導致離開光軸的點光源,例如恆星,產生變形。特別是彗形像差被定義為偏離入射光孔的放大變異。在折射或繞射的光學系統,特別是在寬光譜範圍的影像中,彗形像差是波長的函數。.

新!!: 波长和彗形像差 · 查看更多 »

微波

微波(Microwave,Mikrowellen)是指波长介于红外线和無線電波之间的电磁波。微波的頻率范围大约在 300MHz至300GHz之間。所對應的波長為1公尺至1mm之间。微波频率比无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性。微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。 微波在雷达科技、ADS射线武器、微波炉、等离子发生器、无线网络系统(如手机网络、蓝牙、卫星电视及無線區域網路技术等)、传感器系统上均有广泛的应用。 在技术领域协定使用的四个频率分别为800MHz、2.45GHz、5.8GHz和13GHz。微波炉使用2.45GHz,此频率亦被作为ISM頻段(工業、科學及醫學用波段),使用在航空通讯领域。.

新!!: 波长和微波 · 查看更多 »

微波辐射计

微波辐射计(microwave radiometer,缩写为“MWR”)也称为“微波辐射仪”,是一种用于测量亚毫米级到厘米级波长(频率约为1-1000GHz)的电磁波(微波)的辐射计。微波辐射仪能接收大气中的某些成分在一定频率上强烈辐射的微波,经过一定的转换方法,得到大气在垂直和水平方向上的气象要素分布,并且还可以探测到云状、云高以及目力无法观测到的晴空湍流。此仪器携带方便,可增加探空网在时间和空间上的密度,能观测到大气的连续变化,不致漏掉范围较小但变化剧烈的天气系统。 现在较常见的微波辐射仪最初是由美国物理学家罗伯特·亨利·迪克于1946年采用的。 成熟的微波辐射计技术具有单检测器变频技术和并行多检测器技术,都采用K波段和V波段的水汽和氧气通道观测反演大气的水汽和温度信息。 由于基于并行技术的微波辐射计探测速度和稳定性大大高于前者,已经成为当今微波辐射计发展的重要方向。并行技术微波辐射计的各通道带宽独立,积分时间充足的条件下可采用边界层多角度扫描捕捉到边界层1K的微小亮温变化,大大提高了边界层温度垂直分辨率。并行多通道也使得快速全天空扫描和方位-时间扫描得以实现,特别有助于监测天空快速水汽变化和云天变化。.

新!!: 波长和微波辐射计 · 查看更多 »

德布罗意方程组

德布羅意方程組是描述物質波的方程組。德布罗意方程组描述了波长 \lambda 与动量 p、频率 \nu 与总能 E 之间的关系。 路易·德布羅意受光的波粒二象性启发,认为微观粒子也有波粒二象性。描述波的物理量为频率、波长;而描述粒子的物理量为能量、动量。德布罗意方程将这两组物理量联系在一起。.

新!!: 波长和德布罗意方程组 · 查看更多 »

土卫六

土卫六又稱為「泰坦」(Titan),是环绕土星运行的一颗卫星,是土星卫星中最大的一个,也是太陽系第二大的衛星。荷兰物理学家、天文学家和数学家克里斯蒂安·惠更斯在1655年3月25日发现它,也是在太阳系内继木星伽利略卫星後发现的第一颗卫星。由於它是太陽系第一颗被发现擁有濃厚大氣層的衞星,因此被高度懷疑有生命體的存在,科學家也推測大氣中的甲烷可能是生命體的基礎。土衛六可以被視為一個時光機器,有助我們了解地球最初期的情況,揭開地球生物如何誕生之謎。.

新!!: 波长和土卫六 · 查看更多 »

地球長波輻射

地球長波輻射(Outgoing Longwave Radiation,OLR)是從地球到外层空间的紅外線低能量輻射。.

新!!: 波长和地球長波輻射 · 查看更多 »

北冕座R

北冕座R 是特殊的低質量黃超巨星,它是北冕座R型變星的變星原型, 以不規則的時間間隔光度會明顯的黯淡幾個星等。北冕座R的視星等通常在6等左右,剛好在裸眼可見的極限範圍。但每隔幾年會有幾個月黯淡至14等,然後在幾個月的時間內會逐漸回復到原來的亮度,因此被暱稱為淡出星或逆向新星。.

新!!: 波长和北冕座R · 查看更多 »

國際單位制基本單位的重新定義

國際單位制希望其單位定義的基準是源自於對自然的測量。但此單位制時,由當時技術上的限制,因此利用了公尺原器與公斤原器做為公尺與公斤的定義。 1960年,公尺的定義被改寫為由特定光源所發出的光波長,因此公尺定義的基準也成為了對自然測量的結果。現今,只留下了公斤還是以人造的物品做為定義的基準。 國際度量衡委員會計劃於2019年5月20日重新改寫國際單位制基本單位的定義。.

新!!: 波长和國際單位制基本單位的重新定義 · 查看更多 »

分光光度法

分光光度法(Spectrophotometry)是一门对光谱进行量化研究的分析方法。主要涉及的电磁波谱范围是可见光、近紫外线与近红外线。这种方法不同于电磁波谱与时间分辨光谱。 将含有各种波长的混合光分散为各种单色光,使每种单色光依次通过某一浓度溶液,测定溶液对每种光波的吸光度,绘出吸收光谱。由于物质的吸收光区域和强度与结构密切相关,根据特有的吸收光谱可作分子结构分析。此外,利用特定波长的单色光分别透过标准溶液与待测溶液,比较其吸光度,可作定量分析。 分光技術中包括了分光光度計(spectrophotometer)是一種分析光的強度的物理實驗室設備,可以量測不同波長光的強度,分析波長與光強度的關係。亦可以量測特定物質的吸光度或透光度。目前有許多種分光儀。如:指針型、數字型。.

新!!: 波长和分光光度法 · 查看更多 »

分光鏡

分光鏡為一光學儀器,可以將一束光線分成兩束,是多數干涉儀的重要組件。.

新!!: 波长和分光鏡 · 查看更多 »

分色稜鏡

分色稜鏡是能將光線分解成兩束不同波長(顏色)光的稜鏡,通常由一個或多個稜鏡依據光的波長選擇性或光學塗層的反射、折射組合而成,可以選擇出需要的波長。也就是說,稜鏡的某些表面被作為二向色性過濾器,在許多的光學儀器中做為光束分束器。(參考二向色性的語源項。) 分色稜鏡的一種應用是用於高品質的數位攝影或作為攝錄像機。一種三色稜鏡組是由二個二向色性的稜鏡組合,可以分出紅色、綠色、和藍色的組合,因此可以做為CCD陣列。 圖示是這種設備的典型配置,一束光線射入第一個稜鏡(A),藍色成分的光束被低通濾鏡的塗層(F1)反射。藍光是波長短的高頻光,而波長更長的低頻光可以通過。藍光經由稜鏡另一面全反射後,由稜鏡A射出。其餘的光線進入稜鏡(B),然後被第二個塗層(F2)分裂,紅光被反射,而波長較短的光能夠穿透。紅光同樣經過稜鏡A和B之間的一個細小的空氣隙全反射,其餘的綠色成分的光線則進入稜鏡C。 像這樣的三色稜鏡組合也可以反過來應用在投影機上,將紅、綠、藍三色結合構成一幅彩色的圖像。.

新!!: 波长和分色稜鏡 · 查看更多 »

分散式布拉格反射器

DBR(distributed Bragg reflector,一個譯名:分佈式布拉格反射器)是在中使用的反射器。當光經過不同介質時在介面的地方會反射,反射率的大小會與介質間折射率大小有關,因此如果我們把不同折射率的薄膜交互週期性的堆疊在一起,當光經過這些不同折射率的薄膜的時候,由於各層反射回來的光因相位角的改變而進行建設性干涉,然後互相結合再一起,得到強烈反射光。 如果多膜層數變的非常多,而薄膜折射率 n1、n2、n3.

新!!: 波长和分散式布拉格反射器 · 查看更多 »

單色光

在物理學裏,單色光(monochromatic light)一般是指波長為單一值的電磁輻射。嚴格的說,並沒有任何光源,能夠製造出純單色光。雖然有些先進的雷射,能夠製造出線寬極窄的雷射光。這些雷射光的波長,也有一定的線寬(稱為光譜線寬(spectral linewidth))。實際上,經過濾光器過濾的光波,經過繞射光柵分離的光波,與雷射的光波都慣常地被稱為單色光。假若,一個光源散發出來的光波的線寬,比另一個光源,更為狹窄,則稱此光源更具有「單色光性」。單色光器是一種儀器,可以用來選擇特定波長的單色光。.

新!!: 波长和單色光 · 查看更多 »

周期函数

在数学中,周期函数是無論任何独立变量上經過一个确定的周期之后数值皆能重复的函数。我们日常所见的钟表指针以及月亮的月相都呈现出周期性的特点。周期性运动是系统的运动位置呈现周期性的运动。 对于实数或者整数函数来说,周期性意味着按照一定的间隔重复一个特定部分就可以绘制出完整的函数图。如果在函数f中所有的位置x都满足 那么,f就是周期为T的周期函数。非周期函数就是没有类似周期T的函数。 如果周期函数f的周期为T,那么对于f中的任意x以及任意整数n,有 若T.

新!!: 波长和周期函数 · 查看更多 »

哈伯序列

哈伯序列是哈伯在1926年提出的星系型態分類法,由於它的圖形表示法很像音叉的形狀,所以也稱為哈伯音叉圖。 哈伯的系統建立在目視觀測(原始的攝影乾片)的基礎上,將大部分的星系分為三類- 橢圓星系、透鏡星系和螺旋星系,第四類則是看起來形狀不規則的不規則星系。直至今日,無論是專業的天文研究還是業餘天文學的觀測,哈伯序列仍是最常用的星系分類法。.

新!!: 波长和哈伯序列 · 查看更多 »

哈勃超深空

哈伯深領域(英文:Hubble Ultra Deep Field,HUDF)是一張外太空照片,顯示的是天爐座的一小部份。該照片由哈勃空间望远镜於2003年9月24日至2004年1月16日期間得到的數據累積而成的,相當於113天的曝光。它是截至2006年為止以可見光拍攝的最深遠的宇宙影象,顯示的是超過130億年前的情況。此中估計有10,000個星系。 哈勃超深空中所顯示的範圍為3平方角分,只有全天空12,700,000分之一的面積,位於赤經3h 32m 40.0s,赤緯-27°47' 29"(J2000)天爐座的一小片天區。而照片的左上角則指向天球的北方。選擇這個範圍的理由是因為附近(約為滿月十分之一大小的面積)沒有較光亮的星體。雖然通過紅外線,在地面望遠鏡也能觀測到照片中大部份的物體,但只有通过哈勃空间望远镜才能以可見光觀測這些遙遠的目標。 隨著哈勃空间望远镜在軌道運行共400圈,照片是由800次曝光合成,當中先進巡天照相機(Advanced Camera for Surveys)及近紅外線照相機和多目標分光儀(Near Infrared Camera and Multi-Object Spectrometer)分別累積共11.3天及4.5天的拍攝時間。照片中最暗的星體只有30等,即望远镜每分鐘只接收到一粒來自星體的光子。 根據大爆炸理論,宇宙的年齡有限;而因為遠處星系的光線需要較長時間才到達地球,哈勃超深空有助於人類了解宇宙形成初期星系形成及合併的情況。另外因為照片所呈現的星系都是較為年輕的,故亦發現其性質與地球附近較年老的星系有所不同,這些早期星系發出的光線多為紫外光。然而拍攝的光波波長,因相對論性都卜勒效應關係,照片實際上是拍攝光譜中紅外線部份。.

新!!: 波长和哈勃超深空 · 查看更多 »

哈罗德·巴洛

哈罗德·巴洛(Harold Barlow,),全名哈罗德·埃弗拉德·蒙蒂格尔·巴洛(Harold Everard Monteagle Barlow),英国电气工程师,高锟的导师。.

新!!: 波长和哈罗德·巴洛 · 查看更多 »

准分子激光

准分子激光(英文:Excimer laser)是一种紫外气态激光,处于激发态的稀有气体和另一种气体(稀有气体或卤素)结合的混合气体形成的分子,向其基态跃迁时发射所产生的激光,称为准分子激光。 准分子激光属于低能量激光,无热效应,是方向性强、波长纯度高、输出功率大的脉冲激光,光子能量波长范围为157-353纳米,寿命为几十纳秒,属于紫外光。最常见的波长有157 nm、193 nm、248 nm、308 nm、351-353 nm。.

新!!: 波长和准分子激光 · 查看更多 »

八木天线

八木天线也叫做“引向天线”、“八木宇田天线”(Yagi-Uda antenna)、“寄生天线”,是一种定向天线。这种天线是1928年由日本天线专家和两人设计的。 用于接收电视信号的所谓「魚骨天綫」其实也是八木天线的一种,因为这种天线往往使用了较多的引向器,所以看起来像是鱼骨而得名。 因为八木天线具有增益高、方向性强、结构简单的优点,它被广泛应用在无线电测向和长距离无线电通信。但是,若使用八木天线以收看-zh-hans:模拟电视; zh-hant:類比電視;-,容易受天氣及地形環境所影響,導致電視畫面出現雪花、殘影等的現象。.

新!!: 波长和八木天线 · 查看更多 »

共轭体系

在化學當中,共軛體系是指具有单键-双键交替结构的体系,其中双键的p軌域通过电子离域相互连接,这通常會降低分子的總能量并增加其穩定性。这里的共軛是指由一个σ鍵相隔的p軌域之间发生轨道重疊(如果是大的原子,也可能涉及d軌域) 孤對電子,自由基或碳正離子都可能是此系統的一部分。這些化合物可能是環狀,非環狀,線狀或雜和狀。 一個共軛體系會有一個p軌域重疊,連接其中間的單鍵。它可以讓π電子游離通過所有相鄰對齊的p軌域。此π電子不屬於單鍵或原子,但是屬於一組的原子。 最大的共軛體系是在石墨烯、石墨、導電聚合物和奈米碳管中被發現的。 共轭体系在单键、双键相互交替(以及其他类型)的共轭体系中,由于分子中原子间特殊的相互影响,使分子更加稳定,内能更小键长趋于平均化的效应。 如苯分子中由于相邻的π键电子轨道的交迭而形成共轭,使其六个碳-碳键的键长均为1.39埃。这是分子在没有外界影响下表现的内在性质。.

新!!: 波长和共轭体系 · 查看更多 »

共振增強多光子離子化

共振增強多光子離子化(Resonance enhanced multiphoton ionization,REMPI),或譯稱共振增強多光子電離或多光子共振游離,是一種用來偵測原子和小分子的光譜方法。這個方法透過一個可調式雷射來選擇性地將原子或分子激發到某一共振的中間態;此被激發的原子或分子再被激發,並產生電離。.

新!!: 波长和共振增強多光子離子化 · 查看更多 »

共振腔

共振腔是指特定波長的波在長度固定的腔體內共振。在共振腔內的共振現象擁有較好的振幅。因為腔體的兩端是共振的節點,所以波共振時,腔體長度必須為半波長的整數倍。種類有環形共振腔、波動維電磁波的光學共振腔、微波共振腔……等等。 光學共振腔是雷射組成的三元素之一,可以依照反射面的存在與否分為開腔與閉腔兩種。共振腔的作用主要是用來讓增益介質實現了佈居數反轉後,可以做為光放大器(Gain amplifier),透過共振腔可收集放大後之訊號,形成一震盪器(oscillator)。 雷射共振腔的種類主要分為三大類,第一種為平行平面腔由兩個平行平面反射鏡組成,光學上稱為法布里-博羅光共振腔(Fabry–Perot resonator),簡稱為F - P腔,多用於固態雷射系統。第二種為雙凹腔由兩個凹面反射鏡組成,其中一種個特殊而常用的形式是共焦腔(confocal),由兩個曲率半徑相同的凹面反射鏡組成,且兩鏡間距離等於曲率半徑,兩鏡面與焦點重合,共焦腔衍射損耗小,調整容易。第三種為平凹腔由伊格平面反射鏡和一個凹面反射鏡組成,其中一種特殊而常用的形式是半共焦腔,相當於共焦腔的一半。 而共振腔的穩定性條件是要獲得雷射系統的穩定輸出,需使離軸光線能在腔內往返任意多次而不會跑出腔外,此為共振腔達到穩定性條件。常用g參數來描述雷射共振腔的性質。共振腔的g參數定義為(以两面镜子构成的共振腔为例): g_1.

新!!: 波长和共振腔 · 查看更多 »

先驅者鍍金鋁板

先驱者鍍金鋁板,是指安裝在兩艘無人駕駛太空探測器-先驱者10號及先驱者11號上,一塊載有由人類發出的訊息的鍍金鋁板。板上刻有一男一女的畫像,及一些符號用以表示這艘探測器的來源。就像海中漂浮的瓶中信,這段訊息將會在星際間漂浮。但是,若探測器要航行到一個距離太陽系30光年距離的恆星的話,其所需的平均時間就已經比我們身處的銀河系現時的年齡還要長。 先驱者探測器是第一個離開太陽系的人造物件。這塊鍍金鋁板裝嵌在探測器上天線的主柱之下,用以保護其不受太空塵所侵蝕。美國太空總署希望這塊板及探測器本身能比地球及太陽更加長壽。 在先驱者計劃後,旅行者計畫的探測器亦仿效這塊鍍金鋁板,把更加複雜及詳細的訊息收錄於旅行者金唱片之中,隨著探測器於1977年發射到太空之中。.

新!!: 波长和先驅者鍍金鋁板 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

新!!: 波长和光 · 查看更多 »

光声效应

声光效应(Photoacoustic effect)是指物体在周期性变化的光照下产生声信号的现象。光声效应的产生是由于在光的照射下物体能量增加,局部聚集的能量以热的形式释放出来从而引起周围物质的震动。震动的频率取决于光信号的频率,而强度则与材料、几何形状等物体自生性质有关。.

新!!: 波长和光声效应 · 查看更多 »

光子

| mean_lifetime.

新!!: 波长和光子 · 查看更多 »

光学构件的制作和检测

光学构件的制作和检测包括許多光学构件(如透鏡)的製造及測試程序。 傳統球面透镜的製作一開始會先研磨玻璃坯料,產生有粗糙表面的光学构件,這可以用環型製具來製作,接下再拋光產生光学构件需要的精細表面,一般會用的方式進行,也就是旋轉有粗糙表面光学构件,和依需求外形設計的工具磨擦,兩者之間再加入磨料及流體。 一般會用彎曲的斧鑿工具來對透镜拋光,磿料和流體的混合物稱為拋光液,一般是用陶瓷或二氧化鋯顆粒,再加入水及潤滑劑,使斧鑿工具不會粘在透镜上。拋光液中粒子的大小會視光学构件的外形及需要的表面精度而調整。 透镜在拋光後,會進行測試來確認是否產生正確外形的透镜,也確認其精度在規格範圍內。光學設備和其理想形狀的偏差一般會以波長的分數表示,而波長會以設備應用時的光波波長或是某個光源提供的可見光波長為準。便宜的透鏡誤差會到ㄧ至數個波長(λ, 2λ……等),標準的工業鏡片誤差在1/4波長(λ/4)以下。若是用在雷射、干涉測量術或全息摄影的精密透鏡其誤差在1/10波長(λ/10)以下。 除了精度誤差外,透鏡也需要符合--面品質的規格(如划痕、凹陷、斑點),其尺寸也需有一定的精準度。.

新!!: 波长和光学构件的制作和检测 · 查看更多 »

光學介質

光學介質指的是电磁波可在其中傳遞的材料,電容率與磁導率是材料的特性指標。光在各個不同材料的傳遞特性,如內部阻抗、速率等,通常都可用電容率與磁導率表示。 材料的內部阻抗可用下式表示: 其中E_x與H_y分別是電場與磁場。 在絕緣體中,可以簡化如下: 舉例來說,真空的內部阻抗被稱為自由空間阻抗,以Z0表示: 波在介質中傳遞的速率可表示為c_w.

新!!: 波长和光學介質 · 查看更多 »

光學頻譜

光学频谱,简称光谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中的一部分可见光谱是电磁波谱中人眼可见的唯一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人類大脑視覺所能区别的所有颜色,譬如褐色和粉红色,其原因是粉红色并不是由单色组成,而是由多种色彩组成的。参见颜色。.

新!!: 波长和光學頻譜 · 查看更多 »

光學望遠鏡

光學望遠鏡是用於收集可見光的一種望遠鏡,並且經由聚焦光線,可以直接放大影像、進行目視觀測或者攝影等等,特別是指用於觀察夜空,固定在架台上的單筒望遠鏡,也包括手持的雙筒鏡和其他用途的望遠鏡。 光是由光子構成,而專業的望遠鏡會由電子探測器來收集光子。光學望遠鏡有三種主要的形式:折射望遠鏡(使用凸透鏡折射聚焦)、反射望遠鏡(以鏡片反射光線並聚焦)和使用透鏡和反射鏡片組合的折反射望遠鏡(複合式望遠鏡),如馬克蘇托夫望遠鏡和史密特攝星鏡。.

新!!: 波长和光學望遠鏡 · 查看更多 »

光導纖維

光導纖維(Optical fiber),簡稱光纖,是一種由玻璃或塑料製成的纖維,利用光在這些纖維中以全反射原理傳輸的光傳導工具。微細的光纖封裝在塑料護套中,使得它能夠彎曲而不至於斷裂。通常光纖的一端的發射裝置使用發光二極體或一束激光將光脈衝傳送至光纖中,光纖的另一端的接收裝置使用光敏元件檢測脈衝。包含光纖的线缆称为光缆。由於信息在光導纖維的傳輸損失比電在電線傳導的損耗低得多,更因為主要生產原料是硅,蘊藏量極大,較易開採,所以價格很便宜,促使光纖被用作長距離的信息傳遞媒介。隨著光纖的價格進一步降低,光纖也被用於醫療和娛樂的用途。 光纖主要分為兩類,與。前者的折射率是漸變的,而後者的折射率是突變的。另外還分為單模光纖及多模光纖。近年來,又有新的光子晶體光纖問世。 光导纤维是双重构造,核心部分是高折射率玻璃,表层部分是低折射率的玻璃或塑料,光在核心部分傳輸,并在表层交界处不断进行全反射,沿“之”字形向前傳輸。这种纤维比头发稍粗,这样细的纤维要有折射率截然不同的双重结构分布,是一个非常惊人的技术。各国科学家经过多年努力,创造了内附着法、MCVD法、VAD法等等,制成了超高纯石英玻璃,特制成的光导纤维傳輸光的效率有了非常明显的提高。现在较好的光导纤维,其光傳輸損失每公里只有零点二分贝;也就是说传播一公里后只損4.5%。.

新!!: 波长和光導纖維 · 查看更多 »

光度函数

光度函数或相对视见函数為人眼对不同波长光的平均视觉灵敏度,可用于將辐射能量转化为可见光的計算。它並非在所有情況下都完全準確,而是一個以實驗方式得到的平均值。經由国际照明委员会(CIE)確認後,現已成為所有色彩科學使用的標準函數,並進一步成為CIE1931色彩空间的標準颜色匹配函數之一。.

新!!: 波长和光度函数 · 查看更多 »

光度测定 (天文学)

光度测定是天文学中用来量度通量,或者说一个天体电磁辐射强度的相关技术。如果是对辐射的广泛波长波段进行光度测定,既测量辐射的总量,又测量其光谱分布,则使用术语分光光度法。.

新!!: 波长和光度测定 (天文学) · 查看更多 »

光分解離子成像

光分解離子成像,或更普遍地來說,產物成像是一種測量化學反應或光分解產物速度分佈的實驗技術 。 該方法使用二維偵測器,通常是微通道板,來擷取透過共振增強多光子離子化之態選擇後的離子到達偵測器的位置。第一個光分解離子成像實驗是由大衛·錢德勒(David W. Chandler)和保羅·休斯頓(Paul L. Houston)在1987年完成,其題目為碘甲烷的光分解動態學。.

新!!: 波长和光分解離子成像 · 查看更多 »

光的色聚

光的色聚是光线由於不同波長在介質中有不同折射率,因此在通過凸透鏡或某些其他介质後发生汇聚,此原本分散分布的各色光(彩色光)轉變成白光的現象。 此現在之原理與光的色散相同,但為光線以相反路徑行進的結果。.

新!!: 波长和光的色聚 · 查看更多 »

光电二极管

光电二极管(photodiode)是一种能够将光根据使用方式,转换成电流或者电压信号的光探测器。 常见的传统太阳能电池就是通过大面积的光电二极管来产生电能。 光电二极管与常规的半导体二极管基本相似,只是光电二极管可以直接暴露在光源附近或通过透明小窗、光导纤维封装,来允许光到达这种器件的光敏感区域来检测光信号。许多用来设计光电二极管的二极管使用了一个PIN结,而不是一般的PN结,来增加器件对信号的响应速度。光电二极管常常被设计为工作在反向偏置状态。.

新!!: 波长和光电二极管 · 查看更多 »

光电管

光電管(Phototube)是光電效應的應用之一。利用金屬在光照射之下所產生的光電子,再加以測量光電子之最大電壓即可測定出光子波長。為了使能產生光電效應的光子頻率更廣,通常被照射的金屬電極會選用游離能較低的鹼金屬(如:銫)。而窗口的材質取決於需要測定的波長範圍。 若波長範圍在於可見光之間,可選用普通玻璃作為窗口材質; 波長範圍涉及紫外光,常選用石英作為窗口材質; 波長範圍在紅外光,常以硒化鋅、矽元素作為窗口材料。.

新!!: 波长和光电管 · 查看更多 »

光衰减器

光衰减器(optical attenuator)、光学衰减器或光纤衰减器(fiber optic attenuator)是一种用于减少存在于自由空间或光導纖維中的光信号功率的设备。光衰减器的基本类型有固定、逐步可变和连续可变。.

新!!: 波长和光衰减器 · 查看更多 »

光谱仪

光譜儀(Spectroscope)是將成分複雜的光,分解為光譜線的科學儀器,由稜鏡或衍射光柵等構成。利用光譜儀可測量物體表面反射的光線。陽光中的七色光是肉眼能分的部分(可見光),但若通過光譜儀將陽光分解,按波長排列,可見光只佔光譜中很小的範圍,其餘都是肉眼無法分辨的光譜,如紅外線、微波、紫外線、X射線等等。通過光譜儀對光信息的抓取、以照相底片顯影,或電腦化自動顯示數值儀器顯示和分析,從而測知物品中含有何種元素。光谱仪是应用光学原理,对物质的结构和成分进行观测、分析和处理的基本设备,具有分析精度高、测量范围大、速度快和样品用量少等优点。因此,其广泛应用于冶金、地质、石油化工、医药卫生、环境保护等部门。也是军事侦察、宇宙探索、资源和水文勘测所必不可少的仪器。 又称分光仪。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 将复色光分离成光谱的光学仪器。光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。单色仪是通过狭缝只输出单色谱线的光谱仪器,常与其他分析仪器配合使用。.

新!!: 波长和光谱仪 · 查看更多 »

光路计算

光路计算是二十世纪就已经开始出现的光学镜头设计中的古老技术Moritz von Rohr p35-82。几何光路计算用于描述光线通过镜头系统或者光学仪器时的传输特性,并建立系统的成像属性模型。这用于建造前优化光学仪器的设计,例如减少色像差或者其它的光学像差。光线跟踪也用于计算光学系统中的光程差,光程差用于计算光学波前,而光学波前用于计算系统的衍射作用,例如点扩展函数、调制传递函数以及 Strehl ratio。光线跟踪不仅用于摄影领域的镜头设计,也可以用于微波设计甚至是无线电系统这样的较长波长应用,也可以用于紫外线或者X射线光学这样的较短波长领域。 光学设计所用的技术通常比较严格,并且能够更加正确地反映光线行为。尤其是光的色散、衍射效应以及光学镀膜的特性在光学镜头设计中都是非常重要的。 在计算机出现以前,光路计算需要使用三角以及对数表手工计算Conrady p7,许多传统摄影镜头的光学公式都是许多人共同完成优化的,每个人只能处理其中一小部分的计算工作。现在这些计算可以在如来自于 Lambda Research 的 OSLO 或者 TracePro、Code-V 或者 Zemax 这些光学设计软件上完成。一个简单的光路计算版本是光线传递矩阵分析,它通常用于激光光学谐振腔的设计。.

新!!: 波长和光路计算 · 查看更多 »

光鑷

光鑷或光鉗(英文:optical tweezers)是一種通過高度聚焦激光束产生力(量级通常为皮牛顿级)移動微小透明物體的裝置。其中把持物體的區域也稱爲光阱(optical trap),相應的技術稱作光學捕捉(optical trapping)。這種技術可以用於移動細胞或病毒顆粒,把細胞捏成各種形狀,或者冷卻原子。由于光镊的力可以精准地直接作用于细胞甚至更小的目标,光镊在生物学方面的应用越来越广泛。.

新!!: 波长和光鑷 · 查看更多 »

光致變色鏡片

光致變色鏡片是一種當曝露在某特定波長的光(一般是紫外光)時會變得深色的鏡片,而當不再被此光源照射便會回覆原有的透光率而變得清透。光致變色鏡片可以由玻璃或包括聚碳酸酯在內的塑膠制成。 其變色效果是由添加在鏡片內的氯化銀或其他鹵化物,此類物質在沒有被紫外光照射時對可見光是透明的,當被紫外光照射時就會起化學反應,化學反應後變成會吸收部份可見光而令鏡片呈現得深色。此化學反應屬可逆反應,所以當不再被紫外光照射時鏡片就會回覆原有透明的狀態。.

新!!: 波长和光致變色鏡片 · 查看更多 »

光通量

光通量(Luminous flux),符号是Φ,标准单位是流明(lumen,简记为lm),是一種表示光功率的物理量,是表示光源整体亮度的指标。指每單位時間內由光源所發出或由被照體所吸收的光能,可以由发光强度(Iv)对立体角的积分计算得到。 光通量体现的是人眼感受到的功率。对大量具有正常视力的观察者所做的实验表明,在较明亮环境中人的视觉对波长为555.0nm左右的绿色光最敏感,这种人眼对各波长光谱敏感程度不同的性质可以由视见函数V(λ)表示。光通量就是用来表示辐射功率经过人眼的视见函数影响后的光谱辐射功率大小的物理量。.

新!!: 波长和光通量 · 查看更多 »

光速可變理論

光速可變理論認爲光速(以c表示)是時空的函數,因此不是確定的數值。在經典物理學中,真空中的光速是一個常數,在國際單位制中被定義為c.

新!!: 波长和光速可變理論 · 查看更多 »

光束發散度

光束發散度是指電磁束或光束隨著和發射點距離,其或是半徑增加的程度,一般會以角度的方式表示。此一詞語只在遠場下有效,也就是離焦點很遠的位置。不過遠場也可能很靠近辐射孔,視發射孔孔徑及工作波長而定。 光束發散度常用在以光學方式處理電磁束的情形,此時光束的孔徑會遠大於其波長。不過光束發散度也會用在射頻的範圍,前提是天線工作在所謂的光學區,特徵長度遠大於一個波長。 光束發散度常用在光束截面是圓形的情形下,不過也有例外。例如光束截面是楕圓時也可以使用,只是要標明光束發散度參考的位置,例如是楕圓的長軸或是短軸。 若知道離焦點很遠二點的光束直徑(Di, Df)及這二點的距離(l),可以用下式計算光束發散度\Theta 若平行光是用透鏡聚焦,在透鏡後側焦點處的直徑D_m和初始光束的光束發散度有以下的關係 其中f為焦距 像所有的電磁束一樣,雷射也會有發散的問題,雷射的發散一般會用千分之一弧度(mrad)或是角度表示。在許多應用上,比較希望用低發散度的光束。若不考慮因為雷射束品質不良產生的發散,其發散度會和其波長成正比,和光束最窄處的直徑成反比。例如紫外線雷射其波長為308 nm,若最小直徑相同,發散會比波長為808 nm的紅外線雷射要好。高品質雷射束的發散度可以用高斯光束的數學來建模。 若高斯雷射束的徑向光束發散度\theta.

新!!: 波长和光束發散度 · 查看更多 »

光深度

光深度是透明度的測量,在定義上是輻射或光在傳輸路徑上被散射或吸收的比率。為了讓光深度更加形象化,可以想一想霧。在觀測者和物體之間的霧會立刻使得你前方的光深度為零。當物體遠離時,光深度將會增加,直到該物體遠至不能被看見為止。.

新!!: 波长和光深度 · 查看更多 »

光敏电阻

光敏电阻是利用光电导效应的一种特殊的电阻,简称光电阻,又名光导管。它的电阻和光线的强弱有直接关系。光强度增加,则电阻减小;光强度减小,则电阻增大。.

新!!: 波长和光敏电阻 · 查看更多 »

克爾效应

克爾效應(Kerr effect),也稱「二次電光效應」,是物質因響應外電場的作用而改變其折射率的一種效應。克爾效應與泡克耳斯效應不同,前者感應出的折射率改變與外電場平方成正比,後者則與外電場成線性關係;前者可以在液體或非晶物質出現,後者只出現於沒有對稱中心的晶體物質。克爾效應或多或少會出現在每一種物質,但在某些液體會比較顯著。這效應最先由蘇格蘭科学家約翰·克爾(John Kerr)在1878年發現。 克爾效應又分為克爾電光效應與克爾光學效應。.

新!!: 波长和克爾效应 · 查看更多 »

克林顿·戴维孙

柯林頓·戴維森(Clinton Davisson,),美国物理学家,曾在贝尔实验室長期工作。他與雷斯特·革末,在戴維森-革末實驗裏,共同合作發現電子繞射現象。因此,戴維森和喬治·湯姆森於 1937 年一起榮获诺贝尔物理学奖。湯姆森也在同時獨立地發現電子繞射現象。.

新!!: 波长和克林顿·戴维孙 · 查看更多 »

前卫通用光盘

FVD(Forward Versatile Disc),中文名稱為前瞻多功能光碟或紅光高畫質影音光碟(依據FVD官方網站之定名),是由台灣的工業技術研究院(工研院)所主導開發的光碟儲存格式。其目標是在現有DVD與下一世代藍光光碟(HD DVD、Blu-ray Disc)之間作一過渡期,提供一個在兩者世代交替的解決方案。 FVD的全名應為HD-FVD(High Definition - Forward Versatile Disc),其中HD意為高畫質、高解析度、高分辨率、高清晰度(高清)之意,為了方便起見,一般稱之為FVD即可。.

新!!: 波长和前卫通用光盘 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

新!!: 波长和国际单位制 · 查看更多 »

CD

--,又稱--(Compact Disc,縮寫:CD),是一種用以儲存數位資料的-zh-hans:光学盘片; zh-hant:光學碟片;-,原被開發用作儲存數位音樂。CD在1982年面世,至今仍然是商業錄音的標準儲存媒體。 在CD尚未發明之前,音響系統都是屬於--,音樂的來源大多是30公分直徑的密紋唱片、收音機以及錄音機等,CD發明之前就沒有數位音響。.

新!!: 波长和CD · 查看更多 »

CIE1931色彩空间

在颜色感知的研究中,CIE 1931 XYZ色彩空间(也叫做CIE 1931色彩空间)是其中一個最先採用數學方式來定義的色彩空间,它由国际照明委员会(CIE)於1931年创立。 CIE XYZ色彩空間是從1920年代後期W. David Wright(Wright 1928)和John Guild(Guild 1931)做的一系列實驗中得出的。他們的實驗結果合併到了CIE RGB色彩空間的規定中,CIE XYZ色彩空間再從它得出。本文即闡述這兩種色彩空間。.

新!!: 波长和CIE1931色彩空间 · 查看更多 »

皮埃尔·让森

埃尔·朱尔·塞萨尔·让森(Pierre Jules César Janssen,),法国天文学家,氦元素的发现者。 1868年,让森发明在没有日食的情况下观测日珥的方法。当年8月18日,他在印度观测日食时,在色球层的光谱中测量到波长为587.49纳米的一条亮黄线,后来被证明是氦元素的发射线。 法國天文學會所授予最高獎項以他的名字命名。.

新!!: 波长和皮埃尔·让森 · 查看更多 »

状态方程 (宇宙学)

在宇宙学中,宇宙的状态方程(英文:Equation of state,EOS)被描述为一个理想流体的状态方程。这个状态方程的特征参数是一个无量纲参数w\,,它等于宇宙的能量-动量张量中压力p\,和能量密度\rho\,的比值: w.

新!!: 波长和状态方程 (宇宙学) · 查看更多 »

短波

短波(short wave,SW)是无线电的一个波长范围,其对应的频率范围被称为高频。短波的波长范围是10米至100米,高频的范围则是3MHz到30MHz。短波波段的电磁波除了能够利用地波传播外,还可通过电离层的反射进行远距离传输,因而国际广播通常都位于短波波段。.

新!!: 波长和短波 · 查看更多 »

短截线

在微波与射頻工程中,短截线是只在一端连接的传输线或波导。短截线的自由端开路或(在波导的情形)短路。忽略传输线的损耗,短截线的输入阻抗是纯抗性的;是容性还是感性,却攫欲短截线的以及是开路还是短路。短截线在无线电频率可能用作电容、电感和谐振电路。 短截线通过沿其长度方向的无线电波的駐波发挥作用。它们的电抗特性是由它们的无力长度与无线电波的波长之间的关系决定的。因此短截线最常用在拨上足够短的UHF或微波电路中,于是短截线也较小。 它们经常被用来代替分立电容和电感,因为在UHF和微波频率下,由于寄生电抗,集总元件表现不佳。 短截线常用在天线阻抗匹配电路、选频滤波器和UHF电子振荡器与射频放大器的谐振电路中。 任何类型的传输线都可以做成短截线:(它们称为)、同轴电缆、、波导管以及。短截线电路可以用史密斯图(一个可以确定多长的线可以得到所需电抗的图形工具)设计。.

新!!: 波长和短截线 · 查看更多 »

玫耳

玫耳,是紅褶傘屬(Rhodotus,又名玫耳屬)的真菌。紅褶傘屬下只有單一的網蓋紅褶傘(又名網蓋粉菇或掌狀玫耳)。它們分佈在環北帶,在北美洲東部、北非、歐洲及亞洲都可以採集得到。它們一般會在樹樁及腐朽的硬木上生長。成熟玫耳的傘狀帽呈粉紅色及膠狀的,表面有紋。生長期間在不同的光度及顏色照射下,會影響它們的大小、形狀及子實體的顏色。 由於玫耳有獨特的特徵,令其分類很難得到共識,故此它有很多異名。根據近期的分子種系發生學分析,發現玫耳最為接近Physalacriaceae下的屬。.

新!!: 波长和玫耳 · 查看更多 »

玻尔模型

玻尔模型是丹麦物理学家尼尔斯·玻尔于1913年提出的关于氢原子结构的模型。玻尔模型引入量子化的概念,使用经典力学研究原子内电子的运动,合理地解释了氢原子光谱和元素周期表,取得了巨大的成功。玻尔模型是20世纪初期物理学取得的重要成就,对原子物理学产生了深远的影响。.

新!!: 波长和玻尔模型 · 查看更多 »

玻璃

玻璃是一種呈玻璃態的无定形体,熔解的玻璃經過迅速冷卻(過冷)而成形,雖為固態,但各分子因沒有足夠時間形成晶體,仍凍結在液態的分子排布狀態。 玻璃一般而言是透明、脆性、不透氣、並具一定硬度的物料。最常見的玻璃是,包括75%的二氧化硅(SiO2)、由碳酸鈉中製備的氧化鈉(Na2O)以及氧化鈣(CaO)及其他添加物。玻璃在日常环境中呈化学惰性,亦不會與生物起作用。玻璃一般不溶于酸(例外:氢氟酸与玻璃反应生成SiF4,从而导致玻璃的腐蚀);但溶于强碱,例如氫氧化銫。 因為玻璃透明的特性,因此有許多不同的應用,其中一個主要應用是作建築中的透光材料,一般是在牆上窗戶的開口安裝小片的玻璃(玻璃窗),但二十世紀的許多大樓會用玻璃為其側面的包覆,即玻璃幕牆大樓,這種現代的玻璃已經具有防破裂的能力而被廣為應用,更新款的加入防鳥類撞擊的設計。玻璃可以反射及折射光線,而且藉由切割或是拋光,可以提昇其反射或折射的能力,因此可以作透鏡、三棱鏡、其至高速傳輸用的光纖。玻璃中若加入金屬鹽類,其顏色會改變,玻璃本身也可以上色,因此可以用玻璃製作藝術品,包括著名的花窗玻璃。 玻璃雖然容易脆斷,但非常的耐用,在早期的文化遺址中都發現許多玻璃的碎片。因為玻璃可以形成或模製成任何的形狀,而且本身是無菌的,因此常用來作為容器,包括碗、花瓶、瓶子、玻璃杯,尤其成本低廉,適合大量生產。堅硬的玻璃也常作為紙鎮、彈珠等。若將玻璃嵌入有機塑料中,是複合玻璃纤维中的重要的加固材料。 在科學上,玻璃的定義較為廣泛,是指加熱到液態時會出現玻璃轉化的无定形固體。有許多材料都符合這類玻璃的條件,包括一些金屬合金、離子鹽類、水溶液及聚合物。在包括瓶子及眼鏡的許多應用中,聚合物玻璃(如壓克力、聚碳酸酯及PET)的重量較輕,可以取代傳統的矽玻璃。 玻璃在中國古代亦稱琉璃,日語漢字以硝子代表。.

新!!: 波长和玻璃 · 查看更多 »

火烧云

日出前的火烧云 火烧云是在日出或日落的时候在天边出现的有颜色的云霞,它是大气变化的常见现象。火烧云常出现在夏季,尤其是在雷雨发生的过后。火烧云形状各异,它的出现常常象征着就表示着天气暖热、雨量丰沛,生物生长繁茂、蓬勃的时候就要到来了。.

新!!: 波长和火烧云 · 查看更多 »

火星探路者

火星拓荒者號(英文:MESUR Pathfinder)是一艘在1997年攜帶探測車登陸火星且建立基地的美國太空船。它包括命名為卡爾薩岡紀念站的登陸者和一輛重量很輕(0.6公斤/23磅)、命名為旅居者號的輪型機器人火星車 。 這艘太空船於火星全球探勘者號發射一個月之後的1996年12月4日由德爾它 II發射,並於1997年7月4日於火星上稱為歐克西亞沼區的克里斯平原阿瑞斯谷著陸。然後登陸者展開,露出裡面的火星車,在火星表面進行了許多實驗。 這項任務攜帶了一系列的科學儀器來分析大氣層、氣候、地質和岩石與土壤的組成。它是NASA在嶺導人丹尼爾·戈爾丁倡議更快、更好、更便宜的座右銘下,主要是使用低成本的太空船和頻繁發射的發現計畫的第二個專案。這個任務是NASA負責的火星探測,由噴射推進實驗室和加州理工學院的分部指導,專案經理是噴射推進實驗室的東尼·史佩爾 (Tony Spear)。 這次任務是包括火星車的一系列任務的第一次,並且是自1976年兩次維京號登陸紅色行星之後第一次的成功著陸。蘇聯雖然在1970年代的月球步行者計畫中成功的讓登月車著陸,但是它企圖讓火星車登陸火星的火星計畫卻失敗了。 除了科學目標,火星拓荒者號任務也是各種創新技術的概念証明,像是安全氣囊 - 間接著陸和自動迴避障礙,這兩項在後續的火星車任務都在採用。相對於其它的無人火星探測器任務,火星拓荒者的低成本也是很顯著的。起初,這個任務只是做為第一個火星環境測量 (Mars Environmental Survey,MESUR) 計畫。.

新!!: 波长和火星探路者 · 查看更多 »

火星探测漫游者

火星探测漫游者(Mars Exploration Rover, MER)是美国国家航空航天局的2003年火星探测计划。这项计划的主要目的是将勇气号(Spirit, MER-A)和机遇号(Opportunity, MER-B)两辆火星车送往火星,对火星这颗红色行星进行实地考察。火星探测漫游者任务开始于2003年。 任务目标是在岩石和土壤中搜寻水活动的线索。本项目是NASA火星探索项目的一部分,还包括了已经成功的1976年海盗号着陆器和1997年的火星探路者探测器。本项目原预算8.2亿美元 ,由于火星车工作时间远超过原计划的90天火星日,任务再度延伸5次,第五次任务扩展于2007年10月批准,结束于2009年。前4次延伸任务预算1.04亿美元,第五次延伸任务预算2千万美元。2007年7月的第四次扩充任务中,火星尘暴威胁到火星车太阳能电池接受日照的能力,工程师们认为2个火星车可能就此永久失效,但尘暴消散后火星车又恢复了功能。2架火星车获得了大量科学信息,为此,2个小行星被命名为:37452勇气和39382机遇。本任务的航天器由喷气推进实验室设计、建造和操作。.

新!!: 波长和火星探测漫游者 · 查看更多 »

,是一种给人类的活动进行照明的发出亮光的物体,是光源之一。燈主要用做照明,其他作用還有裝飾、娛樂等。.

新!!: 波长和灯 · 查看更多 »

碰撞

“碰撞”在物理学中表现为两粒子或物体间极短的相互作用。 碰撞前后参与物发生速度,动量或能量改变。由能量转移的方式区分为弹性碰撞和非弹性碰撞。彈性碰撞是碰撞前後整個系統的動能不變的碰撞。彈性碰撞的必要條件是動能沒有轉成其他形式的能量(熱能、轉動能量),例如原子的碰撞。非弹性碰撞是碰撞后整个系统的部分动能转换成至少其中一碰撞物的内能,使整个系统的动能无法守恒。 下面示例的碰撞原理的数学表述是由克里斯蒂安·惠更斯在1651年到1655年间提出的。.

新!!: 波长和碰撞 · 查看更多 »

碘化銫

化銫(化學式:CsI)是一種無機離子化合物,通常作為X-射線影像倍增管等螢光顯示設備之輸入熒光劑。碘化銫陰極管對於強紫外線波段有很高的偵測效率。 碘化銫晶體常用於粒子物理學實驗中電磁量能器的閃爍體材料。純碘化銫是一種快速,高密度的閃爍體材料,具有相對較高的發光量。發出的光線有兩個主要成分:位在近紫外線區的波長310 nm和460 nm 兩個波段。碘化銫的缺點是高溫度影響梯度和輕微吸濕性。 碘化銫可用於傅立葉變換光譜(FT-IR)的光譜儀作為分光鏡。碘化銫相對於更常用的溴化鉀分光鏡,有更廣泛的透光範圍,使用波段可以延伸到遠紅外線。但是有一個問題,光學的碘化銫晶體的都非常柔軟,無解理,因此很難製作出一個平坦的拋光面。此外,碘化銫光學晶體必須存放在乾燥容器中,以防止水與碘化銫反應。在碘化銫的表面鍍上一層鍺,可以盡量減少在交換分光器時,接觸到空氣中溼氣的影響。.

新!!: 波长和碘化銫 · 查看更多 »

磷光

磷光是一种缓慢发光的光致发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度),然后缓慢地退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段),而且与--过程不同,当入射光停止后,发光现象持续存在,其衰退時間大於 10^ 秒。发出磷光的退激发过程是被量子力学的跃迁选择规则禁戒的,因此这个过程很缓慢。.

新!!: 波长和磷光 · 查看更多 »

科学

科學(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 波长和科学 · 查看更多 »

科学大纲

以下大綱是科學的主題概述: 科学(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 波长和科学大纲 · 查看更多 »

稜鏡

鏡,在光學中是一種透明的光學元件,拋光與平坦的表面能折射光線。正確的表面角度取決於應用上的需求,傳統的幾何形狀是以三角型為基礎長方形為邊的三稜柱。在口頭上提到稜鏡時,通常都是指這種類型,但許多光學稜鏡都不是這種形狀的稜鏡。只要是對波長透明的材料都可以用來製造稜鏡,但傳統上和外觀上看都是以玻璃來製作。 稜鏡可以將光線分裂成原來的成分,也就是光譜(在彩虹中的顏色),也可以用來反射或分裂成不同的偏振光。.

新!!: 波长和稜鏡 · 查看更多 »

稀有气体

--、鈍氣、高貴氣體,是指元素周期表上的18族元素(IUPAC新规定,即原来的0族)。它们性质相似,在常温常压下都是无色无味的单原子气体,很难进行化学反应。天然存在的稀有气体有六种,即氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)和具放射性的氡(Rn)。而人工合成的Og原子核非常不稳定,半衰期很短。根据元素周期律,估计Og比氡更活泼。不過,理论计算显示,它可能会非常活泼,并不一定能称为稀有气体;根據預測,同為第七週期的碳族元素鈇反而能表現出稀有氣體的性質。 稀有气体的特性可以用现代的原子结构理论来解释:它们的最外电子层的电子已「满」(即已达成八隅体状态),所以它们非常稳定,极少进行化学反应,至今只成功制备出几百种稀有气体化合物。每种稀有气体的熔点和沸点十分接近,温度差距小于10 °C(18 °F),因此它们仅在很小的温度范围内以液态存在。 经气体液化和分馏方法可从空气中获得氖、氩、氪和氙,而氦气通常提取自天然气,氡气则通常由镭化合物经放射性衰变后分离出来。稀有气体在工业方面主要应用在照明设备、焊接和太空探测。氦也会应用在深海潜水。如潜水深度大于55米,潜水员所用的压缩空气瓶内的氮要被氦代替,以避免氧中毒及氮麻醉的徵状。另一方面,由于氢气非常不稳定,容易燃烧和爆炸,现今的飞艇及气球都采用氦气替代氢气。.

新!!: 波长和稀有气体 · 查看更多 »

空間頻率

間頻率,就是在每單位長度上,出現幾個同樣的幾何結構。如果同樣的幾何結構重複的距離為λ,那空間頻率就是λ的倒數。 這個概念與力學中的波動類似,λ可以視為周期T,f就是頻率ν。 下圖中(b)、(c)和(d)的空間頻率分別是(a)的2倍、4倍和8倍。.

新!!: 波长和空間頻率 · 查看更多 »

穿透深度

穿透深度是光或其他电磁辐射对某材料的穿透能力的量度,其定义为进入材料内部的电磁辐射强度减弱为表面上最初强度的1/e(约37%)距离材料表面的深度。 当电磁波入射到某材料的表面时,部分会被反射,另一部分则会进入材料的内部。这一部分的电磁波将和材料内部的原子发生相互作用:取决于材料的性质,材料中的电磁波可能传递得很远,也可以衰减得非常快。对于给定的某种材料,穿透深度一般和电磁波的波长相关。 根据比尔-朗伯定律,电磁波在材料内部的强度随着距离材料表面的深度呈指数衰减: 若  \delta_p 表示穿透深度,则有.

新!!: 波长和穿透深度 · 查看更多 »

等離子體參數

等離子體參數就是一系列決定電漿性質的參數。一般來說是以厘米-克-秒制來當作參數的基本單位,但是溫度卻是以電子伏特(eV)當作單位,而質量則是以質子質量(μ.

新!!: 波长和等離子體參數 · 查看更多 »

等效寬度

等效寬度是測量譜線在擬定強度-波長範圍區域的措施。它是由具有相同高度的連續輻射區域組成的矩形,尋找它的寬度使矩形的面積等於譜線涵蓋的面積。這是光譜強度的特徵,主要應用在天文學。.

新!!: 波长和等效寬度 · 查看更多 »

粒子輻射

粒子輻射是輻射的能量,意思是快速移動的次原子粒子。如果粒子朝著同的方向運動,就類似一束光,所以粒子輻射也被稱為粒子束。 由於波粒二象性,所有運動的粒子也都有波動性。高能量的粒子較易呈現粒子性,而低能量的粒子較容易呈現波動性。.

新!!: 波长和粒子輻射 · 查看更多 »

紫外-可见分光光度法

紫外-可见分光光度法(Ultraviolet–visible spectroscopy,UV-Vis),又称紫外-可见分子吸收光谱法,是以紫外线-可见光区域电磁波连续光谱作为光源照射样品,研究物质分子对光吸收的相对强度的方法。通过分子紫外-可见分子吸收光谱法的分析可以进行定性分析,并可依据朗伯-比尔定律进行定量分析。曾元儿, 张凌.

新!!: 波长和紫外-可见分光光度法 · 查看更多 »

紫外線B光照治療

紫外線B光照治療是用紫外線B(即波長290-320奈米的紫外光)所進行的光照療法,其又可據波長不同分為寬帶紫外線B和窄帶紫外線B。臨床上可用來治療乾癬、汗皰疹、白斑、異位性皮膚炎、全身性濕疹、尿毒症搔癢、玫瑰糠疹、苔癬性糠疹等等。.

新!!: 波长和紫外線B光照治療 · 查看更多 »

紫外线

紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.

新!!: 波长和紫外线 · 查看更多 »

紫外线指数

紫外线指数(Ultra-violet Index)指的是在某一天某个地点受到太阳紫外线(UV)辐射强度的国际计量标准。这种级数主要用于日常预报中且针对对象是一般大众。 它的目的是用来保护人们免受紫外线的伤害。皮肤过量暴露在紫外线中会导致晒伤,眼睛伤害例如白内障,肌肤老化增加皱纹和皮肤癌。公共卫生组织建议人们在紫外线指数大于或等于3级时要采取措施保护自己(例如,可以在皮肤上涂抹防晒霜和戴帽子),具体措施详见下表。.

新!!: 波长和紫外线指数 · 查看更多 »

細菌螢光素

細菌螢光素(bacteriofluorescein),指二氫黃素單核甘酸的醛複合物(FMNH2·RCHO)。细菌荧光素在荧光素酶酶促氧化过程中可以发出可见光,这被认为是发光细菌活细胞内的发光原理。 细菌荧光素中的二氢黄素单核苷酸分子由细菌细胞内的黄素单核苷酸氧化还原酶 (NADH)(EC 1.5.1.42)在还原型烟酰胺腺嘌呤二核苷酸(NADH)存在的条件下,将黄素单核苷酸(FMN)还原产生。细菌荧光素中的二氢黄素单核苷酸(FMNH2)和长链脂肪醛(RCHO)可经荧光素酶在分子氧存在下分别氧化为黄素单核苷酸和长链脂肪酸,使得反应可持续进行。该过程的第二步可释放出λmax约为490nm的蓝绿色光。.

新!!: 波长和細菌螢光素 · 查看更多 »

紅外線導引

紅外線導引也常被稱作熱導引或追熱導引,紅外線導引以感應、追蹤目標物與週遭環境的紅外線訊號強度差異來找掌握目標的位置與動向。.

新!!: 波长和紅外線導引 · 查看更多 »

紅外線空間干涉儀

紅外線空間干涉儀 (Infrared Spatial Interferometer,ISI) 是由3架65英寸 (1.65米) 的望遠鏡組成陣列的天文干涉儀,操作的範圍是中紅外線。這些望遠鏡是完全可以移動的,目前安置在加利福尼亞州的威爾遜山,彼此相距70米的距離,也使望遠鏡有相當於70米直徑的解析力。訊號經由外差電路轉換成無線電頻率,然後使用從電波天文學複製的技術進行組合。ISI由加州大學柏克萊分校的太空科學實驗室運作,在最長的70米基線上,以11微米的波長可以得到0.003角秒的解析力。在2003年7月9日,ISI記錄了中紅外線第一次的閉合相位的孔徑合成測量。.

新!!: 波长和紅外線空間干涉儀 · 查看更多 »

紅寶石雷射

紅寶石雷射(Ruby laser),固態雷射的一種,以紅寶石為介質產生。1960年5月16日,由西奥多·梅曼首次實作出來。 紅寶石雷射產生波長694.3nm的可見光脈衝,顏色為深紅色。.

新!!: 波长和紅寶石雷射 · 查看更多 »

經驗關係

經驗關係是指依照觀察得到,沒有理論根據的關係及相关。經驗關係只需和實際資料符合,不需要理論的基礎。有時會找到經驗關係式的理論解釋,此時此關係式已不再只是經驗關係式。因此相關不蘊涵因果,不過有時可以找到其因果性。有時經驗關係式只是實際解的近似,多半會等於真實解泰勒展開式的前幾項(實務上近似也可能已有相當的精確度)。有時會在以後發現經驗關係只是在特定條件下的結果,此時較廣泛的實際解簡化為較簡單的型式。 在歷史上,經驗關係式的發現相當重要,是發現其理論關係的第一步,偶爾會將此經驗係數變成無因次量。 經驗方程只是一個或多個經驗關係式用方程表示的數學式。.

新!!: 波长和經驗關係 · 查看更多 »

線性標準轉換

在數學的文獻中,線性標準轉換(linear canonical transform, LCT)也稱作"ABCD轉換。在漢米爾頓力學中,線性標準轉換是積分變換的一個代表家族,並且能夠將許多經典的轉換進行廣義化,例如傅立葉變換、分數傅立葉變換、拉普拉斯變換、菲涅爾轉換(Fresnel transform,電磁波在空氣中傳播)、高斯-魏爾斯特拉斯轉換、包格曼轉換等等等。此轉換提供了這些最常使用的線性轉換一個統一框架,並且在光學、信號轉換以及系統響應領域中都提供一般化的概念。尤其從系統工程的角度看來,線性標準轉換提供一個強大的光學系統設計和分析的工具。 此轉換有四維變數的線性積分轉換和一個限制條件,因此實際上是一個三維自由度的積分變換的家族。 在群論中,線性標準轉換屬於特殊線性群(SR(2))在時頻域上的一個作用群。.

新!!: 波长和線性標準轉換 · 查看更多 »

線性正則變換

線性正則變換是一種積分變換,在1970年代被提出。線性正則變換是廣義化的傅立葉變換、分數傅立葉變換、菲涅耳轉換(en:Fresnel transform)、拉普拉斯轉換。.

新!!: 波长和線性正則變換 · 查看更多 »

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

新!!: 波长和红外线 · 查看更多 »

红色

紅色,是以通過能量來激發觀察者的可見光譜中長波末端的顏色,波長大約為630到750納米,類似於新鲜血液的顏色,是三原色和心理原色之一。普通人是無法看到波長長過紅色的射線,而這類射線一般被稱為紅外線。.

新!!: 波长和红色 · 查看更多 »

约翰·巴耳末

约翰·雅可布·巴耳末(Johann Jakob Balmer,),瑞士数学家、物理学家。主要贡献是建立了氢原子光谱波长的经验公式——巴耳末公式。.

新!!: 波长和约翰·巴耳末 · 查看更多 »

约翰内斯·里德伯

约翰内斯·里德伯(Johannes Robert Rydberg或者Janne Rydberg,),瑞典物理学家,发现了光谱学中的里德伯公式。.

新!!: 波长和约翰内斯·里德伯 · 查看更多 »

纵模

光学谐振腔的纵模是一种由谐振腔边界条件所限定的特定的驻波模式。 腔的模式对应于沿腔轴向传播的经由腔的反射表面多次反射之后形成相长干涉的波的波长。其余的波长则因相消干涉而抑制。腔模中,纵模的波节沿着腔的轴向分布。对应的,横模的波节垂直于腔轴方向分布。.

新!!: 波长和纵模 · 查看更多 »

纵波

纵波,又稱為疏密波,是指在传播介质中质点的振动方向与波的传播方向平行的一类波,形成的波是疏密相間的波形。.

新!!: 波长和纵波 · 查看更多 »

经典电磁学

经典电磁学(Classical electromagnetism)或经典电动力学是理论物理学的分支,通常包含在广义的电磁学,以麦克斯韦方程组和洛伦兹力为基础,主要研究电荷和电流的电磁场及其彼此的电磁相互作用。当相关尺度和场强足够大以至于量子效应可忽略时(参见量子电动力学),这一套理论能够对电磁现象提供一个非常漂亮的描述。有关经典电磁理论的综述以及物理概念的详细解说可参见费曼、莱顿和桑斯;帕诺夫斯基和菲利普;以及杰克逊 等人的专著。 经典电磁理论主要发展於19世纪,以詹姆斯·克拉克·麦克斯韦的成就达到顶峰。关于这部分的历史可参见泡利、惠特克、派斯的有关叙述。 Ribarič和Šušteršič在其著作《守恒律和经典电动力学的未决问题》中基于当前对经典电磁理论的理解,考查了十二个至今尚未解决的电动力学问题;到目前为止,他们研究并引用了1903年至1989年间约240篇参考文献。如杰克逊所言,经典电动力学中最显著的问题在於,我们只可能在如下两种有限的情形下得到及讨论基本方程的解:第一种情形为给出电荷和电流的分布,求解激发的电磁场;第二种情形为给出外部的电磁场,求解内部带电粒子和电流的运动。而有时候这两种情形会合二为一,此时的处理方法却只能按次序进行:首先在忽略辐射的情形下确定在外场中带电粒子的运动,然后将运动粒子的轨迹作为辐射源的分布计算电磁辐射。很明显,在电动力学中这种处理手段只能近似正确。进一步来说,虽然麦克斯韦方程组本身是线性的,然而某些电学-力学系统中电荷和电流与它们所激发的电磁场之间的相互作用却无法忽略,对於这类系统我们还不能从电动力学上完全理解。虽然经过了一个世纪的努力,至今人们还没能得到一组能够被广泛接受的描述带电粒子运动的经典方程,同时也没有获得任何有用的实验数据的支持。.

新!!: 波长和经典电磁学 · 查看更多 »

维恩位移定律

维恩位移定律(Wien's displacement law)是物理学上描述黑体电磁辐射光谱辐射度的峰值波长与自身温度之间反比关系的定律,其数学表示为: 式中 光学上一般使用纳米(nm)作为波长单位,则 b.

新!!: 波长和维恩位移定律 · 查看更多 »

结构色

CD 肥皂泡 结构色(structural color)是光入射到空间周期与波长相近的物体上时,由光的散射、干涉或衍射作用而产生的颜色。通常见于CD和肥皂泡等物品。.

新!!: 波长和结构色 · 查看更多 »

猎户座大星云

獵戶座大星雲(M42,NGC 1976)是一個位於獵戶座的弥漫星雲,距地球1344 ± 20光年,為最接近我們的一個恒星形成區。它的亮度相當高,在全天僅次於船底座星云,在無光害的地區用肉眼就可觀察。 對於天文愛好者而言,M42是一個相當值得一看的深空天體:只要一枝小望遠鏡或雙筒望遠鏡就可以觀賞了。對於天文學家而言,這個星雲是一個熱門的研究對象,由大型的地基望遠鏡,到哈勃太空望遠鏡(HST)都指向它。獵戶座大星雲還是天文攝影愛好者和天文台的大望遠鏡最主要的拍攝對象之一。 近年天文學家已直接观测到該星雲四合星附近的原行星盤(Protoplanetary disk)、棕矮星、氣體激烈且混亂的運動,和附近大量出現的光子化恒星。M42是研究恆星誕生的觀測、研究目標之一。.

新!!: 波长和猎户座大星云 · 查看更多 »

瑞利-金斯定律

利-金斯定律是用于计算黑体辐射强度的一个定律。设w(\nu,T) 为辐射的能量密度,k是玻尔兹曼常数,c为真空中的光速,T是热力学温度,则 w(\nu,T)dv.

新!!: 波长和瑞利-金斯定律 · 查看更多 »

瑞利距离

在光學及雷射科學中,瑞利距离或瑞利长度(Rayleigh length)或瑞利範圍(Rayleigh range)是指光束沿著其行進方向,從其腰部到其面积為腰部面积兩倍的截面的距離,此时截面半径约为\sqrt 倍的腰部半径。另一個相關的參數為共焦參數(confocal parameter)b,恰為瑞利距离的兩倍。當用高斯光束來做為光束模型時,瑞利距离是相當重要的參數。.

新!!: 波长和瑞利距离 · 查看更多 »

瑞利散射

利散射(Rayleigh scattering),由英国物理学家約翰·斯特拉特,第三代瑞利男爵(John Strutt, 3rd Baron Rayleigh)的名字命名。它是半径比光或其他電磁輻射的波长小很多的微小颗粒(例如單個原子或分子)对入射光束的散射。瑞利散射在光通過透明的固體和液體時都會發生,但以氣體最為顯著。 在大氣中,太陽光的瑞利散射會導致瀰漫天空輻射,這也是天空为藍色和太陽偏黃色的原因。 瑞利散射適用於尺寸遠小於光波長的微小顆粒,和光學的“軟”顆粒(即,其折射率接近1)。当顆粒尺度相似或大於散射光的波長时,通常是由米氏散射理論、離散偶極子近似和其它計算技術来處理。 瑞利散射光的強度和入射光波长λ的四次方成反比: I(\lambda)_ \propto \frac 其中\scriptstyle I(\lambda)_是入射光的光強分布函數。 因此,波長較短的藍光比波長較長的紅光更易產生瑞利散射。.

新!!: 波长和瑞利散射 · 查看更多 »

生物组织光学窗口

生物组织光学窗口(或近紅外窗口、治療窗口)指的是光在生物组织内穿透深度达到最大值的波长区间,一般处于近红外波长范围内。在,散射是光与组织间最主要的作用形式,导致光在传播过程中迅速弥散。由于散射增大了光子在组织内的传播距离,因而光子为组织所吸收的概率也随之增大。实际上,散射效应随波长变化很小,因此,生物组织光学窗口的范围主要受限于组织的吸收,其下限(短波长一端)由血液吸收所决定,上限(长波长一端)则由水的吸收所决定。对于光学成像和光热治疗等应用而言,选择位于光学窗口波长范围内的合适光源,对于提高成像(治疗)效率、提高穿透深度、降低光致组织损伤,有着十分重要的意义。.

新!!: 波长和生物组织光学窗口 · 查看更多 »

用於數學、科學和工程的希臘字母

希臘字母被用於數學、科學、工程和其他方面。在數學方面,希臘字母通常用於常數、特殊函數和特定的變數,而且通常大寫和小寫都有分別,而且互不相關。有一些希臘字母和拉丁字母一樣,而且不被使用:A, B, E, H, I, K, M, N, O, P, T, X, Y, Z。除此之外,由於小寫的ι(iota),ο(omicron)和υ(upsilon)跟拉丁字母i,o和u相似,所以很少被使用。有時,希臘字母的字體變種在數學數有特定的意思,例如φ(phi)和π(pi)。 在金融數學中,有些會用來表示投資風險的變數。 母語為英語的數學家在讀希臘字母時,他們不會用現在的或古時的發音,但用傳統的英語發音。例如θ,數學家會讀成/ˈθeɪtə/。(古時:,現在:).

新!!: 波长和用於數學、科學和工程的希臘字母 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 波长和电子 · 查看更多 »

电光效应

电光效应是在外加电场作用下,物体的光学性质所发生的各种变化的统称。与光的频率相比,通常这一外加电场随时间的变化非常缓慢。这些不同的电光效应可分为两类:.

新!!: 波长和电光效应 · 查看更多 »

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

新!!: 波长和电磁辐射 · 查看更多 »

电离氢区

电离氢区(H II區)是發光的氣體和電漿組成的雲氣,有時會有數百光年的直徑,是恆星誕生的場所。從這些氣體中誕生的年輕、炙熱的藍色恆星散發出大量的紫外線,使星雲環繞在周圍的氣體游離。 H II區在數百萬年的歲月中也許可以誕生成千上萬顆的恆星。最後,超新星爆炸和來自星團中質量最大的那些恆星吹出的強烈恆星風,將會吹散掉H II區的氣體,留下來的就是像昴宿星團這樣的星團。 H II區是因為有大量被游離的氫原子而得名的,天文學家同樣的將中性氫的區域稱為HI區,而H2稱為分子氫。在宇宙的遠處的H II區不會被忽略,也能被看見,對其它星系H II區的觀測,在測量距離和化學組成是很重要的研究項目。.

新!!: 波长和电离氢区 · 查看更多 »

無限深方形阱

在物理學裏,無限深方形阱(infinite square potential),又稱為無限深位勢阱(infinite potential well),是一個阱內位勢為 0 ,阱外位勢為無限大的位勢阱。思考一個或多個粒子,永遠地束縛於無限深位勢阱內,無法逃出。關於這些粒子的量子行為的問題,稱為無限深方形阱問題,又稱為無限深位勢阱問題,盒中粒子問題(particle in a box problem),是一個理論問題。假若,阱內只有一個粒子,則稱為單粒子無限深方形阱問題。假若,阱內有兩個粒子,則稱為雙粒子無限深方形阱問題。假若,這兩個粒子是完全相同的粒子,則問題又複雜許多,稱為雙全同粒子無限深方形阱問題。在這裏,只討論單粒子無限深方形阱問題。 在經典力學裏,應用牛頓運動定律,可以非常容易地求得無限深方形阱問題的解答。假設粒子與阱壁的碰撞是彈性碰撞,粒子的動能保持不變。則這粒子在方形阱的兩阱壁之間來回移動,碰撞來,碰撞去,而速率始終保持不變。在任意時間,粒子在阱內各個位置的機率是均勻的。 在量子力學裏,這問題突然變得很有意思。許多基要的概念,在這問題的解析中,呈現了出來。由於問題的理想化與簡易化,應用薛丁格方程,可以很容易地,雖然並不是很直覺地,求得解答。滿足這薛丁格方程的能量本徵函數,是表達粒子量子態的波函數。每一個能量本徵函數的能量,只能是離散能級譜中的一個能級。很令人驚訝的是,離散能級譜中最小的能級不是 0 ,而是一個有限值,稱為零點能量!這系統的最小能級量子態的能級不是 0 。 更加地,假若測量粒子的位置,則會發現粒子在阱內各個位置的機率大不相同。在有些位置,找到粒子的機率是 0 ,絕對找不到粒子。這些結果與經典力學的答案迥然不同。可是,這些結果所根據的原理,早已在許多精心設計的實驗中,廣泛地證明是正確無誤的。.

新!!: 波长和無限深方形阱 · 查看更多 »

番茄紅素

茄紅素(Lycopene、分子式 C40H56)是一種明亮紅色的類胡蘿蔔素顏料,在番茄和其它紅色果子如西瓜和西柚中也有。 番茄紅素是人體最常見和是最有力的類胡蘿蔔素抗氧劑之一。它的英文名Lycopene是從番茄的種類分類茄屬Solanum lycopersicum中而來得。.

新!!: 波长和番茄紅素 · 查看更多 »

物理学史

物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。.

新!!: 波长和物理学史 · 查看更多 »

物理學重要著作列表

没有描述。

新!!: 波长和物理學重要著作列表 · 查看更多 »

物理光学

物理光學(physical optics),又稱波動光學(wave optics)是光學的一個分支,研究的是關於干涉、衍射、偏振與其它在幾何光學裏射線近似不成立的種種現象。假設光波的波長超小於儀器的尺寸,能取波長趨向於零的極限為近似,則可以使用幾何光學的方法來解析問題;對於小尺寸儀器,必需假設光波具有有限波長,改使用物理光學的方法來解析問題。 在光學通信(optical communication)裏,像量子噪音(quantum noise)一類的效應是包括在干涉理論(coherence theory)的研究領域,通常不會包括在物理光學的研究領域。 物理光學是建立在惠更斯原理的基礎,可以計算複波前(包括振幅与相位)通过光学系统的模型。这一技术能够利用计算机数值仿真模拟或计算衍射、干涉、偏振、像差 等各种複杂光学现象。由於仍然會用到近似,物理光学不能像电磁波理论模型一樣地能够全面描述光传播。对于大多数实际问题来说,完整电磁波理论模型需要的计算量太大,在现在的一般计算机硬件条件下并不十分实用,但小尺度的问题可以使用完整波动模型进行计算。.

新!!: 波长和物理光学 · 查看更多 »

物理符號表

這是一個普通物理常數和符號的清單,以粗體字表示的符號為向量。物理上,有一組常在數學表達式中出現的符號。工作者熟悉這些符號,不是每次使用都加以說明。所以,對於物理初學者,下面的列表給出了很多常見的符號包括名稱、讀法。.

新!!: 波长和物理符號表 · 查看更多 »

物質波

物理学中,物質波(即德布羅意波)係指所有物質的波(见波粒二象性)。 德布羅意說明了波長和動量成反比;頻率和總能成正比之關係,是路易·德布羅意於1923年在他的博士論文提出的。 第一德布羅意方程指出,粒子波長λ(亦稱「德布羅意波長」)和動量p的關係:(下式中普朗克常數h、粒子靜質量m、粒子速度v、勞侖茲因子γ和真空光速c) 第二德布羅意方程指出頻率ν和總能E的關係: 這兩個式子通常寫作.

新!!: 波长和物質波 · 查看更多 »

物镜口径

物镜口径,经常被简称为“口径”,指的是望远镜中起主要聚光作用的那片镜片未受遮挡的部分,也就是实际有效的那部分镜片的直径。一般以毫米做单位。对于口径非常大的望远镜也常用米做单位。 对于折射望远镜,物镜口径一般是望远镜前端的凸透镜(或透镜组)的有效通光口径。 对于反射望远镜,物镜口径一般是望远镜镜筒后部的反射镜的有效通光口径。 对于折反射望远镜,物镜口径一般用望远镜前端的改正镜和后部的反射镜的口径共同表示。 物镜口径是衡量望远镜(特别是天文望远镜)性能指标的最重要的参数,它的大小直接决定了望远镜的聚光本领。.

新!!: 波长和物镜口径 · 查看更多 »

特高頻

特高頻(Ultra High Frequency,簡稱UHF),是指頻率由300MHz到3GHz的電磁波。波長由10cm到1m不等。用於短途通信,可以用小而短的天線作收發,適合移動通信。.

新!!: 波长和特高頻 · 查看更多 »

直射太陽輻射計

射太陽輻射計(英文)是一種測量太陽直射輻射強度的儀器,主要測量太陽光中波長介於300至3000奈米的輻射強度。.

新!!: 波长和直射太陽輻射計 · 查看更多 »

直鏈澱粉

鏈澱粉又称糖澱粉,是一種由葡萄糖組成的線性聚合物,各葡萄糖單體主要以α(1→4)糖苷鍵連接,每個直鏈澱粉分子通常含有數千個葡萄糖單體。直鏈澱粉與支鏈澱粉(膠澱粉)組成生物中常見的澱粉。 α(1→4)糖苷鍵導致直鏈澱粉應承螺旋狀結構,右圖為其分子結構式,其重複的葡萄糖单體數目通常为300個到3000個。 直鏈澱粉的水解消化作用比支鏈澱粉緩慢,但作為能量儲存物質,直鏈澱粉佔據較少空間,因而植物中有約20%的澱粉是直鏈澱粉。澱粉酶在直鏈澱粉分子的末端,通過水解作用把直鏈澱粉拆散為葡萄糖單體,因支鏈澱粉擁有更多的末端,所以相對水解速度較快。 碘能夠與澱粉糖螺旋結構內部結合,使吸收光線的波長改變,因此若使用少量的黃色碘溶液與澱粉混合,將會產生藍黑色。經由紅色濾鏡的彩色分析儀,可以由色彩計算出澱粉濃度。直鏈澱粉树脂也可以用于麦芽糖结合蛋白的分离。.

新!!: 波长和直鏈澱粉 · 查看更多 »

相对电容率

在电磁学裏,相对电容率,又稱為相對介電常數,定义为电容率与真空电容率的比例∶ 其中,\epsilon_ 是电介质的相对电容率,\epsilon 是电介质的电容率,\epsilon_ 是真空电容率。 對於線性电介质,電極化強度 \mathbf\,\! 與電場 \mathbf\,\! 的關係方程式為: 其中,\chi_e\,\! 是电極化率。 電位移 \mathbf\,\! 的定義涉及電場和電極化強度: 這公式又可寫為 電位移與電場成正比。所以,相对电容率与电极化率 \chi_e 有以下的关系:.

新!!: 波长和相对电容率 · 查看更多 »

相對論性多普勒效應

對論性多普勒效應描述了光因為波源與觀察者的相對運動關係(一如尋常版的多普勒效應)而有的頻率(以及波長)上的變化,而在這裡又多考慮了狹義相對論帶來的效應。 相對論性多普勒效應和非相對論性版本的多普勒效應有許多不同之處,例如其方程式納入了狹義相對論中的時間展長效應。這些方程式描述了所觀察到的完全頻率差值,並具有相對論要求的洛侖茲對稱性。.

新!!: 波长和相對論性多普勒效應 · 查看更多 »

相干长度

在物理学中,相干长度表示的是相干波(例如电磁波)保持一定的进行传播的距离。当相互干涉的波的路径之间的差距小于相干长度时,干涉现象明显。波的干涉长度越长,越接近完美的正弦波。相干长度在全息摄影与通信工程领域是一个重要的概念。 本条目主要讨论的是经典电磁场中的相干现象。量子力学中波函数的量子相干长度是经典相干长度在数学意义上的类比概念。.

新!!: 波长和相干长度 · 查看更多 »

相干性

在物理學裏,相干性(coherence)指的是,為了產生顯著的干涉現象,波所需具備的性質。更廣義地說,相干性描述波與自己、波與其它波之間對於某種內秉物理量的相關性質。 當兩個波彼此相互干涉時,因為相位的差異,會造成相长干涉或相消干涉。假若兩個正弦波的相位差為常數,則這兩個波的頻率必定相同,稱這兩個波「完全相干」。兩個「完全不相干」的波,例如白炽灯或太陽所發射出的光波,由於產生的干涉圖樣不穩定,無法被明顯地觀察到。在這兩種極端之間,存在著「部分相干」的波。 相干性又大致分類為時間相干性與空間相干性。時間相干性與波的頻寬有關;而空間相干性則與波源的有限尺寸有關。 波與波之間的的相干性可以用來量度。是波與波之間的干涉圖樣的輻照度對比,相干度可以從干涉可見度計算出來。.

新!!: 波长和相干性 · 查看更多 »

相位因子

在量子力學裏,相位因子是一個絕對值為 1 的複數因子。假若,兩個量子態 |\psi_1\rangle\,\! 與 |\psi_2\rangle\,\! 的機率相等: 則這兩個量子態只差別於相位因子 e^\,\! ,也就是說,|\psi_1\rangle.

新!!: 波长和相位因子 · 查看更多 »

相速度

波的相速度或相位速度(phase velocity),或簡稱相速,是指波的相位在空間中傳遞的速度,換句話說,波的任一頻率成分所具有的相位即以此速度傳遞。可以挑選波的任一特定相位來觀察(例如波峰),則此處會以相速度前行。相速度可藉由波的頻率f與波長λ,或者是角頻率ω與波數(wave number)k的關係式表示: 注意到波的相速度不必然與波的群速度相同,相速是波包中某一单频波的相位移动速度;群速度代表的是「振幅變化」(或說波包)的傳遞速度,表示一段波包的包络面上具有某特性(如幅值最大或最小)的点的传播速度。 群速和相速只有是混合波(非单频波)在频散介质中传播时才有差别。 電磁輻射的相速度可能在一些特定情況下(例如:出現異常色散的情形)超過真空中光速,但這不表示任何超光速的--或者是能量移轉。物理學家阿諾·索末菲與里昂·布里於因(Léon Brillouin)對此皆有理論性描述。 參閱色散以對波的各種速度有更完整的了解。.

新!!: 波长和相速度 · 查看更多 »

發光二極管

光二極體(Light-emitting diode,縮寫为LED)是一種能發光的半導體電子元件,透過三價與五價元素所組成的複合光源。此種電子元件早在1962年出現,早期只能夠發出低光度的紅光,被惠普買下專利後當作指示燈利用。及後發展出其他單色光的版本,時至今日,能夠發出的光已經遍及可見光、紅外線及紫外線,光度亦提高到相當高的程度。用途由初時的指示燈及顯示板等;隨著白光發光二極管的出現,近年逐漸發展至被普遍用作照明用途。 發光二極管只能夠往一個方向導通(通電),叫作正向偏置,當電流流過時,電子與電洞在其內复合而發出單色光,這叫電致發光效應,而光線的波長、顏色跟其所採用的半導體物料種類與故意摻入的元素雜質有關。具有效率高、壽命長、不易破損、反應速度快、可靠性高等傳統光源不及的優點。白光LED的發光效率近年有所進步;每千流明成本,也因為大量的資金投入使價格下降,但成本仍遠高於其他的傳統照明。雖然如此,近年仍然越來越多被用在照明用途上。 2014年凭借「發明高亮度藍色發光二極體,帶來了節能明亮的白色光源」,天野浩与赤崎勇、中村修二共同获得诺贝尔物理学奖。.

新!!: 波长和發光二極管 · 查看更多 »

發光效能

光視效能(luminous efficacy)是一个光源的参数。他是光通量與功率的比值,依照文字來源此功率指的是光源輸出的輻射通量,或者是提供光源的電能,前者的定義有時叫輻射發光效率,後者稱電源發光效率。電源發光效率為一種:測量電能提供光源發出可見光的效率。輻射發光效率描述:光源提供可見光的效率,也就是光通量對輻射通量的比值。因人眼的結構,並非所有波長的光能見度都一樣。紅外光和紫外光的光譜對於發光效率不造成影響。光源的發光效率与光源把能量转化为电磁辐射的能力以及人眼感知所发出的辐射的能力有关。.

新!!: 波长和發光效能 · 查看更多 »

發色團

簡單來說發色團是分子中與顏色有關的部分。 當分子吸收某特定可见光的波長射出或反射其他波長的光時會產生顏色。而發色團是指在分子中的某個兩個分子軌域的能量差落在可見光譜的範圍上的區域。因此當可見光的能量傳遞給發色團時則其中的電子會因吸收能量而從基態躍升為激發態.

新!!: 波长和發色團 · 查看更多 »

銀河系天文學

銀河系天文學是研究我們的銀河系和其所有内容。相對來說,星系天文學是研究在我們銀河系之外的一切,包括所有其他的星系。 不要將銀河系天文學和星系的形成和演化混淆,後者一般是研究星系的誕生、結構、成分、動力學、交互作用和它們的形式和範圍。 我們自己的銀河系,就是我們的太陽系所属于的星系,在很多方面是被研究得最多的星系,即使重要的部分在可見波長區域被宇宙塵遮蔽了,在20世紀發展的無線電天文學、紅外線天文學、和仍將被氣體和塵埃遮蔽的區域首度呈現出銀河系的圖形。.

新!!: 波长和銀河系天文學 · 查看更多 »

韦尔代常数

韦尔代常數(Verdet constant)是一個光學常數,用以描述某特定物質中的法拉第效應強度。 韦尔代常數對大部分物質來說是極小且與波長相關的,它在含有順磁性離子(如鋱離子)的物質中強度最強。韦尔代常數的最大實驗值是在密火石玻璃或鋱鎵石榴紅晶體(TGG)中被找到,這個材質有極佳的透光度,並且能夠在相當的程度上抵抗雷射光的破壞。然而,原子蒸氣的韦尔代常數在某些情況下可以比TGG還要大上幾個數量級,但僅限在非常窄的波長區間內。杜倫大學的原子與分子研究團隊表示,鹼金屬蒸氣因此可作為光學隔離器(也就是光的二極體)。 法拉第效應具有著色性質(chromatic,意指和波長相關);因此,韦尔代常數在相當程度上是波長的函數。在波長為632.8奈米時,TGG中的韦尔代常數是 -134 rad/T‧m,在波長為1064奈米時,這個值掉到-40 rad/ T‧m。這個現象表示,在某個波長下依某旋光性而製作的儀器,會在較常的波長下表現出低得多的旋光度。許多法拉第旋光器和隔離器可以藉由改變TGG棒插入磁場儀器的角度而加以調整。經由這個方式,儀器便可以在設計的範圍內針對不同頻率的雷射光束進行調頻校正。真正的多頻光源(例如超短脈衝雷射或是調頻震盪雷射)不會在整個波長頻譜中看到一樣的旋光性。 韦尔代常數以法國物理學家的姓來命名。.

新!!: 波长和韦尔代常数 · 查看更多 »

莫塞萊定律

莫塞莱定律(Moseley's law)是一個描述從原子發射出來的 X-射線性質的經驗定律。这一定律的结论是原子的电子层受激发(例如用高能贝塔射线轰击该元素做的靶板)产生的X射线的频率的平方根与元素的原子序数成线性比。这实际上是玻尔公式的一个实验结果。 在量子力學的發展歷史裏,亨利·莫塞莱建立的莫塞莱定律佔有很重要的角色。這定律證實了波耳模型的原子核在數量方面的概念:給予每一種元素其原子序數,與原子核的單位電荷數目成正比(後來的實驗發現原子序數就是原子核的質子數量)。在這定律之前,原子序數只是一個元素在週期表內的位置,並沒有直接地牽扯到任何可測量的物理量。.

新!!: 波长和莫塞萊定律 · 查看更多 »

莫耳吸光度

莫耳消光係數,又稱莫耳吸光係數,是衡量化學物種吸收特定波長光強度的度量單位。此為物質的固有性質。根據比尔-朗伯定律,A.

新!!: 波长和莫耳吸光度 · 查看更多 »

聚甲基丙烯酸甲酯

聚甲基丙烯酸甲酯(poly(methyl methacrylate),簡稱PMMA),又称做壓克力、亚克力(英文Acrylic)或有机玻璃、Lucite(商品名稱),在香港多稱做阿加力膠,具有高透明度,低价格,易于机械加工等优点,是平常经常使用的玻璃替代材料。 聚甲基丙烯酸甲酯的单体为甲基丙烯酸甲酯(MMA,壓克力單體)。.

新!!: 波长和聚甲基丙烯酸甲酯 · 查看更多 »

聚氯乙烯人造革

聚氯乙烯人造革是一种复合材料。它是由聚氯乙烯树脂、增塑剂、稳定剂和其它助剂组成混合物,涂覆或贴合在基材上,再经其它工艺过程加工而成的。它近似天然皮革,具有外现鲜艳、质地柔软、强度大、耐磨、耐拆、耐酸酸等优良性能。它广泛地应用于工业、农业、交通运输业、国防及日常生活等方面,是一种经济价值较高,有广阔发展机会的产品。 聚氯乙烯人造革虽然能代替天然皮革加工成各种制品,但它与天然皮革相比,最大的缺点是透气性和吸湿性能差;同时在结构上全都是包括表面层、中间层、纤维层等不同质的断层结构。因此,聚氯乙烯人造革将应该向具有透气性和吸湿性的方向发展,同时还得研究同质连续结构的、更接近天然皮革的品种。 解放前,中国没有聚氯乙烯人造革的生产。解放后,中国在原生产硝基漆布的基础上,于1956年成功试制出了第一批聚氯乙烯人造革。随着社会主义建设的发展,聚氯乙烯人造革生产也有了很大的发展。生产单位由一个发展到目前的数十个;产品的品种和规格有所增加,产量和质量也都有了很大的增长和提高。.

新!!: 波长和聚氯乙烯人造革 · 查看更多 »

荧光光谱

某些物质经某波长入射光照射后,分子被激发从Sa到Sb,并在很短时间内去激发从Sb返回Sa,发出波长长于入射光的荧光。.

新!!: 波长和荧光光谱 · 查看更多 »

華沙電台廣播塔

華沙電台廣播塔(1974年5月18日-1991年8月8日,Maszt radiowy w Konstantynowie),故址位於波蘭普沃茨克的Konstantynów村。由Jan Polak 公司設計,高度為646.38米 (折合2,120英尺),在1991年倒塌之前是世界上最高的人造构筑物。它始建于1970年,1974年5月18日落成,1974年7月22日开始正式投入使用。由華沙廣播電视台用作無線電長波的發送。(在1988年2月1日前為227千赫,之後為225千赫) 該塔為了保持其120千伏的電壓以及同地面絕緣,而建於2米高的絕緣層之上。由于此塔的功用是用作傳送長波,故它的高度也被特别设计使之成為一個合適的半波長天線。此外,該塔功率為2百萬瓦,它所發出的信號覆盖全歐洲、北非甚至是北美。至於它的重量,則因為不同單位轉換上的錯誤而有以下的版本:380噸、420噸、550噸,甚至是660噸也有人提及。而波蘭的资料則显示其重量為420噸。.

新!!: 波长和華沙電台廣播塔 · 查看更多 »

菲涅耳衍射

在光學裏,菲涅耳衍射(Fresnel diffraction)指的是光波在近場區域的衍射。菲涅耳衍射積分式可以用來計算光波在近場區域的傳播,因法國物理學者奥古斯丁·菲涅耳而命名,是基爾霍夫衍射公式的近似。 從每一個光學系統特徵的菲涅耳數,可以辨別光波傳播的區域是近場還是遠場。設想光波入射於任意孔徑,對於這光學系統,菲涅耳數定義為 其中,a 是孔徑的尺寸,L 是孔徑與觀察屏之間的距離,\lambda 是入射波的波長。 假若 F \gtrsim 1 ,則衍射波是處於近場,可以使用菲涅耳衍射積分式來計算其物理性質。.

新!!: 波长和菲涅耳衍射 · 查看更多 »

菲涅耳數

在光學裏,菲涅耳數(Fresnel number)是一個時常出現於衍射理論的無量綱量。菲涅耳數是因法國物理學者奧古斯丁·菲涅耳而命名。 假設,從光波源發射出的光波,照射於具有一個孔徑的不透明擋板。在擋板的後面,設有展示干涉圖樣的觀察屏。對於這光學系統,菲涅耳數 F 定義為 其中,a 是孔徑的尺寸(例如半徑),L 是孔徑與觀察屏之間的距離,\lambda 是入射光波的波長。 依照 F 數值的不同,衍射理論可以分為兩種特別案例:.

新!!: 波长和菲涅耳數 · 查看更多 »

萊曼α森林

萊曼α森林(Lyman-alpha forest)是天體光譜學中,遙遠的星系和類星體的光在穿越中性氫後產生的所有萊曼α線吸收線的總和。 這些吸收線來自星系或類星體的光在旅途中穿越的星系際氣體。因為這些光的吸收和發射遵守量子力學,只有特殊能量的光子會被吸收,這將導致個別的吸收線。森林被創建的這一事實證明,來自遙遠光源的光子依據我們和光源之間的距離,呈現哈伯紅移。 由於介於地球和遠距離光源之間的中性氫雲在不同的位置會吸收不同波長的光子(因為紅移),每一個獨立的雲會在地球上觀察到的吸收光譜不同的位置產生吸收線,有如留下自己的指紋。 萊曼α森林是探索星系際介質的重要探針,可以用來確定雲中包含的中性氫密度和頻率,以及它們的溫度。也可以用來尋找其他的元素,像是氦、碳和矽(與紅移相符),并研究它們在雲中的豐度。具有高柱密度的中性氫雲會在譜線兩邊顯示典型的阻尼翼,這被稱為阻尼萊曼α系。 高紅移的類星體在森林中的譜線數量也較高,直到紅移6的附近,星系際介質中有著大量的中性氫,森林轉變成耿恩-彼得森槽,這顯示宇宙的再電離已經結束。.

新!!: 波长和萊曼α森林 · 查看更多 »

非游離輻射

非游離輻射(Non-ionizing radiation)是指波長较长、頻率较低、能量低的射線(粒子(主要是光子)或波的双重形式)或电磁波。輻射可分為游離輻射和非游離輻射,非游離輻射无法從(绝大多数)原子或分子裡面游離(ionize)出電子。.

新!!: 波长和非游離輻射 · 查看更多 »

面紗星雲

面紗星雲是在天鵝座的一團由高溫與電離的氣體和塵埃組成的雲,它構成了天鵝圈(電波源W 78,或Sharpless 103)的可見部分,一個巨大但相對暗淡的超新星殘骸。來源的超新星爆炸大約發生在5,000至8,000年前,從爆炸迄今殘餘的物質大約涵蓋了直徑約3度的範圍(大約6倍的月球視直徑,或36個滿月的範圍)。這個星雲的確實距離仍不清楚,但是 FUSE的測量證實距離大約是1,470光年。 哈伯太空望遠鏡拍攝了數個這個星雲的影像,分析來自星雲的發射,顯示存在著氧、硫、和氫;在X射線的天空它也是最大和最亮的一個特徵。.

新!!: 波长和面紗星雲 · 查看更多 »

青岛市广播电视台

青岛市广播电视台是中国青岛市人民政府的直属事业单位,负责青岛市广播电视节目的制作播出。节目混合覆盖人口超过一千万,除个别节目采用青岛话播出外,全部频道主要用汉语(普通话)播出,总部现址位于市南区宁夏路200号。.

新!!: 波长和青岛市广播电视台 · 查看更多 »

青色

青色又稱綠藍色,在是指在介於綠色和藍色之間的颜色,波长大约为500-485奈米。 青色的含义没有统一规定,因人而异,可以泛指介于蓝色和绿色之间的各种颜色。在中國的五行學說中,青色是木的一種象徵;青色在中國文化中有生命的含義,也是春季的象徵。現代日語用詞上分指藍色(青/あお,ao)和綠色(緑/みどり,midori)。 在加色法中,青色被定义为等量的绿色光和蓝色光混合而成的颜色(如右方色标所示)。.

新!!: 波长和青色 · 查看更多 »

靛色

靛色,又稱藍紫色,為光譜中從波長420到440奈米的色彩,一般泛指介於藍色和紫色之間的藍紫色。 有一種方法可以觀察光譜靛,將一般CD片置放於螢光管下即可反射出靛色。 原理是螢光燈因含有水銀可於波長435.833奈米發出亮光,而且CD片可以作為繞射光柵使得光譜靛反射出來。其實也可以從螢光燈光譜中觀察。.

新!!: 波长和靛色 · 查看更多 »

蝙蝠算法

蝙蝠算法(Bat Algorithm,縮寫 BA),是一种元启发式优化算法,是杨新社(音译自:Xin-She Yang)在2010年提出的算法。这个蝙蝠算法以微蝙蝠(microbats)回声定位行为的基础,采用不同的脉冲发射率和响度。.

新!!: 波长和蝙蝠算法 · 查看更多 »

頻率

频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

新!!: 波长和頻率 · 查看更多 »

衍射分光鏡

衍射分光鏡 為一光學儀器,能將一個光束分成多個光束,並排成陣列(1xN)或矩陣(MxN),而這些光束的特性都是一樣的。一個衍射分光鏡是專為一種波長的光和產生特定繞射角的光束而設計。.

新!!: 波长和衍射分光鏡 · 查看更多 »

衍射光栅

衍射光栅(diffraction grating)是光栅的一种。它通过有规律的结构,使入射光的振幅或相位(或两者同时)受到周期性空间调制。衍射光栅在光学上的最重要应用是作为分光器件,常被用于单色仪和光谱仪上。 实际应用的衍射光栅通常是在表面上有沟槽或刻痕的平板。这样的光栅可以是透射光栅或反射光栅。可以调制入射光的相位而不是振幅的衍射光栅现在也能生产。 衍射光栅的原理是苏格兰数学家詹姆斯·格雷戈里发现的,发现时间大约在牛顿的棱镜实验的一年后。詹姆斯·格雷戈里大概是受到了光线透过鸟类羽毛的启发。公认的最早的人造光栅是德国物理学家夫琅禾费在1821年制成的,那是一个极简单的金属丝栅网。但也有人争辩说费城发明家戴维·里滕豪斯于1785年在两根螺钉之间固定的几根头发才是世界上第一个人造光栅。.

新!!: 波长和衍射光栅 · 查看更多 »

顯微鏡

顯微鏡泛指將微小不可見或難見物品之影像放大,而能被肉眼或其他成像儀器觀察之工具。日常用語中之顯微鏡多指光學顯微鏡。放大倍率和清析度(聚焦)為顯微鏡重要因素。 显微镜是在1590年由荷兰的詹森父子所首创。顯微鏡的類型有許多。最常見的(和第一個被發明的)是光學顯微鏡,其使用樣品的光圖像。其他主要的顯微鏡類型是電子顯微鏡(透射電子顯微鏡和掃描電子顯微鏡),超顯微鏡,和各種類型的掃描探針顯微鏡。.

新!!: 波长和顯微鏡 · 查看更多 »

顯微鏡座AU

顯微鏡座AU (AU Mic)是一顆紅矮星,距離地球10秒差距(32光年)遠 – 大約是與太陽最近恆星距離的8倍。顯微鏡座AU是一顆年輕的恆星,只有1,200萬歲,不到太陽年齡的1%,質量祇有太陽的一半,光度則只有十分之一。它是位於顯微鏡座的一顆變星,所以這顆恆星是依據變星命名規則命名的。顯微鏡 AU是繪架座β移動星群的成員之一,它也可能受到顯微鏡座AT的約束,而是一對聯星 。如同繪架座β一樣,顯微鏡座AU有一個已知是岩屑盤的星周盤。.

新!!: 波长和顯微鏡座AU · 查看更多 »

颜色

色或色彩是通过眼、脑和我们的生活经验所产生的一种对光的视觉效应。人对颜色的感觉不仅仅由光的物理性质所决定,還包含心理等許多因素,比如人类对颜色的感觉往往受到周围颜色的影响。有时人们也将物质产生不同颜色的物理特性直接称为颜色。.

新!!: 波长和颜色 · 查看更多 »

飞秒激光

飞秒激光是指时域脉冲宽度在飞秒(毫微微秒,10的负15次方秒)量级的激光。飞秒激光不是单色光,而是在中心波长左右的一段波长连续变化光的组合,利用这段范围内连续波长光的空间相干来获得时间上极大的压缩,从而实现飞秒量级的脉冲输出。飞秒量级短脉冲的激光器通常是利用锁模技术来实现的,常用的激光晶体为激光谱线很宽的钛宝石晶体等。 飞秒激光可以用在聚合物加工、醫學成像及外科醫療上。雷射視力矯正(LASIK)可以利用飞秒激光制作角膜瓣。 飞秒激光现已是目前21世纪最先进的眼科手术。除此之外,也可被應用在固態物理上,以此分析晶體結構,分析其繞射或者螢光光譜圖。在基础科学研究领域,飞秒激光可用于超快现象的研究。.

新!!: 波长和飞秒激光 · 查看更多 »

飛馬座IK

飛馬座IK(亦作HR 8210)是位於飛馬座的聯星系統,距離太陽系約150光年。由于视星等仅为6.078等,只有理想状况下才能用肉眼勉强看到。 該聯星系統的主星(飛馬座IK A)是一顆主序星,光譜分類屬A型,其光度波動不大。在分類上,它屬矮造父變星,光度變化每天會重複22.9次。而伴星(飛馬座IK B)則為一顆已脫離主序星階段,並已停止以核聚變產生能量的大質量白矮星。兩顆恆星平均距離3,100萬公里(0.21 AU),比水星和太陽之間的距離還要短。 飛馬座IK B是已知最有可能演變為超新星的恆星。人們估計,當主星演化成紅巨星時,其半徑足以令伴星從主星的氣態外層吸積物質。當伴星累積的質量接近錢德拉塞卡極限(太陽質量的1.38倍)時,便有機會演化成Ia超新星。.

新!!: 波长和飛馬座IK · 查看更多 »

西奥多·莱曼

西奥多·莱曼(Theodore Lyman,),美国物理学家、光谱学家,氢原子光谱中莱曼系的发现者。 莱曼1874年出生于美国马萨诸塞州的波士顿,1893年进入哈佛大学攻读物理学,1897年毕业后留校任教。1919年前往英国剑桥大学的卡文迪许实验室工作两年,1921年回到哈佛大学,担任教授职务。1926年起,莱曼担任杰菲逊物理实验室的主任,并且是美国科学院院士。1954年在波士顿去世,终年80岁。 莱曼在研究生涯中致力于远紫外光谱的研究,曾研制成能够测量波长短于200nm谱线的真空摄谱仪。1906年莱曼和密立根进行合作,在氢原子光谱的远紫外区发现了莱曼线系,完善了氢原子光谱的研究,印证了里德伯公式、玻尔模型和里兹光谱项组合原则的正确性。此后,莱曼又观测了氖、氦、铝、镁等元素的光谱,研究了太阳光谱中的短波成分,但是没有得到满意结果。后来在他去世后的1959年,由火箭搭载的仪器才观测到了太阳光谱中的莱曼α线。除此之外,莱曼还研究过紫外线的灭菌作用。.

新!!: 波长和西奥多·莱曼 · 查看更多 »

駐波

波(standing wave或stationary wave)為兩個波長、週期、頻率和波速皆相同的正弦波相向行進干涉而成的合成波。与行波不同,駐波的波形無法前進,因此無法傳播能量,故名之。 駐波通過時,每一個質點皆作簡諧運動。各質點振盪的幅度不相等,振幅為零的點稱為節點或波節(Node),振幅最大的點位於兩節點之间,稱為腹點或波腹(Antinode)。由於節點靜止不動,所以波形沒有傳播。能量以動能和勢能的形式交換儲存,亦傳播不出去。两列传播方向相反的相干波相遇而产生干涉,或介质沿波速的相反方向运动时,均可产生这个现象。常见的驻波现象是谐振器中,一列波与自身的反射波产生干涉而形成的。 1860年,首次发现,并创造了“驻波”(stehende Welle或Stehwelle)一词。.

新!!: 波长和駐波 · 查看更多 »

观测天文学

觀測天文學(Observational astronomy)是天文學的一個分支,常用於取得數據以與天文物理學的理論比對,或以測量所得的物理量解釋模型的涵義。在實務上,通過望遠鏡或其他天文儀器的使用來觀測目標。 做為一門科學,天文學有些困難之處,由於距離的遙遠,要直接驗證宇宙的特性是不可能的。然而,有為數眾多的恆星可以被觀察到,已經能夠讓天文學家獲取一些事實的真相。這些觀測到的資訊所繪製成的各種圖表,與紀錄足以顯示一般的趨向。變星就是很貼切的具體例證,能藉由變星的特性,測量出遙遠天體的距離。這一種類的距離指標,足以測量鄰近的距離,包括附近的星系,進而對其他現象進行測量。.

新!!: 波长和观测天文学 · 查看更多 »

视觉

视觉是通过视觉系统的外周感觉器官(眼)接受外界环境中一定波长范围内的电磁波刺激,经中枢有关部分进行编码加工和分析后获得的主观感觉。 人的眼可分为感光细胞(视桿细胞和视锥细胞)的视网膜和折光(角膜,房水,晶状体和玻璃体)系统两部分。其适宜刺激是波长为380-760纳米的电磁波,即可见光部分,约150种颜色。该部分的光通过折光系统在视网膜上成像,经视神经传入到大脑视觉中枢,就可以分辨所看到的物体的色泽和分辨其亮度。因而可以看清视觉范围内的发光或反光物体的轮廓,形状,大小,颜色,远近和表面细节等情况。通过视觉,人和动物感知外界物体的大小、明暗、颜色、动静,获得对机体生存具有重要意义的各种信息,至少有80%以上的外界信息经视觉获得,视觉是人和动物最重要的感觉。 视觉感受野(receptive field of vision)是指视网膜上的一定区域与范围。当它受到刺激时,就能激活视觉系统与这个区域有联系的各层神经细胞的活动。网膜上的这个区域就是这些神经细胞的感受野。 值得注意的是,相关的视觉欺骗试验提示,人所看到的内容,和其本身想看到的内容有关。 category:生理學 Category:感官 yi:זעהן.

新!!: 波长和视觉 · 查看更多 »

视觉系统

视觉系统是神经系统的一个组成部分,它使生物体具有了视知觉能力。 它使用可见光信息构筑机体对周围世界的感知。视觉系统具有将外部世界的二维投射重构为三维世界的能力。需要注意的是,不同物种所能感知的可见光处于光谱中的不同位置。例如,有些物种可以看到紫外部分,而另一些则可以看到红外部分。 本条目主要介绍哺乳动物的视觉系统,其他很多“高等”动物也具有与之类似的视觉系统。 哺乳动物的视觉系统包括:.

新!!: 波长和视觉系统 · 查看更多 »

高斯光束

在光学中,高斯光束(Gaussian beam)是横向电场以及辐照度分布近似满足高斯函数的电磁波光束。许多激光都近似满足高斯光束的条件,在这种情况里,激光在光谐振腔里以TEM00波模(横向基模)传播。当它在满足近衍射极限的镜片中发生折射时,高斯光束会变换成另一种不同参数的高斯光束,因此,高斯光束是激光光学里一种方便、广泛应用的模型。 描述高斯光束的数学函数是亥姆霍兹方程的一个近轴近似解(属于小角近似的一种)。这个解具有高斯函数的形式,代表了光束中电场分量的复振幅。尽管电磁波的传播包括电场和磁场两部分,研究其中任一个场,就足以描述波在传播时的性质。 高斯光束中,场的行为可以通过几个参数加以刻画,如光斑大小,曲率半径,古依相移等。 亥姆霍兹方程的近轴近似解可能不止一个。笛卡尔坐标系下求解可得一类称为厄米-高斯模的解,在柱坐标中求解则得到一类称为拉盖尔-高斯模的解。对这两类解,最低阶都是高斯光束,高阶解则描述了光学谐振腔中的高阶横向模。.

新!!: 波长和高斯光束 · 查看更多 »

譜指數

譜指數是天文學上依據來源頻率的輻射通量密度測量的。給定頻率\nu和輻射通量 S,譜指數\alpha由下式給定: 請注意,如果通量沒有遵從冪律,譜指數本身是頻率的函數。重新排列上式,我們看見譜指數成為 譜指數也可以用波長 \lambda來界定。在這種情況下,譜指數 \alpha由下式給定: 並且在給定的頻率上,譜指數可以由下式的計算導出: 通常習慣上會使用負號,因此譜指數成為 譜指數可以暗示其屬性。例如,使用正號呈現,在無線電的頻率譜指數從0到2指示是熱輻射,而不合理 (陡峭) 的負譜指數通常指示是同步輻射。.

新!!: 波长和譜指數 · 查看更多 »

鲁米诺

鲁米诺(英文:Luminol),或称发光胺、光敏靈、流明諾,是通用的发光化学试剂,与适当的氧化剂混合时会发出引人注目的蓝色光。它是白色至淡黄色的晶体,可溶于大多数有机极性溶剂,但不溶于水。 法医学上使用鲁米诺来检验犯罪现场含有的痕量血迹,生物学上则使用鲁米诺来检测细胞中的铜、铁及氰化物的存在。.

新!!: 波长和鲁米诺 · 查看更多 »

貝林-布洛卡稜鏡

貝林-布洛卡稜鏡是類似於阿貝稜鏡的固定偏向色散稜鏡。 這款稜鏡是以發明者,法國的儀器製造者貝林博士和物理光學教授布洛林的名字命名的。 稜鏡被塑造成有4個平面的方塊,各邊正確的角度依序為90°、75°、135°、和60°。光線由AB面入射,從BC面全反射,然後從AD面離開稜鏡。對特定波長的光,進入之後經過折射在射出時,可以正確的偏轉90°。以BC平面三分之一處的O點為軸心旋轉,就可以選擇偏轉90°的波長,而不需要改變入射光、出射光與稜鏡之間的幾何關係(相對位置)。 這種稜鏡常用在包含多種波長,而從其中分離出一束指定波長的光,像是從經過非線性變頻之後的多波段雷射中分離出所需要的波長。因此,也常用在光學中的原子分光學。.

新!!: 波长和貝林-布洛卡稜鏡 · 查看更多 »

貓眼星雲

貓眼星雲(Cat's Eye Nebula,NGC 6543,科德韋爾6)是位於天龍座的一个行星狀星雲。它是已知的星雲中結構最複雜的之一,哈勃太空望遠鏡的高解析度觀測圖像揭示出其中獨特的扭結、噴柱、氣泡以及纖維狀的弧形結構。它的中心是一顆明亮、熾熱的恆星,約1000年前這顆恆星失去了它的外層結構,從而產生了貓眼星雲。 貓眼星雲於1786年2月15日由威廉·赫歇爾首先發現。1864年,英國業餘天文學家威廉·赫金斯對貓眼星雲作了光譜分析,使之成為首個通過光譜分析技術進行研究的行星狀星雲。赫金斯的研究結果首次表明行星狀星雲由高溫氣體而非恆星組成。目前,貓眼星雲已被人們在從遠紅外到X 射線的整個電磁波段進行過觀測。 現代研究引出了數個關於貓眼星雲的謎團。它的複雜結構有可能部分地是由一對中心聯星拋射的物質造成的,但迄今尚未有直接證據表明其中心恆星擁有伴星。此外,通過兩種方法測量的化學物質豐度的結果出現重大差異,其原因目前仍不能肯定。哈勃望遠鏡的觀測揭示出在「貓眼」的周圍有幾個由中心恆星在遠古時代拋射出的球形外殼構成的昏暗的光環,這些拋射的確切機制現在尚不明確。.

新!!: 波长和貓眼星雲 · 查看更多 »

负折射率超材料

负折射率超材料或负折射率材料(NIM)是一种人造光学结构,它的折射率对于一定频率范围内的电磁波是负值。目前没有任何天然材料拥有这一属性。广义地说,超材料可以指任何合成材料,但一般上指的是拥有负折射率的一类材料,这些材料具有不寻常的光学属性和奇异的性质。 负折射率超材料由基本结构单元周期性排列构成,基本结构单元称为单胞,单胞的大小明显小于光的波长。单胞在实验室最早由印刷電路板材料制成,即由导线和电介质制成。通常情况下,这些人工制备的单胞按特定的重复形式堆叠或在平面上排列起来,组成单个的超材料。 负折射率超材料的单胞对光的响应是在构筑材料之前预先设计好的,材料总的对光的响应主要由单胞的几何形状决定,行为与其组分对光的响应有着根本的不同。超材料是“从下到上合成的有序宏观材料”,具有其组分所不具有的涌现性质。Shivola, Ari.

新!!: 波长和负折射率超材料 · 查看更多 »

超長基線陣列

長基線陣列(Very Long Baseline Array,簡寫:VLBA)是由位於美国新墨西哥州索科洛的美国国家射电天文台陣列操作中心遙控的10架電波望遠鏡組成的陣列。這個阵列是全世界最大的天文超長基線干涉測量仪器。阵列於1986年2月開始建造,至1993年5月才全部完成,並在1993年5月29日首度使用全部的10架天線,全部的建設費用為8500萬美元。 每個甚長基線站都有一架直徑25公尺的碟型天線和一棟作為操控室的建築,用來放置電腦、紙帶記錄器和其他必須的儀器,並用來蒐集和儲存天線所獲得的訊號。每個天線的重量是240噸,當直立的指向上方時高度相當於10層樓。基線的最大長度為8611公里。.

新!!: 波长和超長基線陣列 · 查看更多 »

路易·德布罗意

路易·维克多·德布罗意,第七代布罗意公爵(Louis Victor de Broglie, prince, puis duc de Broglie,),简称路易·德布罗意(Louis de Broglie),法國物理學家,法國外交和政治世家布羅意公爵家族的後代。从1928年到1962年在索邦大學擔任理論物理學教授,1929年因發現了電子的波動性,以及他對量子理論的研究而獲諾貝爾物理學獎。1952年獲聯合國教科文組織頒發的。 於1944年,德布羅意膺選為法蘭西學術院第一席位的院士,是第十六位得到此殊榮的人士。他也是法國科學院的永久秘書。.

新!!: 波长和路易·德布罗意 · 查看更多 »

黑体 (物理学)

在熱力學中,黑体(Black body),旧称绝对黑体,是一个理想化的物体,它能夠吸收外来的全部电磁辐射,並且不會有任何的反射與透射。隨著溫度上升,黑體所輻射出來的電磁波與光線則稱做黑體辐射。這個名詞在1862年由古斯塔夫·基爾霍夫所提出並引入熱力學內。.

新!!: 波长和黑体 (物理学) · 查看更多 »

黑体辐射

黑体辐射指处于热力学平衡态的黑体发出的电磁辐射。黑体辐射的电磁波谱只取决于黑体的温度。 另一方面,所謂黑體輻射其實就是光和物質達到平衡所表現出的現象。物質達到平衡,所以可以用一個溫度來描述物質的狀態,而光和物質的交互作用很強,如此光和光之間也可以用一個溫度來描述(光和光之間本身不會有交互作用,但光和物質的交互作用很強)。而描述這關係的便是普朗克分佈(Planck distribution)。黑体辐射能量按波长的分布仅与温度有关。 黑体不仅仅能全部吸收外来的电磁辐射,且散射电磁辐射的能力比同温度下的任何其它物体强。 对于黑体的研究,使自然现象中的量子效应被發现。 黑体作为一个理想化的物体,在现实中是不存在的,因此现实中物体的辐射也与理论上的黑体辐射有所出入。但是,可以观察一些非常类似黑体的物质发出的辐射,例如一顆恆星或一個只有單一開口的空腔所发出的辐射。舉個例來說,人們觀測到宇宙背景輻射,對應到一個約3K的黑體輻射,這暗示宇宙早期光是和物質達到平衡的。而隨著時間演化,溫度慢慢降了下來,但方程式依然存在。(頻率和溫度的效應抵銷).

新!!: 波长和黑体辐射 · 查看更多 »

龍魚星雲

龍魚星雲也稱為巨口魚星雲或海蛾魚星雲,因為它的紅外線影像而聞名,他是個大質量的發射星雲和恆星形成區。它位於南十字座的方向上,距離太陽大約30,000光年。.

新!!: 波长和龍魚星雲 · 查看更多 »

辐射度

在輻射度量學當中,輻射度(radiosity)是輻射功率通過放射、反射及傳遞「離開」一個表面的單位計量方式;光譜輻射度(spectral radiosity)則指一個頻率或波長表面單位的的輻射度。輻射度的國際單位制是「瓦特每平方公尺」()。光譜輻射度的頻率與波長分別由「瓦特每平方公尺每赫茲」(W·m−2·Hz−1)和「瓦特每平方公尺每公尺」(W·m−3)計量,後者一般也有使用「瓦特每平方公尺每納米」()計算。 對此,天文學領域裡比較常用的厘米-克-秒制計量方式是「爾格每平方公分每秒」()。在除輻射度量學之外的其它物理課題中,輻射度也被稱作「强度」(intensity),但這種用法對於輻射度量學本身而言易與相混淆。.

新!!: 波长和辐射度 · 查看更多 »

辐射计

辐射计,又称“放射计”,是一种测量电磁辐射的辐射通量的装置。“放射计”这一术语有时特指红外辐射检测计,但也可指检测其它各种波长的电磁辐射的检测计。 较常见的辐射计是克鲁克斯辐射计(1873年由威廉·克鲁克斯發明),它是一个内有转子(带有颜色深浅不同的叶片)的处在在半真空中的早期模型,在受到光照时叶片会转动。 (1901年發明)的原理与克鲁克斯辐射计不同,这类辐射计更加灵敏。 微波辐射计用于检测微波波段的电磁辐射。微波辐射计内充有氩气以使其旋转。 MEMS(Micro-electromechanical Systems,微电子机械系统)辐射计,由帕特里克·简柯维克(Patrick Jankowiak)发明,可以按尼克斯辐射计或克鲁克斯辐射计的原理运作,而且可以检测更宽的波段和粒子的能级。.

新!!: 波长和辐射计 · 查看更多 »

迴旋管

迴旋管是一種能產生高功率微波的真空管,藉由加速電子在強大的磁場中做迴旋運動,同步、群聚進而產生的毫米電磁波。輸出的頻率範圍約20至250 GHz,波長涵蓋的範圍從微波至太赫茲波段的邊緣。典型的迴旋管輸出功率範圍從幾十千瓦至兆瓦都有。迴旋管可被設計成脈衝或是連續操作的功率輸出。.

新!!: 波长和迴旋管 · 查看更多 »

迈克耳孙干涉仪

迈克耳孙干涉仪(Michelson interferometer)是光学干涉仪中最常见的一种,其发明者是美国物理学家阿尔伯特·迈克耳孙。迈克耳孙干涉仪的原理是一束入射光分为两束后各自被对应的平面镜反射回来,这两束光从而能够发生干涉。干涉中两束光的不同光程可以通过调节干涉臂长度以及改变介质的折射率来实现,从而能够形成不同的干涉图样。迈克耳孙和爱德华·莫雷使用这种干涉仪于1887年进行了著名的迈克耳孙-莫雷实验,证实了以太的不存在,启发了狭义相对论。.

新!!: 波长和迈克耳孙干涉仪 · 查看更多 »

过氧化氢

过氧化氢,分子式H2O2,是除水外的另一种氢的氧化物。粘性比水稍微高,化学性质不稳定,一般以30%或60%的水溶液形式存放,其水溶液俗称双氧水。过氧化氢有很强的氧化性,且具弱酸性。.

新!!: 波长和过氧化氢 · 查看更多 »

范霍夫奇点

范霍夫奇点(Van Hove singularity),或范霍夫奇异点,指的是在晶态固体的态密度(Density of State,“DOS”)中的一个奇点(不光滑点)。范霍夫奇点处的波矢通常和布里渊区的临界点有关(不同于相图中的“临界点”)。对于三维晶体,范霍夫奇点以扭结(态密度函数不可微)的形式存在。范霍夫奇点的概念最常见的应用是在光学吸收光谱的分析中。1953年,比利时物理学家就声子的状态密度的情况对这种奇点的出现作出了第一次分析。.

新!!: 波长和范霍夫奇点 · 查看更多 »

都卜勒增寬

在原子物理学中,都卜勒增寬(Doppler broadening)是因為原子或分子的運動速度分布產生的多普勒效应造成譜線增寬的現象。自发发射分子的不同運動速度造成了不同的都卜勒位移,而這些效應的線性累積結果就是譜線增寬。因為以上效應產生的線型輪廓即為都卜勒輪廓(Doppler profile)。一個特別的,也可能最重要的狀況是因為粒子熱運動而發生的熱都卜勒增寬。接著,譜線增寬程度只取決於譜線的頻率、譜線發射分子的質量、溫度;因此都卜勒增寬可用以推測輻射體的溫度。 (或稱為無都卜勒光譜學,Doppler-free spectroscopy)可用來發現原子躍遷的真實頻率而不需要將樣品降溫至都卜勒增寬效應最低的溫度值。.

新!!: 波长和都卜勒增寬 · 查看更多 »

背景 (天文)

背景,在天文學中通常是指來自看起來空無一物的夜晚天空部分中的光線。 即使沒有可見的天體存在於給定的天空部分中,但那裏總是會有一些低亮度的光存在著,它們大多數是來自地球大氣層的漫射光(漫射光來自附近的光源和人造的地球光源,像是城市的燈光)。在可見光的波段,每平方角秒的亮度相當於視星等的22等:非常低的亮度,但不管怎樣,都在這一代望遠鏡的極限星等範圍內。哈伯太空望遠鏡一樣不能倖免於這個問題的影響。 在紅外線天文學,這個問題更為嚴重:由於包含較長的波長,天空和望遠鏡本身就是光源。解決這個問題的變通辦法是,紅外線望遠鏡通常使用一種稱為chopping的技術,鏡子在感興趣的天體和附近空的天空之間迅速的擺動。將這兩個影像互減,希望只有留下來自光源的影像。 夜空的亮度有幾個貢獻的來源,其中有些來自儀器,通常都是來自地基的儀器,或是大氣層中原本就存在的(像是氣輝)。即使我們能將儀器和大氣層中元件(像是使用中的航太機具)的效應降至最低,仍有幾個天體會為背景做出貢獻:這些可能是像小行星這種點光源、銀河系的恆星、距離遙遠的星系,以及瀰漫性的來源,如太陽系、銀河系和星系空間中的塵埃。 實際的波長和的重要性取決於測量儀器的特性。主要的測量的波長取決於特定的元件的實際重要性。由天文物理元件造成的背景所引起測量上的不確定性(或噪音)稱為致淆噪聲。 在天文學的CCD技術,背景 通常就是指在沒有光源的情況下,CCD感應器的整體光學系統對入射光的噪音。這些背景可以源自CCD的電子雜訊,來自附近沒有很好遮罩的望遠鏡,或其它的不一而足。對天空中完全空無一物之處的曝光也是背景之一,是系統的背景水平加上天空的總和。 背景系統通常是使用CCD做天文觀測最先接觸到的:在實際的觀測中要先將背景系統從觀測天體的光中扣除掉,在理論上只有來自被觀測天體的光會被導入。 Category:觀測天文學.

新!!: 波长和背景 (天文) · 查看更多 »

船尾座V445

船尾座V445是一颗位于船尾座的新星。它由金津和义于2000年11月28日在日本松江市发现,当时它的视星等正达到最大值8.6。2000年12月30日,京都大学的加藤太一在国际天文学联合会第7552号通报中报告了这颗新星。这颗新星的位置与1967年就已拍摄到的一颗13.1等的恒星相符。此恒星的自行速度测量值为赤经方向-4.7 角分/年,赤纬方向+6.4 角分/年,测量结果的标准差为4 角分/年。.

新!!: 波长和船尾座V445 · 查看更多 »

阻塞高氣壓

阻塞高氣壓是暖性高氣壓,長時間滯留在同一地方而且穩定;這些阻塞高氣壓持續時間多於5天,令受它們影響的區域有一段長時間相同的天氣(如部分地區出現持續降水) 。 在北半球,阻塞高氣壓最常於東太平洋和大西洋的春天時出現。阻塞高壓建立前,西風波動振幅會增加而波長縮短。完整環流及閉合等壓線之高壓由西風脊隆起加強發展而成,因振幅劇烈,通常與副极地低压一同出現。 阻塞高氣壓出現時,會令西風帶出現異常型態,主要影響為西風氣流分開南北兩個支流,引致副極地低壓南下,阻塞高氣壓附近引導氣流弱,會阻礙地面天氣系統移動,會間接引致起寒潮、暴雨等極端氣候出現。.

新!!: 波长和阻塞高氣壓 · 查看更多 »

阿塔卡馬大型毫米波/亞毫米波陣列

阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)位於智利北部阿塔卡瑪沙漠,是由電波望遠鏡構成的天文干涉儀。因為具備「高海拔」和「空氣乾燥」兩絕佳條件,這對毫米和次毫米波長的觀測至關重要,陣列最終選擇設在5,000公尺的查南托高原上,附近還有拉諾德查南托天文臺 (Llano de Chajnantor Observatory) 和阿塔卡馬探路者實驗。ALMA 望遠鏡陣列有 54 座口徑寬 12 米的天線以及 12 座口徑 7 米的天線,總共 是66 座天線一起協同工作。每個天線個別收集來自太空的輻射,並將訊號聚焦在天線上的接收機上。然後,所有天線取得信號經由專用的「超級計算機」--相關器 (correlator)處理,最後彙總在一起。66 座 ALMA 天線可用不同的配置法排成陣列,天線間的距離變化多樣 ,最短可以是 150 公尺,最長可以到 16 公里。若與過去的望遠鏡系統做比較,在毫米及次毫米波段上,ALMA能看到更暗的天體,同時能得到更高的影像解析度。 名為毫米及次毫米波陣列的ALMA望遠鏡在毫米波和次毫米波的波長上進行觀測,觀測波段為0.3mm到9mm,解析度高達4毫角秒,成像比哈伯太空望遠鏡銳利十倍。由於站台位址條件極佳,再加上ALMA前所未有的探測靈敏度、角分辨率、頻譜解析度和成像品質,使得天文學家可以在更廣泛的天文學領域裡進行新的研究,可望探測最早的恆星和星系起源、甚至直接捕捉行星形成時的影像。 ALMA從2011年的下半年開始科學觀測,在2011年10月3日向新聞界釋出第一張圖像,全面運作始於2013年3月。 根據ALMA官方於2016年3月31日發布最新成果,高達1AU解析力的長蛇座TW星照片,精細度號稱為望遠鏡觀測原行星盤之「史上最佳代表作」。.

新!!: 波长和阿塔卡馬大型毫米波/亞毫米波陣列 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 波长和阿尔伯特·爱因斯坦 · 查看更多 »

阿米西稜鏡

阿米西稜鏡是以發明者義大利天文學家 喬凡尼·阿米西命名的,是有色散功能的光學稜鏡,常用於分光儀中。 阿米西稜鏡由兩個三稜柱組成,第一個三稜柱通常由色散能力為中等的冕牌玻璃製成,第二個則以高色散的火石玻璃製造。光線進入第一個稜鏡時先被折射,然後進入兩個稜鏡之間的接口,再以幾乎垂直於第二個稜鏡表面的方向射出。稜鏡的角度和材質經過選擇,使得其中一個波長(顏色)的光,通常是中心的波長,離開稜鏡時與入射的光束是平行的。其他波長偏轉的角度則與材料的色散能力有關。觀察一個通過稜鏡的光源就能顯示出光源的光學光譜。 經常,阿米西稜鏡會緊接著另一個複製但反置的阿米西稜鏡。這種三個稜鏡的組合,通常被做為雙阿米西稜鏡,能增加色散的角度與作用,並且能將有用的成分,中心的波長,折射回入射的路徑上。這樣組合的稜鏡的因而稱為直視稜鏡,常常做為手持的光譜儀。 用於色散的阿米西稜鏡不可以和非色散的阿米西屋頂稜鏡混淆在一起。.

新!!: 波长和阿米西稜鏡 · 查看更多 »

阿貝稜鏡

阿貝稜鏡是以發明者德國物理學家恩斯特·阿貝命名的光學元件,是與貝林-布洛卡稜鏡相似的類型,有固定偏向角度的色散稜鏡。 這種稜鏡是三個角分別為30°-60°-90°的直角玻璃鏡塊,在使用時,光束由AB面進入,經折射後從BC面全反射向AC面, 在AC面折射後射出。這種稜鏡被設計成特定波長的光在離開稜鏡時會偏轉60°(相對於原來的方向)。這是稜鏡的最小偏向角,其他波長的光線會偏離更大的角度。參考右圖,以邊AB上的任何一個點O為軸心旋轉稜鏡,就可以選擇何種波長將被偏離60°。 不要將用於色散的阿貝稜鏡和非色散的普羅-阿貝稜鏡和阿貝-柯尼稜鏡混淆在一起。.

新!!: 波长和阿貝稜鏡 · 查看更多 »

阿贝分辨率

1873年,德国科学家E.Abbe揭示了传统光学显微镜由于光的衍射效应和有限孔径分辨率存在因此产生的分辨率的极限原理。由于可见光的波动性,其可以发生衍射,因此光束不能无限聚焦。根据此,分辨率极限数值大约为λ⁄2n,其中λ是光波波长,n是样品介质的折射率。 2014年获得诺贝尔化学奖给的三个物理学家:艾力克·贝齐格(Eric Betzig)、斯特凡·W·赫尔(Stefan W. Hell)和W·E·莫纳(W.

新!!: 波长和阿贝分辨率 · 查看更多 »

赫兹

赫兹(符号:Hz)是频率的国际单位制单位,表示内周期性事件发生的次数。赫兹是以首个用实验验证电磁波存在的科学家海因里希·赫兹命名的,常用于描述正弦波、乐音、无线电通讯以及计算机时钟频率等。.

新!!: 波长和赫兹 · 查看更多 »

藍色

蓝色是一种颜色,它是红绿蓝光的三原色中的其中一元,在这三种原色中它的波长最短(约470-440纳米)。 由于空气中灰尘对日光的瑞利散射,晴天的天空是蓝色的。由于水分子中的氢-氧键对约750纳米的光的吸收,大量的水集中在一起呈蓝色,由于氘-氧键吸收波长比较长的光(约950纳米),因此重水是无色的。 蓝色的互补色是橘色。.

新!!: 波长和藍色 · 查看更多 »

藍月

藍月(Blue moon)原為西方概念,是不依照規則在日曆中出現的滿月,相對於陰曆的置閏。大部分的西曆年中只有12個滿月,大約是每月有一次滿月。但每隔2或3年就會有一次額外的滿月,這個額外的滿月就稱為藍月,但不同的定義會使這個額外的滿月出現在不同的時刻。在Google搜索“”,會得到計算結果為1.16699016×10-8赫茲,即出現藍月的頻率。 目前最通俗的定義是出現在一個月中的第二個滿月。 藍月這個名詞在西方最常用的意義是隱喻不常發生的事件,例如:「當藍月再出現。」 (Once in a blue moon).

新!!: 波长和藍月 · 查看更多 »

蒲芬德系

蒲芬德系是物理學上的氫原子的吸收譜線或發射譜線的一個系列。這些譜線是奧古斯特·蒲芬德在1924年的實驗中發現的,是氫原子的電子在主量子數5和更高能階之間的躍遷所產生的譜線。 這些波長依序是:.

新!!: 波长和蒲芬德系 · 查看更多 »

铁木辛柯梁理论

铁木辛柯梁是20世纪早期由美籍俄裔科学家与工程师斯蒂芬·铁木辛柯提出并发展的力学模型。Timoshenko, S. P., 1921, On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section, Philosophical Magazine, p. 744.

新!!: 波长和铁木辛柯梁理论 · 查看更多 »

銣是一種化學元素,符號為Rb,原子序数為37。銣是種質軟、呈銀白色的金屬,屬於鹼金屬,原子量為85.4678。單質銣的反應性極高,其性質與其他鹼金屬相似,例如會在空氣中快速氧化。自然出現的銣元素由兩種同位素組成:85Rb是唯一一種穩定同位素,佔72%;87Rb具微放射性,佔28%,其半衰期為490億年,超過宇宙年齡的三倍。 德國化學家羅伯特·威廉·本生和古斯塔夫·基爾霍夫於1861年利用當時的新技術火焰光譜法發現了銣元素。 銣化合物有一些化學和電子上的應用。銣金屬能夠輕易氣化,而且它有特殊的吸收光譜範圍,所以常被用在原子的激光操控技術上。 銣並沒有已知的生物功用。但生物體對銣離子的處理機制和鉀離子相似,因此銣離子會被主動運輸到植物和動物細胞中。.

新!!: 波长和铷 · 查看更多 »

锝(--)是一種化學元素,其原子序數是43,化學符號是Tc。其所有同位素都具有放射性,是原子序最小的非穩定元素。地球上現存的大部分鍀都是人工製造的,自然界中僅有極少量存在。在鈾礦中,鍀是一種自發裂變產物;在鉬礦石中,鉬經中子俘獲后可以生成鍀。鍀是一種銀灰色的金屬晶體,其化學性質介於錳和錸之間。 在鍀發現以前,德米特里·門捷列夫就已經預測了它的許多性質。在他的周期表中,門捷列夫把這種尚未發現的元素叫做“類錳”,符號為Em。1937年,鍀(準確的說是鍀-97)成為第一個大部分由人工製造的元素。它的英文名來自希腊語τεχνητός,意為“人造”。 鍀的短壽命同位素鍀-99m具有γ放射性,廣泛用於核醫學。鍀-99僅具有β放射性。商業上,鍀的長壽命同位素是反應堆中鈾-235裂變的副產物,可以從乏燃料中提取得到。鍀最長壽命的同位素是鍀-98(半衰期為420萬年)。1952年,有人在壽命超過十億年的紅巨星中發現了鍀-98,讓人們認識到恆星可以製造重元素。.

新!!: 波长和锝 · 查看更多 »

锗(Germanium,舊譯作鈤)是一种化学元素,它的化学符号是「Ge」,原子序数是32。它是一種灰白色类金属,有光澤,質硬,屬於碳族,化學性質與同族的錫與硅相近。在自然中,鍺共有5種同位素,原子質量數在70至76之間。它能形成許多不同的有機金屬化合物,例如四乙基鍺及異丁基鍺烷等。 即使地球表面上鍺的豐度地殼蘊含量相對较高,但由於礦石中很少含有高濃度的鍺,所以它在化學史上發現得比較晚。門捷列夫在1869年根據元素周期表的位置,預測到鍺的存在與其各項屬性,並把它稱作擬硅。克莱门斯·温克勒於1886年在一種叫硫銀鍺礦的稀有礦物中,除了找到硫和銀之外,還發現了一種新元素。儘管這種新元素的外觀跟砷和銻有點像,但是新元素在化合物中的化合比符合門捷列夫對硅下元素的預測。温克勒以他的國家——德國的拉丁語名來為這種元素命名。 鍺是一種重要的半導體材料,用於製造晶體管及各種電子裝置。主要的終端應用為光纖系統與紅外線光學(infrared optics),也用於聚合反應的催化劑,制造電子器件與太陽能電力等。現在,開採鍺用的主要礦石是閃鋅礦(鋅的主要礦石),也可以在銀、鉛和銅礦中,用商業方式提取鍺。一些鍺化合物,如四氯化鍺(GeCl4)和甲鍺烷,会刺激眼睛、皮膚、肺部與喉嚨。.

新!!: 波长和锗 · 查看更多 »

锗酸铋

锗酸铋(Bismuth Germanate 或 Bismuth Germanium Oxide,简称BGO)是-系化合物的总称,最常见的两种锗酸铋化合物的化学式为(CAS:12233-56-6)和(CAS:12233-73-7)。由于应用最为广泛、研究最为深入,“锗酸铋”或“BGO”通常被用来特指(本条目亦遵从此习惯),这是一种立方晶系的无色透明晶体,在高能粒子或高能射线(γ射线、X射线)的作用下能发出峰值波长为480 nm的绿色荧光,利用其闪烁性能可探测高能粒子和高能射线。.

新!!: 波长和锗酸铋 · 查看更多 »

醫療級光觸媒

在化学中,光觸媒指的是能够加速光化学反应的催化剂。 常用的光觸媒有磷化鎵(GdP)、砷化鎵(GdAs)、氧化鋅(ZnO)等等,最廣泛使用的始終是二氧化鈦 (TiO2)。因為二氧化鈦 (TiO2)的氧化能力強、化學性安定又無毒。它能靠光的能量來分解有機化合物。因細菌病毒都是由有機化合物構成,所以光觸媒可被應用於進行消毒、殺菌。 醫療級光觸媒 即是達到醫療級抗菌標準的光觸媒,產品要有二個條件:.

新!!: 波长和醫療級光觸媒 · 查看更多 »

膽固醇液晶

膽固醇液晶(cholesteric liquid crystal display,縮寫「ChLCD」),分子的排列方式會隨著溫度而變化,因此會反射不同波長的光,這種顏色隨溫度變化之特性,常用於溫度感測器、電子書、电子纸上。 Category:液晶.

新!!: 波长和膽固醇液晶 · 查看更多 »

重力紅移

重力紅移或稱重力紅位移指的是光波或者其他波動從重力場源(如巨大星體或黑洞)遠離時,整體頻譜會往紅色端方向偏移,亦即發生「頻率變低,波長增長」的現象。.

新!!: 波长和重力紅移 · 查看更多 »

重力波 (相對論)

在廣義相對論裡,重力波是時空的漣漪。當投擲石頭到池塘裡時,會在池塘表面產生漣漪,從石頭入水的位置向外傳播。當帶質量物體呈加速度運動時,會在時空產生漣漪,從帶質量物體位置向外傳播,這時空的漣漪就是重力波。由於廣義相對論限制了引力相互作用的傳播速度為光速,因此會產生重力波的現象。相反地說,牛頓重力理論中的交互作用是以無限的速度傳播,所以在這一理論下並不存在重力波。 由於重力波與物質彼此之間的相互作用非常微弱,重力波很不容易被傳播途中的物質所改變,因此重力波是優良的信息載子,能夠從宇宙遙遠的那一端真實地傳遞寶貴信息過來給人們觀測。重力波天文學是觀測天文學的一門新興分支。重力波天文學利用重力波來對於劇烈天文事件所製成的重力波波源進行數據收集,例如,像白矮星、中子星與黑洞一類的星體所組成的聯星,另外,超新星與大爆炸也是劇烈天文事件所製成的重力波波源。原則而言,天文學者可以利用重力波觀測到超新星的核心,或者大爆炸的最初幾分之一秒,利用電磁波無法觀測到這些重要天文事件。 阿爾伯特·愛因斯坦根據廣義相對論於1916年預言了重力波的存在。1974年,拉塞爾·赫爾斯和約瑟夫·泰勒發現赫爾斯-泰勒脈衝雙星。這雙星系統在互相公轉時,由於不斷發射重力波而失去能量,因此逐漸相互靠近,這現象為重力波的存在提供了首個間接證據。科學家也利用重力波探測器來觀測重力波現象,如簡稱LIGO的激光干涉重力波天文台。2016年2月11日,LIGO科學團隊與處女座干涉儀團隊共同宣布,人类於2015年9月14日首次直接探测到重力波,其源自於双黑洞合併。之後,又陸續多次探測到重力波事件,特別是於2017年8月17日首次探測到源自於雙中子星合併的重力波事件GW170817。除了LIGO以外,另外還有幾所重力波天文台正在建造。2017年,萊納·魏斯、巴里·巴利許與基普·索恩因成功探測到重力波,而獲得諾貝爾物理學獎。.

新!!: 波长和重力波 (相對論) · 查看更多 »

重力波 (流體力學)

重力波(gravity waves)在流體力學,是在液體介質內或兩種介質界面間(例如大氣與海洋間)的一種波,其恢復力來自於重力或浮力。當一小團液體離開液面(界面類型)或者在液體中到了一個液體密度不同之區域(液體內類型),透過重力作用,這團液體會以波動形式在平衡態之間擺盪。 在液體介質內的類型又稱為內波,在兩界面間的類型又稱為表面重力波或表面波。海浪及海嘯也是重力波的一種表現。 重力波的傳播速度以c表示,重力加速度以g表示;其與波長及液體深度相關。 在液體深度大於二分之一波長時,波速c與波長λ相關,關係式如下: 在液體深度比波長小許多的場合,波速c則與深度h相關,關係式如下: 大气中的重力波可以产生多种效应。.

新!!: 波长和重力波 (流體力學) · 查看更多 »

量子阱

量子阱(Quantum well)是指具有离散能量值的势阱。 为了形成量子化,可以把能够在三维空间自由运动的粒子束缚在一个平面区域。当量子阱的厚度达到载流子(电子或空穴)对应物质波的波长相同的数量级时,量子束缚效应就可以发生,造成子能带(energy subband),也就是说载流子只能具有离散的能量值。.

新!!: 波长和量子阱 · 查看更多 »

針孔相機

針孔相機(Pinhole camera)是一種沒有鏡頭的相機,取代鏡頭的是一個小孔,稱為針孔。利用針孔成像原理,產生倒立的影像。 針孔相機的結構相對簡單,由不透光的容器、感光材料和針孔片組成。其中,感光材料可以是底片,也可以是相紙。為了控制曝光,還要有快門結構,通常是簡單的活門。 另外,由於進光量少,用針孔相機拍照,需要較長的曝光時間。曝光時間由數秒至數十分鐘不等,通常把相機安裝在三腳架上,或把相機放在穩固的地方。 一些藝術家利用針孔相機進行創作。例如,芬蘭藝術家Tarja Trygg以針孔相機,拍攝日照軌跡(Solargraphy),曝光時間長達6個月。.

新!!: 波长和針孔相機 · 查看更多 »

臭氧层空洞

臭氧層破洞(Ozone depletion)地球大氣上空平流層(臭氧層)的臭氧從1970年代開始,以每十年4%的速度遞減的一種現象。在兩極地區的部份季節,遞減速度還超過每十年4%,而在春季時連對流層的臭氧也在減少,形成所謂臭氧層破洞。 臭氧被消耗的主要原因是氯化物和溴化物对臭氧分解的催化作用引起的,这些卤素主要来源于地面释放的氟氯烃(CFC),商品名称为氟里昂。 因為臭氧層可以阻擋對生物有害的紫外線(波長為270-315 奈米)進入大氣層,被消耗而稀薄甚至破洞的臭氧層會導致皮膚癌,白內障等疾病患者的增加,並造成一些生物品種(如海洋浮游生物)的滅絕,所以蒙特利爾議定書規定禁止生產氟氯烴等一些能造成臭氧層被消耗的物質。.

新!!: 波长和臭氧层空洞 · 查看更多 »

里德伯公式

里德伯公式(又称里德伯-里兹公式)是1889年瑞典物理学家里德伯提出的表示氢原子谱线的经验公式。 其中R.

新!!: 波长和里德伯公式 · 查看更多 »

金属氢

金属氢是一种氢元素的简并态物质,双原子分子的同素异形体。当氢气被充分压缩,经过相变后便会产生金属氢,此形态的氢表现出金属的特性。此形态是由1935年以理论预测出 。 固態金属氢是由原子核(即质子)组成的晶体结构,其原子间隔小于玻尔半径,与电子波长长度相当(参见德布罗意波长)。电子脱离了分子轨道,表现为一般金属中的自由电子。而在‘液态’金屬氢中,质子没有晶格次序,质子和电子组成液态的系统。 2017年初,哈佛大學的研究团队通过对氢气施加495GPa的高压,首次制得固态金属氢。 2017年2月22日,由于操作失误,盛放金属氢的鑽石容器破裂,这块金属氢样本消失了。.

新!!: 波长和金属氢 · 查看更多 »

金屬銨

金屬銨,是一種簡併態物質,也是一種電子化合物及超原子。当氢气與氨氣被充分压缩,经过相变后便会产生金屬銨。但這種相態的銨無法於標準狀態下存在,標準狀態下銨僅能以離子或溶液相(aq)狀態存在。相關理論是基於銨與其他鹼金屬反應特性十分相近,而目前已知能於標準狀態下存在的金屬銨,只有與汞的合金,即銨汞齊。 固态金屬銨是由銨根離子组成的晶体结构,其離子间隔小于玻尔半径,与电子波长长度相当(参见德布罗意波长)。电子脱离了分子轨道,表现为一般金属中的传导电子。 在高压下,浸在大量自由电子海中的铵离子可能会表现出类似于金属的性质,使得金屬銨得以穩定,如同金屬氫一般。冰巨星天王星与海王星的内部就可能存在这种“金屬銨”。.

新!!: 波长和金屬銨 · 查看更多 »

金星

金星(英語、拉丁語:Venus,天文符號:♀),在太陽系的八大行星中,是從太陽向外的第二顆行星,軌道公轉週期為224.7地球日,它沒有天然的衛星。在中國古代稱為太白、明星或大囂,另外早晨出現在東方稱啟明,晚上出現在西方稱長庚。到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現太白為白色,與「五行」學說聯繫在一起,正式把它命名為金星。它的西文名稱源自羅馬神話的愛與美的女神,维纳斯(Venus),古希腊人称为阿佛洛狄忒,也是希腊神话中爱与美的女神。金星的天文符号用维纳斯的梳妆镜来表示。 它在夜空中的亮度僅次於月球,是第二亮的天然天體,視星等可以達到 -4.7等,足以照射出影子。由於金星是在地球內側的內行星,它永遠不會遠離太陽運行:它的離日度最大值為47.8°。 金星是一顆類地行星,因為它的大小、質量、體積與到太陽的距離,均與地球相似,所以經常被稱為地球的姊妹星。然而,它在其它方面則明顯的與地球不同。它有著四顆類地行星中最濃厚的大氣層,其中超過96%都是二氧化碳,行星表面的大氣壓力是地球的92倍。表面的平均溫度高達,是太陽系最熱的行星,比最靠近太陽的水星還要熱。金星沒有將碳吸收進入岩石的碳循環,似乎也沒有任何有機生物來吸收生物量的碳。金星被一層高反射、不透明的硫酸雲覆蓋著,阻擋了來自太空中,可能抵達表面的可見光。它在過去可能擁有海洋,並且外觀與地球極為相似,但是隨著失控的溫室效應導致溫度上升而全部蒸發掉了B.M. Jakosky, "Atmospheres of the Terrestrial Planets", in Beatty, Petersen and Chaikin (eds), The New Solar System, 4th edition 1999, Sky Publishing Company (Boston) and Cambridge University Press (Cambridge), pp.

新!!: 波长和金星 · 查看更多 »

長蛇座TW

長蛇座TW是一顆位於長蛇座 (海蛇) 內,距離地球約176光年的橙色矮星。這顆恆星是最靠近太陽系的金牛T星,它的質量與太陽相近,但年齡只有500萬至1000萬歲。觀察哈伯太空望遠鏡拍攝的影像,這顆恆星看似有著正面朝向我們的塵埃和氣體吸積的原行星盤。還有大約20個低質量的恆星有著與長蛇座TW相似的年齡和空間運動,組成長蛇座TW星協或TWA,這是最靠近太陽和最新近的“化石”恆星形成區域之一。.

新!!: 波长和長蛇座TW · 查看更多 »

長波

在電台中,長波 (英文:Longwave)是指無線電頻譜與相對較長的波長。這個詞語的歷史可以追溯到20世紀初,當時無線電頻譜被視為包括長期、中期和短期波長。大多數現代無線電系統和設備所使用的頻譜部分被認為是「超短」。.

新!!: 波长和長波 · 查看更多 »

色域

色域是对一种颜色进行编码的方法,也指一个技术系统能够产生的颜色的总合。 在计算机图形处理中,色域是颜色的某个完全的子集。颜色子集最常见的应用是用来精确地代表一种给定的情况。例如一个给定的色彩空间或是某个输出装置的呈色范围。.

新!!: 波长和色域 · 查看更多 »

色差

色差是指光学上透镜无法将各种波长的色光都聚焦在同一点上的现象。它的产生是因为透镜对不同波长的色光有不同的折射率(色散现象)。对於波长较长的色光,透镜的折射率较低。在成像上,色差表现为高光区与低光区交界上呈现出带有颜色的“边缘”,这是由于透镜的焦距与折射率有关,从而光谱上的每一种颜色无法聚焦在光轴上的同一点。色差可以是纵向的,由于不同波长的色光的焦距各不相同,从而它们各自聚焦在距离透镜远近不同的点上;色差也可以是横向或平行排列的,由于透镜的放大倍数也与折射率有关,此时它们会各自聚焦在焦平面上不同的位置。.

新!!: 波长和色差 · 查看更多 »

色度 (色彩学)

色度指得是色彩的纯度,也叫饱和度或彩度,是“色彩三属性”之一。如大红就比玫红更红,这就是说大红的色度要高。它是HSV色彩属性模式,孟塞尔颜色系统等的描述色彩变量。 从广义上说,黑白灰是“色度.

新!!: 波长和色度 (色彩学) · 查看更多 »

色球

色球或色球層(字義就是有顏色的球)是太陽大氣層主要三層的第二層,厚度大約2,000公里,位於光球層的上方和過渡區的下方。 色球層的密度相當低,它起始處,也就是色球層的底部,密度只有光球的10−4倍;相較於地球的大氣層,更只有10−8。這使得它通常無法看見,只有在日全食的短暫時間可以看見它展現出略帶紅色的色調,顏色介於紅色和粉紅色之間 。 然而,若沒有特殊的設備,因為光球層壓倒性的明亮效果,通常是無法看見色球層。 色球層的密度隨著與太陽中心的距離增加而降低,從每立方公分1017顆微粒呈指數下降,或從大約到最外的邊界處為。溫度從內側邊界6,000K 到最低處大約是 3,800K,然後向外增加至外側與日冕過渡區交界處的溫度大約是35,000K。 圖1.呈現色球層的溫度和密度隨距離變化呈現的趨勢。 除了太陽,人類也觀察過其它恆星的色球層。.

新!!: 波长和色球 · 查看更多 »

色散 (光學)

在光學中,对于不同波长的光,介质的折射率n(λ)也不同。这使自然光(由多种波长的光混合组成)在穿过不同的介质时发生折射现象,组成自然光的不同波长的光線分离,这种现象称为自然光的色散,简称光的色散。这里的自然光是指正常人类用眼睛能看到的光。一般来说,光的波长越小,折射率越大:(在自然光中)紫色光折射率最大,红色光折射率最小(见右图)。 光的色散现象说明光在介质中的速度 v.

新!!: 波长和色散 (光學) · 查看更多 »

色散关系

在物理科学和電機工程學中,色散关系描述波在介质中传播的色散现象的性质。色散关系将波的波长或波數与其頻率建立了联系。由这组关系,波的相速度和群速度有了方便的确定介质中折射率的表达式。克拉莫-克若尼關係式可以描述波的传播、的频率依赖性,這關係比與幾何相關和與材料相關的色散关系更具一般性。 色散的原因可能是几何边界条件(波导、浅水)或是波与传输介质间的相互作用。基本粒子(被认为是物質波)即使在没有集合约束和其他介质存在下也会有非平凡的色散关系。 在存在色散的情况下,波速不再唯一定义,从而产生了相速度和群速度的区别。.

新!!: 波长和色散关系 · 查看更多 »

鋇星

鋇星是G至K型的巨星,它們的光譜 出現455.4nm的波長,顯示有過量的電離鋇元素,BaII。鋇星也顯示出碳的譜線特徵,這是CH、CN和C2等分子的譜線。最出辨識出和定義鋇星的是William Bidelman和菲利普·肯納 。 徑向速度的觀察認為所有的鋇星都是双星。使用國際紫外線探測衛星 (IUE)在紫外線波段觀察到一些鋇星系統內有白矮星。 鋇星被認為是双星系統內質量轉移造成的結果,質量轉移發生在主序帶內目前觀察到的巨星上。他的伴星,施主星,是在漸近巨星分支 (AGB) 的碳星,並且在他的內部導致碳和S-過程元素。在施主星失去大量質量的AGB晚期,這些核融合的產品經對流混合送到表面,有些物質"污染"了施主星的表面。我們不能確定是在質量轉移之後多久的時間才觀察到這些系統,施主星已經長期演化变成了白矮星,而"被污染"的接收星演變成紅巨星 。 在它的演變期間,鋇星隨著時間增長和變冷,抵達光譜類型G或K型的極限。當這種情況發生時,通常原來的恆星光譜是M型,但S-過程使它的殘餘變更了組成,造成他的光譜被修改成另一種特殊的光譜類型。恆星表面的溫度在M型的範疇內,但S-過程產生的元素鋯 (Zr)會顯示出氧化鋯(ZrO)的分子譜線。當這種情況發生時,恆星將成為"外因"S恆星。 在歷史上,鋇星曾是一個難題,因為在標準恆星演化理論的G和K型巨星,距離綜合碳和S-過程元素並混合至表面仍很遙遠。聯星的發現很自然解決了這個難題,從能夠產生這些物質的伴星導入原料,讓它們產生了特異的光譜。質量傳遞的過程在天文學的時間尺度上是非常短暫的;質量傳遞的假設也預測主序星中也會有光譜特異的鋇星。至少已經知道有一顆這樣的恆星:HR 107。 鋇星的樣本包括:摩羯座 ζ(燕)、HR774和HR4474。 CH星是第二星族星,有著相似的演變狀態、特殊的光譜、軌道狀態,被相信是更老的、缺乏金屬的,與鋇星類似。.

新!!: 波长和鋇星 · 查看更多 »

雪青色

雪青色(英语:Violet)又称堇色、淺紫色、紫罗兰色,名称来源于堇菜属植物(Violet,常被误译为紫罗兰),因为和堇菜属植物的花色相近。 雪青色是紫色中偏冷的部分,因为颜色中紫色是由红色和蓝色混合形成的,雪青色中含蓝色的成分较标准紫色多,是可见光的光谱中最边缘的部分,波长约为380–450纳米 ,波长更短就超出人类可见范围,属于紫外线。 在古代中國,紺色則用作形容今日的雪青色,但有別於日本從古代中國引進沿用的紺色。.

新!!: 波长和雪青色 · 查看更多 »

電磁波譜

在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.

新!!: 波长和電磁波譜 · 查看更多 »

電磁波方程式

在電磁學裏,電磁波方程式(英語:Electromagnetic wave equation)乃是描述電磁波傳播於介質或真空的二階微分方程式。電磁波的波源是局域化的含時電荷密度和電流密度,假若波源為零,則電磁波方程式約化為二階。這方程式的形式,以電場\mathbf\,\!和磁場\mathbf\,\!來表達為 其中,\nabla^2\,\!是拉普拉斯算符,c\,\!是電磁波在真空或介質中傳播的速度,t\,\!是時間。 由於光波就是電磁波,c\,\!也是光波傳播的速度,稱為光速。在真空裏,c.

新!!: 波长和電磁波方程式 · 查看更多 »

電視天線

電視天線或电視天线,是一個專為接收地面電視空中信號而設計的天線,該信號是在VHF頻段的41至250百萬赫頻率,和在UHF頻段的470至960百萬赫頻率發送,視乎不同的國家。電視天線生產為兩個不同的類型:“室內”天線可以位於電視機頂部或旁邊,“室外”天線則安裝在主人房子頂的桅杆上。天線所使用的最常見的類型是偶極天線(“兔耳朵”)和環形天線,和八木、對數週期等室外天線。.

新!!: 波长和電視天線 · 查看更多 »

雙縫實驗

在量子力學裏,雙縫實驗(double-slit experiment)是一種演示光子或電子等等微觀物體的波動性與粒子性的實驗。雙縫實驗是一種「雙路徑實驗」。在這種更廣義的實驗裏,微觀物體可以同時通過兩條路徑或通過其中任意一條路徑,從初始點抵達最終點。這兩條路徑的程差促使描述微觀物體物理行為的量子態發生相移,因此產生干涉現象。另一種常見的雙路徑實驗是马赫-曾德尔干涉仪實驗。 雙縫實驗的基本儀器設置很簡單,如右圖所示,將像激光一類的相干光束照射於一塊刻有兩條狹縫的不透明板,通過狹縫的光束,會抵達照相膠片或某種探測屏,從記錄於照相膠片或某種探測屏的輻照度數據,可以分析光的物理性質。光的波動性使得通過兩條狹縫的光束相互干涉,形成了顯示於探測屏的明亮條紋和暗淡條紋相間的圖樣,明亮條紋是相長干涉區域,暗淡條紋是相消干涉區域,這就是雙縫實驗著名的干涉圖樣。 在古典力學裏,雙縫實驗又稱為「楊氏雙縫實驗」,或「楊氏實驗」、「楊氏雙狹縫干涉實驗」,專門演示光波的干涉行為,是因物理學者托馬斯·楊而命名。假若,光束是以粒子的形式從光源移動至探測屏,抵達探測屏任意位置的粒子數目,應該等於之前通過左狹縫的粒子數量與之前通過右狹縫的粒子數量的總和。根據定域性原理(principle of locality),關閉左狹縫不應該影響粒子通過右狹縫的行為,反之亦然,因此,在探測屏的任意位置,兩條狹縫都不關閉的輻照度應該等於只關閉左狹縫後的輻照度與只關閉右狹縫後的輻照度的總和。但是,當兩條狹縫都不關閉時,結果並不是這樣,探測屏的某些區域會比較明亮,某些區域會比較暗淡,這種圖樣只能用光波動說的相長干涉和相消干涉來解釋,而不是用光微粒說的簡單數量相加法。 雙縫實驗也可以用來檢試像中子、原子等等微觀物體的物理行為,雖然使用的儀器不同,仍舊會得到類似的結果。每一個單獨微觀物體都離散地撞擊到探測屏,撞擊位置無法被預測,演示出整個過程的機率性,累積很多撞擊事件後,總體又顯示出干涉圖樣,演示微觀物體的波動性。 2013年,一個檢試分子物理行為的雙縫實驗,成功演示出含有810個原子、質量約為10000amu的分子也具有波動性。 理查德·費曼在著作《費曼物理學講義》裏表示,雙縫實驗所展示出的量子現象不可能、絕對不可能以任何古典方式來解釋,它包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。透過雙縫實驗,可以觀察到量子世界的奧秘。.

新!!: 波长和雙縫實驗 · 查看更多 »

透射係數

透射係數專門表示透射波的振幅或強度,相對於入射波的振幅或強度。當波從一種介質傳播到另外一種不同的介質的時候,當波傳播的介質有不連續處的時候,就會有透射與反射的產生。原本傳播的波,稱為入射波。透過不連續處的波,稱為透射波。沒有透過不連續處,而反向傳播的波,稱為反射波。 在不同的學術界,透射係數有不同的定義。.

新!!: 波长和透射係數 · 查看更多 »

透射电子显微镜

透射电子显微镜(Transmission electron microscope,縮寫:TEM、CTEM),简称--电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片、以及感光耦合组件)上显示出来。 由于电子的德布罗意波长非常短,--电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数万倍。TEM在中和物理学和生物学相关的许多科学领域都是重要的分析方法,如癌症研究、病毒学、材料科学、以及纳米技术、半导体研究等等。 在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。 第一台TEM由马克斯·克诺尔和恩斯特·鲁斯卡在1931年研制,这个研究组于1933年研制了第一台分辨率超过可见光的TEM,而第一台商用TEM于1939年研制成功。.

新!!: 波长和透射电子显微镜 · 查看更多 »

透明

在光学中,透明是允许光穿透的属性。透明材料可以被透视;即它们允许明晰的图像穿过。相反的属性被称为不透明性。半透明材料只允许光散射穿透,即材料会扭曲图像。在矿物学中常用的术语也称透明度。.

新!!: 波长和透明 · 查看更多 »

週期

週期(Period)指的是完成往復運動一次所需的時間,物理學上通常以T表示,單位為s。 週期為頻率(物理學上通常以\,f\,表示)的倒數:T.

新!!: 波长和週期 · 查看更多 »

耀斑

閃焰是在太陽的盤面或邊緣觀測到的突發的閃光現象,它會釋放出高達6 × 1025焦耳的巨大能量(大約是太陽每秒鐘釋放總能量的六倍,或相當於160,000,000,000百萬噸TNT,超過舒梅克-李維九號彗星撞木星能量的25,000倍)。它們通常,但並非總是,伴隨著發生日冕大量拋射的事件。閃焰會從太陽日冕拋射出電子、離子、和原子的雲進入太空。通常,在事件發生後的一兩天,這些雲就可能會到達地球。這個名詞也適用在發生類似現象的恆星,但通常會使用「恆星閃焰」來稱呼。 閃焰會影響到太陽所有的大氣層(光球、色球和日冕)。當電漿物質被加熱至數千萬K的溫度時,電子、質子和更重的離子都會被加速至接近光速。它們產生電磁頻譜中所有波長的電磁輻射,從無線電波到伽瑪射線,然而絕大部分的能量都在視覺範圍之外,因此絕大碩的閃焰都是肉眼看不見的,必須要用特別的儀器觀測不同的頻率。閃焰發生在圍繞著太陽黑子的活動區,強烈的磁場從那兒穿透光球聯接日冕和太陽內部的磁場。 閃焰會突然(時間的尺度在幾分鐘至幾十分鐘)釋放儲藏在日冕中的磁場能量;日冕大量拋射(CME)也可以釋放出相等的能量,但是這兩者之間的關係尚不明確。 閃焰發射的X射線和紫外線輻射會影響地球的電離層,擾亂遠距離的無線電通訊。在分米波長的電波輻射會直接干擾雷達和使用這些波長的儀器和設備的操作。 對太陽閃焰的首度觀測是理查·卡靈頓和理查·霍奇森在1859年獨立完成的"", Monthly Notices of the Royal Astronomical Society, v20, pp13+, 1859,在黑子群當中看見一個小範圍的明亮區域。觀察望遠鏡或衛星觀測到的恆星光度變化曲線,可以推斷其他恆星是否產生恆星閃焰。 太陽閃焰發的頻率隨著平均11年的活動週期,從太陽位於活躍期的一天數個,到寧靜期的一星期不到一個,有很大的變化(參見太陽週期)。大的閃焰出現的頻率遠低於小的閃焰。 根據NASA的觀測,在2012年7月23日,一個有著巨大和潛在破壞力的太陽超級風暴(閃焰、日冕大量拋射、和)與地球擦身而過。估計在2012年至2022年之間,有12%的機率會發生類似的事件.

新!!: 波长和耀斑 · 查看更多 »

Foveon X3感光元件

Foveon X3是一種給數位相機使用的CMOS感光元件 ,由Foveon.

新!!: 波长和Foveon X3感光元件 · 查看更多 »

GRB 970508

GRB 970508是一次於协调世界时1997年5月8日21点42分發生的伽瑪射線暴(简称GRB),即伽瑪射線瞬間急速增強。伽瑪射線暴的發生通常與遙遠星系的爆炸相關,放出電磁波中能量最強的伽瑪射線,並且在之後的一段長時間內放射波長較長的“餘輝”(X射線、紅外線、可見光、紫外線和無線電波)。 GRB 970508是被安裝在X射線天文學衛星BeppoSAX上的伽瑪射線暴監視系統探測到的。天文學家马克·梅茨格(Mark Metzger)断定,GRB 970508的爆發點距離地球有60億光年,這是人們第一次量度伽瑪射線暴的距離。 這次爆發前,天文學界並對於伽瑪射線暴發生地點會距離地球多遠並沒有共識。一些學者認為它們發生在銀河系以內,但因為能量不高而顯得暗淡;其他學家則認為它們發生在宇宙大尺度距離上,並不發生在銀河系內,而且能量極高。儘管伽瑪射線暴可能有很多種,意味著兩種理論可以共存,但是這次量度出來的大距離明確地證明射線暴發生在銀河系外。 GRB 970508也是第一個被探測到放射無線電波“餘輝”的伽瑪射線暴。天文學家利用無線電波強度的波動,得以算出其來源膨脹的速度幾乎達到光速。這提供了有力的證據,證明伽瑪射線暴是相對論性的爆炸。.

新!!: 波长和GRB 970508 · 查看更多 »

H-α

H-α,在天文學和物理學上是氫的一條具體可見的紅色發射譜線,波長為6562.8 Å。依據原子的波耳模型,電子是存在於量子化能階的軌道上繞著原子的原子核。這些能階以主量子數 n.

新!!: 波长和H-α · 查看更多 »

HD DVD

HD DVD(High Definition DVD,“高清晰度DVD”或“高画质DVD”)是一種以藍光鐳射技術儲存數位格式資訊於光碟上的產品,現已發展成高解析度DVD標準,由HD DVD推廣協會負責制定及開發。HD DVD與其競爭對手Blu-ray Disc(简写为「BD」,藍光光碟)有些許些相似之處,光碟片均是和CD同樣大小(直徑120mm)的光學數位格式儲存媒介,使用405奈米波長的藍色鐳射。 HD DVD由東芝、NEC、三洋電機等企業組成的HD DVD推廣協會負責推廣,惠普(同時支持BD)、微軟及英特爾等相繼加入HD DVD陣營,其中的主流片廠環球影業亦是成員之一。 但在2008年,隨著原先支持HD DVD的華納公司宣佈脫離HD DVD,以及美國數家連鎖賣場決定支持藍光產品,東芝公司終在2008年2月19日正式宣佈將終止HD DVD事業。.

新!!: 波长和HD DVD · 查看更多 »

HSL和HSV色彩空间

HSL和HSV都是一种将RGB色彩模型中的点在圆柱坐标系中的表示法。这两种表示法试图做到比基于笛卡尔坐标系的几何结构RGB更加直观。 HSL即色相、饱和度、亮度(Hue, Saturation, Lightness)。HSV即色相、饱和度、明度(Hue, Saturation, Value),又称HSB,其中B即Brightness。.

新!!: 波长和HSL和HSV色彩空间 · 查看更多 »

Λ

Lambda(大写Λ,小写λ,中文音译:兰布达),是第十一个希腊字母。 大写Λ用於:.

新!!: 波长和Λ · 查看更多 »

Ku波段

根据IEEE 521-2002标准,Ku波段是指频率在12-18GHz的无线电波波段饶宁.

新!!: 波长和Ku波段 · 查看更多 »

LED燈

LED燈(LED lamp)是指利用發光二極管(LED)作為光源的燈具,一般使用半导体LED制成。LED灯的寿命和发光效率可达白炽灯的几倍,和一体式荧光灯相比也高出不少,其中Cree等厂家更是号称能达到300流明/瓦特的效率。 單顆發光二極管的光度比傳統白炽灯和省電燈泡低很多,所以一個燈泡通常會包含多顆發光二極管。近年,二極管技術提高,高功率、高光度的發光二極管陸續上市,使得這類燈泡漸有取代其他傳統光源之勢。已有廠商推出單顆設計的照明用高功率LED晶片,只需100瓦的電力,就能發出7,527流明的光度。myledlightingguide.com, "Specifications of LED high bay lights,", Updated September 2010。除了用於專為LED所設計的燈具外,LED也可在加裝轉換電路與相關的穩定裝置後,製成與其他光源兼容的燈泡,安裝於傳統光源的燈具中。 由於二極管是使用直流電(DC)驅動,所以LED燈泡內通常設有電路,以將日常使用的交流電(AC)轉為直流電,以供電給泡內的LED。此外,高溫會損壞LED,故LED燈泡一般會配以散熱片等散熱配件。LED燈泡壽命長、能源效益高,主要缺點在於初期的購置成本比螢光燈管等傳統照明光源高。.

新!!: 波长和LED燈 · 查看更多 »

MIMO

多输入多输出(Multi-input Multi-output; MIMO)是一种用來描述多天线无线通信系统的抽象数学模型,能利用发射端的多个天线各自独立發送信号,同时在接收端用多个天线接收並恢复原信息。该技术最早是由马可尼于1908年提出的,他利用多天线来抑制信道衰落(fading)。根据收发两端天线数量,相对于普通的单输入单输出系统(Single-Input Single-Output,SISO),MIMO此類多天線技術尚包含早期所謂的「智慧型天線」,亦即单输入多输出系统(Single-Input Multi-Output,SIMO)和多输入单输出系统(Multiple-Input Single-Output,MISO)。 由於MIMO可以在不需要增加頻寬或總發送功率耗損(transmit power expenditure)的情況下大幅地增加系統的資料吞吐量(throughput)及傳送距離,使得此技術於近幾年受到許多矚目。MIMO的核心概念為利用多根發射天線與多根接收天線所提供之空間自由度來有效提升無線通訊系統之頻譜效率,以提升傳輸速率並改善通訊品質。.

新!!: 波长和MIMO · 查看更多 »

PSR B1937+21

PSR B1937+21 是一颗位于狐狸座的脉冲星,离人类历史上发现的第一颗脉冲星PSR B1919+21仅有数度的距离。PSR B1937+21的命名是根据脉冲星的命名规则而定的:PSR是脉冲星英文pulsar的缩写,1937是指该脉冲星位于赤经19 h 37 m,+21是指其位于赤纬+21°,B意味着赤经赤纬值是归算到历元1950年的值。PSR B1937+21是在1982年由美国天文物理学家唐纳德·贝克和他的合作者所发现的。它是人类历史上发现的第一颗毫秒脉冲星,其自转周期为1.557708毫秒,每秒自转约642圈。这颗不同寻常的毫秒脉冲星自转周期要远远小于天文学家之前估计的脉冲星自转最低极限,无法用已有的理论来解释它的特性,使得人们知道处于双星系统脉冲星可以通过吸积其伴星的物质而使自身的转速不断加快。PSR B1937+21以及之后发现的毫秒脉冲星自转周期都非常稳定(减慢的速率非常慢),可以和原子钟相媲美。PSR B1937+21有一个不寻常的特性,它是少数几颗可以偶然发射出强脉冲的脉冲星中的一颗,这是目前观察到的最明亮的无线电波。PSR B1937+21的这些特点,以及发现过程的未预见性,为脉冲星的相关研究开启了新的窗口。.

新!!: 波长和PSR B1937+21 · 查看更多 »

SEA-ME-WE 4

亚欧4号国际海底光缆(全称:South East Asia–Middle East–Western Europe 4,简称SEA-ME-WE 4),又稱法新歐亞四號海纜,是一条光纤海缆系统,它为新加坡、马来西亚、泰国、孟加拉国、印度、斯里蘭卡、巴基斯坦、阿拉伯联合酋长国、沙特阿拉伯、苏丹共和国、埃及、意大利、突尼西亞、阿尔及利亚和法国之间提供通信服务。它旨在作为SEA-ME-WE 3电缆的补充,而不是替代它。 该海缆总长度约18,800公里,是东南亚、印度次大陸、中东和欧洲的主要。.

新!!: 波长和SEA-ME-WE 4 · 查看更多 »

Sellmeier等式

Sellmeier等式是描述特定透明介质中折射率和波长的经验关系等式。该等式用于确定光在介质中的色散。它于1871年由Wolfgang Sellmeier首次提出。是柯西建立色散模型柯西等式的进一步发展。.

新!!: 波长和Sellmeier等式 · 查看更多 »

SOUL EATER

《SOUL EATER》(SOUL EATER ソウルイーター)是由日本漫畫家大久保篤創作的漫畫作品,2004年至2013年於「月刊少年GANGAN」(SQUARE ENIX出版)上連載。電視動畫獲選為2008年第十二回日本文部省文化廳媒體藝術祭動畫部門推薦的作品。 於「月刊少年GANGAN」2011年度2月號開始連載外傳作品《SOUL EATER NOT!》.

新!!: 波长和SOUL EATER · 查看更多 »

Wave length

#重定向波长.

新!!: 波长和Wave length · 查看更多 »

WWVB

WWVB是由美國國家標準技術研究所(NIST, National Institute of Standards and Technology)所擁有的時碼發播台,位於美國科羅拉多州科林斯堡,其姊妹站是WWV。在北美地區,當地大部分電波時鐘都使用WWVB的時碼訊號,以設定正確的時間。WWVB 擁有一個 70千瓦的有效輻射功率發射機並利用 60 千赫的頻率發射對時訊號。而WWVB的對時訊號是利用原子鐘來作訊號來源,其不確定度為10。WWVB每一比特每秒時間代碼,這是基於的時間代碼格式,是由同一組的原子鐘產生,然後調製到使用載波脈衝寬度調變及幅移键控。而時間代碼的單一完整的幀是開始於每分鐘的開始,每一幀持續一分鐘,當中包含年份,小時,分鐘等信息。 雖然大部分授時台都是廣播該國的當地時間,但是美國跨越多個時區,所以WWVB廣播的時間訊號是協調世界時。而當地所售買的電波時鐘都可以設定為美國的四個時區及夏令時間而顯示出正確的本地時間。 在2011年,國家標準技術研究所估計超過50萬部時鐘及手錶配備了接收WWVB的對時訊號的能力。.

新!!: 波长和WWVB · 查看更多 »

X射线

--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.

新!!: 波长和X射线 · 查看更多 »

X射线光电子能谱学

X射线光电子能谱学(英文:X-ray photoelectron spectroscopy,简称XPS)是一种用於测定材料中元素构成、实验式,以及其中所含元素化学态和电子态的定量能谱技术。这种技术用X射线照射所要分析的材料,同时测量从材料表面以下1纳米到10纳米范围内逸出电子的动能和数量,从而得到X射线光电子能谱。X射线光电子能谱技术需要在超高真空环境下进行。 XPS是一种表面化学分析技术,可以用来分析金属材料在特定状态下或在一些加工处理后的表面化学。这些加工处理方法包括空气或超高真空中的压裂、切割、刮削,用於清除某些表面污染的离子束蚀刻,为研究受热时的变化而置于加热环境,置于可反应的气体或溶剂环境,置于离子注入环境,以及置于紫外线照射环境等。.

新!!: 波长和X射线光电子能谱学 · 查看更多 »

X射线晶体学

X射線晶體學是一門利用X射線來研究晶體中原子排列的學科。更準確地說,利用電子對X射線的散射作用,X射線晶體學可以獲得晶體中電子密度的分佈情況,再從中分析獲得关于原子位置和化学键的資訊,即晶體結構。 由于包括盐类、金属、矿物、半导体在内的许多物质都可以形成晶体,X射线晶体学已经是许多学科的基本技术。在前十年这项技术主要被用于测量原子大小、化学键的类型和键长,以及其他的许多物质,尤其是矿物和合金。X射线晶体学也揭示了许多生物分子的结构和功能,例如维生素、药物、蛋白质以及脱氧核糖核酸(DNA)。X射线晶体学如今仍然是从原子尺度研究物质结构的主要方法。.

新!!: 波长和X射线晶体学 · 查看更多 »

X光散射技术

X光散射技术或X射线衍射技术(X-ray scattering techniques)是一系列常用的非破壞性分析技術,可用於揭示物質的晶體結構、化學組成以及物理性質。这些技术都是以观测X射线穿过样品后的散射强度为基础,并根据散射角度、极化度和入射X光波长对实验结果进行分析。X光散射技术可在許多不同的條件下進行分析,例如不同的溫度或壓力。.

新!!: 波长和X光散射技术 · 查看更多 »

折射率

某种介质的折射率  等于光在真空中的速度  跟光在介质中的相速度  之比: (nv.

新!!: 波长和折射率 · 查看更多 »

折射望远镜

折射望遠鏡是一種使用透鏡做物鏡,利用屈光成像的望遠鏡。折射望遠鏡最初的設計是用於偵查和天文觀測,但也用於其他設備上,例如雙筒望遠鏡、長焦距的遠距照像攝影機鏡頭。较常用的折射望远镜的光学系统有两种形式:即伽利略望远镜和开普勒望远镜,其优点是成像比较鲜明、锐利;缺点是有色差。.

新!!: 波长和折射望远镜 · 查看更多 »

柯西等式

柯西等式是光在特定透明材質下,其折射率和波長之間的經驗關係,得名自1836年定義此等式的數學家奧古斯丁·路易·柯西。.

新!!: 波长和柯西等式 · 查看更多 »

染料

染料是有颜色的物质但有颜色的物质并不一定是染料。作为染整工業基礎,必须能够使一定颜色附着在纤维上。且不易脱落、变色。染料通常溶於水中,一部份的染料需要媒染劑使染料能黏著於纖維上。 染料和色素吸收部份波長的光,所以看起來帶有顏色。與染料比較,色素並不溶於水中,亦不會附著於其他物質上。 考古資料顯示,染色技術於印度和中東已有超過五千年歷史。當時的染料從動植物或礦物質而來,甚少經過處理。大多數染料來自植物界(如植物的根、莓類、樹皮、葉子和木料等),但此類染料甚少被廣泛用於商業上。 第一種人造的有機染料苯胺紫(mauveine)由威廉·珀金(William Henry Perkin)於一八五六年發明。其後共有上千種染料被發明出來。.

新!!: 波长和染料 · 查看更多 »

极紫外辐射

极紫外辐射(EUV)或高能紫外辐射是波长在124nm到10nm之间的电磁辐射,对应光子能量为10eV到124eV。自然界中,日冕会产生EUV。人工EUV可由等离子源和同步辐射源得到。主要用途包括光电子谱,对日EUV成像望远镜,光微影技術。 EUV是最易被空气吸收的谱段,因此其传输环境需高度真空。.

新!!: 波长和极紫外辐射 · 查看更多 »

恩斯特·鲁斯卡

恩斯特·奥古斯特·弗里德里希·鲁斯卡(Ernst August Friedrich Ruska,),德國物理学家,电子显微镜的发明者,1986年获诺贝尔物理学奖。.

新!!: 波长和恩斯特·鲁斯卡 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: 波长和恒星 · 查看更多 »

恆星形成

恆星形成是分子雲的高密度區崩潰成為球形的電漿形成恒星的過程。作為天文物理的一個分支,恆星形成的研究包括作為前導的星際物質和巨分子雲,到恆星形成過程,早期型恆星和行星形成則是直接的成果。恆星形成的理論,不僅是一顆單獨恆星的形成,還必須統計聯星和初始质量函数。.

新!!: 波长和恆星形成 · 查看更多 »

条形码

条形码或稱--(barcode)是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案。条形码可以标出物品的生产国、制造厂家、商品名称、生产日期、图书分类号、邮件起止地点、类别、日期等信息,因而在商品流通、图书管理、邮政管理、银行系统等许多领域都得到了广泛的应用。.

新!!: 波长和条形码 · 查看更多 »

格利澤876

格利泽876是一顆紅矮星,體積為太陽的一半,位於寶瓶座,距離地球15光年;距離银河系6000光年。他也是一顆變星,標示的名稱為寶瓶座 IL,其光譜類型為M4V。之前已經發現兩顆行星,其軌道共振為2:1;在2006年發現他有第3顆行星。格利泽876是迄今被證實有行星的兩顆紅矮星之一,另一顆是格利澤436。.

新!!: 波长和格利澤876 · 查看更多 »

格里·诺伊格鲍尔

格哈特“格里”·诺伊格鲍尔(Gerhart "Gerry" Neugebauer,),美国天文学家,在红外天文学领域做出了开创性的工作。.

新!!: 波长和格里·诺伊格鲍尔 · 查看更多 »

極低頻

極低頻(Extremely Low Frequency,ELF)是指頻率由3Hz至30Hz,波長10,000公里至100,000公里的無線電波。而多數給美國海軍及俄羅斯海軍用作和潛艇溝通。.

新!!: 波长和極低頻 · 查看更多 »

極高頻

極高頻(Extremely high frequency)是指波長短于超高频(SHF)的电磁波,波長由1mm到10mm。 毫米波所对应的频率范围是30~300GHz。主要应用于气象雷达、空间通信、射电天文等方面。也可能会被用于第五代移动通信系统(5G)。.

新!!: 波长和極高頻 · 查看更多 »

橢圓偏振技術

橢圓偏振技術(ellipsometry)是一種多功能和強大的光學技術,可用以取得薄膜的介電性質(複數折射率或介電常數)。它已被應用在許多不同的領域,從基礎研究到工業應用,如半導體物理研究、微電子學和生物學。橢圓偏振是一個很敏感的薄膜性質測量技術,且具有非破壞性和非接觸之優點。 分析自樣品反射之偏振光的改變,橢圓偏振技術可得到膜厚比探測光本身波長更短的薄膜資訊,小至一個單原子層,甚至更小。橢圓儀可測得複數折射率或介電函數張量,可以此獲得基本的物理參數,並且這與各種樣品的性質,包括形態、晶體質量、化學成分或導電性,有所關聯。它常被用來鑑定單層或多層堆疊的薄膜厚度,可量測厚度由數埃(Angstrom)或數奈米到幾微米皆有極佳的準確性。 之所以命名為橢圓偏振,是因為一般大部分的偏振多是橢圓的。此技術已發展近百年,現在已有許多標準化的應用。然而,橢圓偏振技術對於在其他學科如生物學和醫學領域引起研究人員的興趣,並帶來新的挑戰。例如以此測量不穩定的液體表面和顯微成像。.

新!!: 波长和橢圓偏振技術 · 查看更多 »

次声波

次声波是指频率小于20Hz(赫兹),但是高于气候造成的气压变动的声波。人耳对次声波基本上没有感受,但是一些动物如象、长颈鹿和蓝鲸可以感受次声波频率并使用这个频率来通讯。尤其频率极低的次声波可以传播到非常远。在水下次声波的传播距离也非常远。 次声波不容易衰减,不易被水和空气吸收。次声波的波长往往很长,因此能绕开某些大型障碍物发生衍射。某些次声波能绕地球2至3周。.

新!!: 波长和次声波 · 查看更多 »

每日一天文圖

每日一天文圖(Astronomy Picture of the Day,APOD)網站是美國國家航空暨太空總署與密西根科技大學(MTU)提供的服務,經由網站,每天提供一張我們宇宙不同的影像或圖片,並由專業的天文學家寫上一份扼要的說明為其特色。照片呈現時不需要特別注明確實的拍攝日期,圖像有時也會重複。但是,圖片和描述經常與天文或太空探測的時事有關,圖像可以是一張相片、在不同波長下拍攝的假色圖,或是藝術家的構想。從1995年6月16日起的第一張開始,過去的影像都被APOD儲存著。美國國家航空暨太空總署、國家科學基金會和密西根科技大學都主動的支持這個網站。圖樣的作者是自然人或不屬於美國國家航空暨太空總署,因此APOD的影樣不同於美國國家航空暨太空總署其它的影像集,經常只是擁有版權的。在台灣的國立成功大學物理系取得正體中文版的翻譯授權,每日進行翻譯工作。.

新!!: 波长和每日一天文圖 · 查看更多 »

比尔-朗伯定律

比尔-朗伯定律(Beer–Lambert law),又称比尔定律或比耳定律(Beer's law)、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。比尔-朗伯定律是吸光光度法、比色分析法和光电比色法的定量基础。.

新!!: 波长和比尔-朗伯定律 · 查看更多 »

氪是一种化学元素,化学符号是Kr,原子序数是36,是一种无色、无臭、无味的惰性气体,把它放电时呈橙红色,在大气中含有痕量,可通过分馏从液态空气中分离,常用于制作荧光灯。氪正如其他惰性气体一样,不易与其他物质产生化学作用,已知的化合物有二氟化氪(KrF2)。 正如其他惰性气体,氪可用于照明和摄影。氪发出的光有大量谱线,并大量以等离子体的形态释出,这使氪成为制造高功率气体激光器的重要材料,另外也有特制的氟化氪激光。氪放电管功率高、操作容易,因此在1960年至1983年间,一米的定义是用氪86發出的橙色谱线作为基准的。.

新!!: 波长和氪 · 查看更多 »

氫原子光譜

氫原子光譜指的是氫原子內之電子在不同能階躍遷時所發射或吸收不同波長、能量之光子而得到的光譜。氫原子光譜為不連續的線光譜,自無線電波、微波、紅外光、可見光、到紫外光區段都有可能有其譜線。根据电子跃迁的后所处的能阶,可将光谱分为不同的线系。理论上有无穷个线系,前6个常用线系以发现者的名字命名。.

新!!: 波长和氫原子光譜 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

新!!: 波长和氮 · 查看更多 »

氮化鋁

氮化鋁(Aluminium Nitride,AlN)是鋁的氮化物。纖鋅礦狀態的氮化鋁(w-AlN)是一種寬帶隙(Wide-bandgap Semiconductor)的半導體材料(6.2 eV)。故也是可應用於深紫外線光電子學的半導體物料。.

新!!: 波长和氮化鋁 · 查看更多 »

水窗

水窗是指软X射线的波长范围处在2.34nm与4.4nm之间,前者对应氧原子的K吸收带,后者对应碳原子的K吸收带,即X射线光子能量范围在530eV到280eV间.在此范围内,水不吸收X射线,即水对X射线是透明的.但是,此范围内的X射线会被氮原子和其他构成生物机体的元素吸收,因此,该波长可用于对活体生物样本进行X射线显微..

新!!: 波长和水窗 · 查看更多 »

水母素

水母素(Aequorin,又譯埃奎明,分子量:相对分子约35000)是一种生物发光蛋白质,屬荧光素酶,具蛋白质一般特性,双缩脲和茚三酮反应均呈阳性,遇硫酸铵时沉淀。高温时荧光迅速消失。pH低于4时即使在0℃也不稳定,但在10mmolEDTA中相对稳定。溶液在紫外线照射下无荧光,但在加入Cu2+后即显明亮蓝色荧光。水母素EDTA溶液在波长280nm处有吸收峰。等电点pH3.5以下(因水母素吸附于纸上,故用纸电泳很难测准)。在溶液中存在钙离子的情况下,水母素可以通过催化其底物腔腸素发生氧化反应而发光。由于其发光受钙离子浓度的影响,因此可以用它来检测生物体内的钙。.

新!!: 波长和水母素 · 查看更多 »

气凝胶

氣凝膠(Aerogel),也稱作空氣膠或是稀密封,是世界上密度僅次於全碳气凝胶的人造發泡物質。它的製造是將氣體取代液體在凝膠中的位置而成,而如此做出的結果造就了擁有數種傑出特性的極輕物質。其中最引人注目的是它良好的隔熱能力。這樣的物質擁有許多俗名與暱稱,如:凍結的煙霧(frozen smoke)、固態的煙霧(solid smoke)、固態的空氣(solid air)、藍煙(blue smoke)、舊金山之霧(San Fransisco fog)等,而這些都源自於他的透明性與物質中的光線散射能力。不過,這種物質的觸感卻像是聚苯乙烯一般。 Samuel Stephens Kistler在1931年發明氣凝膠。而這一切是因為他與Charles Learned之間的賭注,競爭看誰有辦法將凝膠裡的液體成分用氣體取代卻不使發泡的間壁收縮崩塌。最後Kistler辦到了。 氣凝膠藉由將凝膠裡頭的液體成分抽出。這種方法會令液體緩慢的被脫出,但不至於使凝膠裡的固體結構因為伴隨的毛細作用被擠壓破碎。 世界上第一個氣凝膠體的主要成分是矽膠。Kistler隨後又造出了以鋁、鉻、氧化錫為基礎物質的凝膠。第一個碳凝膠體則遲至1980年代以後才被開發。.

新!!: 波长和气凝胶 · 查看更多 »

氙(注音:ㄒㄧㄢ,漢語拼音:xiān;舊譯作氠、氥、𣱧)是一種化學元素,化學符號為Xe,原子序為54。氙是一種無色、無味的稀有氣體。地球大氣層中含有痕量的氙。 雖然氙的化學活性很低,但是它仍然能夠進行化學反應,例如形成六氟合鉑酸氙──首個被合成的稀有氣體化合物。 自然產生的氙由8種穩定同位素組成。氙還有40多種能夠進行放射性衰變的不穩定同位素。氙同位素的相對比例對研究太陽系早期歷史有重要的作用。具放射性的氙-135是核反應爐中最重要的中子吸收劑,可通過碘-135的核衰变產生。 氙可用在閃光燈和弧燈中,或作全身麻醉藥。最早的准分子激光設計以氙的二聚體分子(Xe2)作為激光介質,而早期激光設計亦用氙閃光燈作激光抽運。氙還可以用來尋找大質量弱相互作用粒子,或作航天器離子推力器的推進劑。.

新!!: 波长和氙 · 查看更多 »

波或波动是扰动或物理信息在空间上传播的一种物理現象,扰动的形式任意,傳遞路徑上的其他介質也作同一形式振動。波的传播速度总是有限的。除了电磁波、引力波(又稱「重力波」)能够在真空中传播外,大部分波如机械波只能在介质中传播。波速與介質的彈性與慣性有關,但與波源的性質無關。.

新!!: 波长和波 · 查看更多 »

波分复用

波分复用(Wavelength Division Multiplexing,WDM)是利用多个激光器在单条光纤上同时发送多束不同波长激光的技术。每个信号经过数据(文本、语音、视频等)调制后都在它独有的色带内传输。WDM能使电话公司和其他运营商的现有光纤基础设施容量大增。 制造商已推出了DWDM(Dense Wavelength Division Multiplexing)系统,也叫密集波分复用系统。DWDM可以支持150多束不同波长的光波同时传输,每束光波最高达到10Gb/s的数据传输率。这种系统能在一条比头发丝还细的光缆上提供超过1Tb/s的数据传输率。 Category:複用 Category:光纤通信 de:Multiplexverfahren#DWDM.

新!!: 波长和波分复用 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

新!!: 波长和波函数 · 查看更多 »

波動角度

波動角度(英語:Angle of incidence),這裏集合了有關波動的角度的定義。.

新!!: 波长和波動角度 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

新!!: 波长和波粒二象性 · 查看更多 »

波段

波段是無線電通訊頻率中的一小段電磁波譜,通常以通道(channel)的方式來運用,或將相同類型、屬性的無線應用集中配置在某一處,舉例來說如:.

新!!: 波长和波段 · 查看更多 »

波數

在物理學裏,波數是波動的一種性質,定義為每  長度的波長數量(卽每單位長度的波長數量乘以 )。更明確地說,波數是每  長度內,波動重複的次數(一個波動取同樣相位的次數)。波數與波長成反比。用方程的語言說, 其中,\lambda\,\! 是波長。 角频率是單位時間內的角度變化,而波數為單位長度內的角度變化,因此波數即是空間上的角频率。波數對應向量爲波向量。 有時候,波數也會定義為每單位長度的波長的數目。但這樣定義比較不好使用。 從隨著時間而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個頻率譜;而從隨著位置而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個波數譜。 採用國際單位制,波數的單位是m^\,\!。.

新!!: 波长和波數 · 查看更多 »

泰坦尼克号

-- --(RMS Titanic,--)是一艘英國皇家郵輪,也是白星航運公司旗下的3艘奧林匹克級郵輪之一,在其服役時間是,由貝爾法斯特哈蘭德與沃爾夫造船廠建造,號稱「永不沉沒」、「夢幻之船」。頭等艙在設計上追求舒適和奢華的最高水準,設有健身房、游泳池、接待室、高檔餐廳和豪華客艙。船上也有一臺高功率的,為乘客提供的電報收發服務,以及鐵達尼號的航務通訊。 1912年4月10,鐵達尼號展開前首航,也是唯一一次的載客出航,最終目的地為紐約。當時世界上最富有的一些人都是船上乘客,以及許多來自英國、愛爾蘭、斯堪的納維亞和整個歐洲其他地區的移民,他們尋求在美國展開新生活的機會。4月14至15日子夜前後,在中途發生碰撞冰山後沉没的嚴重災難。2,224名船上人員中有1,514人罹難,成為近代史上最嚴重的。船長愛德華·約翰·史密斯最終;鐵達尼號總設計師湯瑪斯·安德魯斯也在這起災難中死亡。 1985年,前美國海軍軍官羅伯·巴拉德率領團隊發現了鐵達尼號殘骸,該船分裂成兩部分,並在3,784公尺的海底深處逐漸瓦解,沉船內成千上萬的文物已在世界各地的博物館中復原並展示。鐵達尼號已成為歷史上最著名的船舶之一,許多保存了關於她的故事,包括書籍、民謠、電影、展覽和紀念品。鐵達尼號也是世界上第二大的遠洋客輪殘骸,僅次於她的姊妹艦不列顛號。沉沒事故中的最後一位生還者於2009年去世,享耆壽97歲。.

新!!: 波长和泰坦尼克号 · 查看更多 »

法布里-珀罗干涉仪

在光学中,法布里-佩罗干涉仪(英文:Fabry–Pérot interferometer)是一种由两块平行的玻璃板组成的多光束干涉仪,其中两块玻璃板相对的内表面都具有高反射率。法布里-佩罗干涉仪也经常称作法布里-佩罗谐振腔,并且当两块玻璃板间用固定长度的空心间隔物来间隔固定时,它也被称作法布里-佩罗标准具或直接简称为标准具(来自法语étalon, 意为“测量规范”或“标准”),但这些术语在使用时并不严格区分。这一干涉仪的特性为,当入射光的频率满足其共振条件时,其透射频谱会出现很高的峰值,对应着很高的透射率。法布里-佩罗干涉仪这一名称来自法国物理学家夏尔·法布里和阿尔弗雷德·佩罗。 法布里-佩罗干涉仪的共振特性和二项色性滤镜所利用的共振特性是相同的。实质上,二项色性滤镜是由很薄的法布里-佩罗干涉仪组连续排列得到的,从而在设计上它们有着相同的数学处理方法。法布里-佩罗干涉仪还被广泛应用在通信、激光和光谱学领域,它主要用於精确测量和控制光的频率和波长。当代工艺已经能够制造出非常精密且可调谐的法布里-佩罗干涉仪。.

新!!: 波长和法布里-珀罗干涉仪 · 查看更多 »

法拉第效应

在物理學,法拉第效应(又叫法拉第旋转)是一种磁光效应(magneto-optic effect),是在介質內光波與磁場的一種相互作用。法拉第效應會造成偏振平面的旋轉,這旋轉與磁場朝著光波傳播方向的分量呈線性正比關係。 於1845年,麥可·法拉第发现了法拉第效應。這是最先揭示光波和電磁現象之間關係的實驗證據。由於法拉第效應顯示出,在穿過介質時,偏振光波會因為外磁場的作用,轉變偏振的方向,因此,馬克士威認為磁場是一種旋轉現象。這效應給予馬克士威重要的啟發。在於1861年發表的巨作《論物理力線》第四部份,為了突顯出自己設計的「分子渦流模型」的威力,他應用這模型來推導出法拉第效應。在1870年代,詹姆斯·馬克士威進一步發展出電磁輻射(包括可見光)的基礎理論。大多數對於光波呈透明狀況的介質(包括液體),當感受到磁場作用時,會出現這種效應。 法拉第效應會使得左旋圓偏振光波與右旋圓偏振光波各自以不同的速度傳播於某些介質,這性質稱為圓雙折射。由於線性偏振可以分解為兩個圓偏振部份的疊加,而這兩個圓偏振部份之間的振幅相同、螺旋性(helicity)不同、相位不同,法拉第效應所感應出的相對的相移,會造成線性偏振取向的旋轉。 法拉第效應可以應用於測量儀器。例如,法拉第效應被用於測量旋光度、或光波的振幅調變、或磁場的遙感。在自旋電子學裏,法拉第效應被用於研究半導體內部的電子自旋的極化。(Faraday rotator) 可以用於光波的調幅,是光隔離器與(optical circulator)的基礎組件,在光通訊與其它激光領域必備組件。.

新!!: 波长和法拉第效应 · 查看更多 »

消色差透鏡

消色差透鏡或複消色差透鏡(achromat)是被設計用來將色差和球面像差減至最小的透鏡,属于消色差透镜组。 最普通的消色差透鏡的形式是雙合透鏡,這兩片透鏡分別用兩種色散能力不相同的玻璃製成。兩個透鏡元素被組合在一起,以便一片的色差由另一片來抵消。當冕牌玻璃正透鏡的光學倍率不會被燧石玻璃的負透鏡抵消時,它們的組合能將不同波長的光一起聚焦在焦長更長的一個焦點上。消色差透鏡能讓兩種不同波長的光聚焦在相同的平面上。 可以相信的是,消色差透鏡大約是在1733年由一位名為的英國律師發明的。 第一片消色差透鏡確實的發明日期並不清楚,也不清楚第一位發明人是誰。依據牛頓在18世紀時對系統可行性理論上的探討,認為這樣的修正是不可能達成的(參見望遠鏡的歷史)。有些概念展示了由水和玻璃製成的透鏡,但第一個實用的透鏡不知是何時製成的,直到18世紀初期,才在霍爾的指導下,由一位製成。第一個消色透鏡的專利權大約是在1758年授予了獨力進行理論和實驗的(John Dollond)。 能再次消除色差的三合透鏡在1763年由(Peter Dollond)發明。.

新!!: 波长和消色差透鏡 · 查看更多 »

消色差望遠鏡

消色差望遠鏡是利用消色差透鏡修正色差的折射望遠鏡。.

新!!: 波长和消色差望遠鏡 · 查看更多 »

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

新!!: 波长和温度 · 查看更多 »

游離輻射

游離輻射(ionizing radiation)是指波長短、頻率高、能量高的射線(粒子或波的双重形式)。輻射可分為游離輻射和非游離輻射,游離輻射可以從原子或分子裡面電離過程(Ionization)中作用出至少一個電子。反之,非游離輻射則不行。游離能力,決定於射線(粒子或波)所帶的能量,而不是射線的數量。如果射線沒有帶有足夠游離能量的話,大量的射線並不能夠導致游離。.

新!!: 波长和游離輻射 · 查看更多 »

減色法

一個減色法模型解釋了塗料,染料,墨水和天然色素的混合物產生的顏色,每個顏色會減去(即吸收)某些波長的光並向其他反射。表面所顯示的顏色取決於它反映在電磁波譜的顏色。.

新!!: 波长和減色法 · 查看更多 »

漏失 (天文學)

漏失,在天文學是輻射源的輻射強度大幅降低,以致低於某一特定波長。這個源在通過比截止值波長更長波的濾鏡之前是顯而易見的,但是當濾鏡的波長短於此門檻時,影像就"漏失"。 這是為深空影像中的遙遠星系定位的標準方法。因為環繞在星系周圍的氫會吸收大約100奈米波長的光,使星系有天然的漏失值。這個漏失值的精確波長被紅移,因而可以用於確定星系的距離。.

新!!: 波长和漏失 (天文學) · 查看更多 »

潮汐能

潮汐能是指從海水面晝夜間的漲落中獲得的能量。在漲潮或落潮過程中,海水進出水庫帶動發電機發電。 潮汐能是一种水能,它将潮汐的能量转换成电能及其它种有用形式的能源。第一座大型潮汐电站于1966年投入使用。 虽然尚未得到广泛应用,潮汐能未来将有潜力发电。潮汐比风能和太阳能具有更强的预测性。在可再生能源的来源中,潮汐能历来都一直受限于高成本和(具有足够高的潮差和流速的)可行地点的局限性,因而进一步限制了其总体可行性。然而,许多新技术在设计(如:动态潮汐能, 潮汐潟湖)和涡轮机技术(如:新式轴流式轮机、双击式水轮机)上的开发和改进,表明潮汐能的总体可行性可以远高于之前的假设,同时经济和环境成本可以降到具有竞争力的水平。 历史上,潮水(动力)工厂已在欧洲和北美的大西洋沿岸投入使用。其最早可追溯到中世纪,甚至古罗马时代。.

新!!: 波长和潮汐能 · 查看更多 »

激光夜视照明器

激光夜视照明,属于主动红外夜视照明。红外波长为人類肉眼看不见的波长,但是在近红外波段,CCD等电子设备可以偵側得到,主动红外夜视就是利用这个原理。而红外激光,由于光模式分布等问题,作为照明一般需要进行光斑匀化处理。光照匀化度是衡量激光夜视照明器性能的一个重要标准。 Category:红外技术.

新!!: 波长和激光夜视照明器 · 查看更多 »

激光笔

光笔(Laser pointer),又稱激光指示器、指星筆等,是将激光模組(二極體)設計、加工制成的便攜、手易持握的发射可見激光的筆型發射器。常見的激光指示器有紅光(650-660nm, 635nm)、綠光(515-520nm, 532nm)、藍光(445-450nm)、藍紫光(405nm)等,功率通常以毫瓦为单位。通常被會報、教學或導賞人員用它來投映一個光點或光柱指向物體。因为激光會傷害到眼睛,任何情況下都不應該讓激光直射眼睛。.

新!!: 波长和激光笔 · 查看更多 »

木卫三

* 注意:在希臘神話方面,名稱叫做伽倪墨得斯。關於天文學方面,名稱叫蓋尼米德,也可以叫做甘尼米德。 木卫三又稱為「蓋尼米德」(Ganymede,),是围绕木星运转的一颗卫星,公转周期约为7天。按距离木星从近到远排序,木卫三在木星的所有卫星中排第七,在伽利略卫星中排第三。它与木卫二及木卫一保持着1:2:4的轨道共振关系。木卫三是太阳系中最大的卫星,其直径大于水星,质量约为水星的一半。 木卫三主要由硅酸盐岩石和冰体构成,星体分层明显,拥有一个富铁的、流动性的内核。人们推测在木卫三表面之下200公里处存在一个被夹在两层冰体之间的咸水海洋。木卫三表面存在两种主要地形。其中较暗的地区约占星体总面积的三分之一,其间密布着撞击坑,地质年龄估计有40亿年之久;其余地区较为明亮,纵横交错着大量的槽沟和山脊,其地质年龄较前者稍小。明亮地区的破碎地质构造的产生原因至今仍是一个谜,有可能是潮汐热所导致的构造活动造成的。 木卫三是太阳系中已知的唯一一颗拥有磁圈的卫星,其磁圈可能是由富铁的流动内核的对流运动所产生的。 其中的少量磁圈与木星的更为庞大的磁场相交迭,从而产生了向外扩散的场线。木卫三拥有一层稀薄的含氧大气层,其中含有原子氧,氧气和臭氧,同时原子氢也是大气的构成成分之一。而木卫三上是否拥有电离层还尚未确定。 一般认为木卫三是由伽利略·伽利莱在1610年首次观测到的。后来天文学家西门·马里乌斯建议以希腊神话中神的斟酒者、宙斯的爱人蓋尼米德为之命名。 从先驱者10号开始,多艘太空船曾近距离掠过木卫三。旅行者号太空船曾经精确地测量了该卫星的大小,伽利略号探测器则发现了它的地下海洋和磁场。此外,一个被称为“木衛二-木星系統任務”的全新的探测木星的冰卫星的计划,预计将会于2020年实施。.

新!!: 波长和木卫三 · 查看更多 »

木卫一

木衛一也稱為「埃歐」或「伊俄」(, 或是希臘 Ἰώ),是木星的四顆伽利略衛星中最靠近木星的一顆衛星,直徑為3,642公里,是太陽系第四大衛星。名字來自眾神之王宙斯的戀人之一:埃歐,祂是希拉的女祭司。 埃歐有400座的活火山,是太陽系中地質活動最活躍的天體。極端的地質活動是因為埃歐內部受到木星的牽引,造成潮汐摩擦產生的潮汐熱化所導致的結果。有些火山造成的硫磺和二氧化硫可以攀升到500公里(310英里)的高度。埃歐表面也有超過100座的山峰,是在矽酸鹽的地基上廣泛的壓縮和抬升,產生許多斑點,其中有些山峰比地球上的珠穆朗玛峰還要高。不同於大多數外太陽系的衛星(它們都有厚實的冰層包覆著),埃歐有著鐵或硫化鐵的熔融核心和以矽酸鹽為主的岩石層。埃歐表面大部分的平原都被硫磺和二氧化硫的霜覆蓋著。 埃歐的火山活動建構了其許多表面的特徵。其火山和熔岩流使廣大的表面產生各種變化並且造成各種不同的顏色採繪,有紅、黃、白、黑、和綠色,主要肇因於硫化物。為數眾多的廣闊熔岩流,有些長度達到500公里,也是表面的特徵。這些火山活動的過程提升了視覺對比,讓埃歐的表面好像是一個披薩。這些火山作用為埃歐稀薄的大氣提供了補湊的材料,也為木星巨大的磁層供應了材料。 埃歐在17和18世紀的天文學中扮演了一個重要的角色,它在1610年與其他的伽利略衛星一起被伽利略發現。這個發現促成了太陽系的哥白尼模型被接受,約翰·克卜勒發展出了行星運動定律,和奧勒·羅默首先測定光速。從地球來看,在19世紀後期和20世紀初,埃歐只是一個光點,直到我們有能力解釋它表面大規模的特徵,例如暗紅色的極區和明亮的赤道地區。在1979年,兩艘航海家太空船揭露埃歐是一個地質活躍的世界,有許多火山活動的特徵,大山和年輕的表面,沒有明顯的撞擊坑。伽利略號在1990年和2000年的早期多次執行接近和飛掠過埃歐的任務,得到了埃歐內部結構和表面組成的數據資料。這些太空船也揭露了衛星和木星的磁層之間的關係,和在埃歐圍繞的軌道上存在著輻射傳送帶,即伊俄环。在2007年的前幾個月,新視野號在前往冥王星的旅程中,於飛掠過埃歐時繼續進行探測。.

新!!: 波长和木卫一 · 查看更多 »

木卫四

木卫四又稱為「卡利斯托」(Callisto、、希腊文:),是围绕木星运转的一颗卫星,由伽利略·伽利莱在1610年首次发现。木卫四是太阳系第三大卫星,也是木星第二大卫星,僅次於木卫三。木卫四的直径为水星直径的99%,但是质量只有它的三分之一。該衛星的轨道在四颗伽利略卫星中距离木星最远,约为188万公里。木卫四并不像内层的三颗伽利略卫星(木卫一、木卫二和木卫三)那般处于轨道共振状态,所以并不存在明显的潮汐热效应。木卫四属於同步自转卫星,永远以同一個面朝向木星。木卫四由于公轉轨道较远,表面受到木星磁场的影响小於内层的卫星。 木卫四由近乎等量的岩石和水所构成,平均密度约为1.83公克/公分3。天文學家通过光谱测定得知木卫四表面物质包括冰、二氧化碳、硅酸盐和各种有机物。伽利略号的探测结果顯示木卫四内部可能存在一个较小的硅酸盐内核,同时在其表面下100公里处可能有一个液态水構成的地下海洋存在。 木卫四表面曾经遭受过猛烈撞击,其地质年龄十分古老。由于木卫四上没有任何板块运动、地震或火山喷发等地质活动存在的证据,故天文學家認為其地质特征主要是陨石撞击所造成的。木卫四主要的地质特征包括多环结构、各种形态的撞击坑、撞击坑链、悬崖、山脊與沉积地形。在天文學家仔细考察後,發現该卫星表面地形多变,包括位于抬升地形顶部、面积较小且明亮的冰体沉积物及环绕其四周、边缘较平缓的地区(由较黑暗的物质來构成)。天文學家認為這種地形是小型地質構造昇華所導致的,小型撞擊坑普遍消失,許多疙瘩地形是遺留下來的痕跡,该地形的确切年龄还未确定。 木卫四上存在一层非常稀薄的大气,主要由二氧化碳构成,成分可能还包括氧气,此外木卫四还有一个活动剧烈的电离层。科学家们认为木卫四是因木星四周气体和尘埃圆盘的吸积作用而缓慢形成的。由于木卫四形成过程缓慢且缺乏潮汐热效应,所以内部结构并未经历快速的分化。木卫四内部的热对流在形成后不久就已经開始,这种对流导致内部结构的部分分化,位于地表100至150公里深处的地下海洋與一个個比较小的岩质内核可能因此形成。 由于木卫四上可能有海洋存在,所以该卫星上也可能有生物生存,不过概率要小于邻近的另一顆卫星木卫二。多艘空间探测器都曾对该卫星进行过探测,包括先驱者10号、先驱者11号、伽利略号和卡西尼号。长久以来,人們都认为木卫四是设置进一步探索木星系统基地的最佳地点。.

新!!: 波长和木卫四 · 查看更多 »

木星環

木星環,是指圍繞在木星周圍的行星環系統。它是太陽系第三個被發現的行星環系統,第一個和第二個分別是土星環及天王星環。木星環首次被觀測到是在1979年,由航海家一號發現及在1990年代受到伽利略號進行詳細調查。木星環在25年來亦可以由哈勃太空望遠鏡及地球觀察。在地上需要現存最大的望遠鏡才能夠進行木星環的觀察。 隱約的木星環系統主要由塵埃組成。木星環分成四個部分:厚厚的粒子環面內晕層稱為“光環”;一個相對光亮的而且特別薄的“主環”;以及兩個外部既厚又隱約的“薄紗環”(或称“蛛网环”),其名稱由形成她們的物質的衛星而來:木衛五(阿馬爾塞)和木衛十四(底比斯)。 木星環的主環及光環由衛星木衛十六(墨提斯)、木衛十五(阿德剌斯忒亞)及其他不能觀測的主體因為高速撞擊而噴出的塵埃組成。在2007年二月至三月由新視野號取得的高解像度圖像顯示主環有豐富的精細結構。 在可見光及近紅外線光線下,除了光環呈現灰色或藍色外,木星環會呈現紅色。在環內的塵埃大小不定,但是所有環除了光環以外的塵埃橫切面面積最大為半徑約15微米的非球體粒子。光環主要由亞微米級塵埃組成。環狀系統的主要質量(包括不可見的主體)約為1016 公斤,和木衛十五質量相當。環狀系統的年齡不詳,但是可能在木星形成時已經存在。.

新!!: 波长和木星環 · 查看更多 »

振幅

振幅是在波动或振动中距离平衡位置或静止位置的最大位移。符号A,单位米。振幅屬於標量,振幅永为非負值(≥0)。 在下图中,位移“y”表示波的振幅。 系統振動中最大動態位移,稱為振幅。 概念辨析(振幅≠幅度):.

新!!: 波长和振幅 · 查看更多 »

月球日食

在天文學上,月球發生日蝕是因其行星(地球)運行至月球與太陽之間成一直線,因此進入地球本影或半影。與此同時,在地球則觀察到月蝕。 月球上出現日全蝕時,因為地球大氣層會將太陽光中的波長較短的如藍光反射及吸收,並將波長較長的如紅光折射至月球表面。因此月球地表會成為紅色,而不是像地球日全蝕般漆黑一片。.

新!!: 波长和月球日食 · 查看更多 »

望远镜

望遠鏡是一種可以透過遙控方式收集電磁波(例如可見光)以協助觀察遠方物體的工具。已知能實用的第一架望遠鏡是在17世紀初期在荷蘭使用玻璃透鏡發明的。這項發明現在被應用在陸地和天文學。 在第一架望遠鏡被製造出來幾十年內,用鏡子收集和聚焦光線的反射望遠鏡就被製造出來。在20世紀,許多新型式的望遠鏡被發明,包括1930年代的電波望遠鏡和1960年代的紅外線望遠鏡。望遠鏡這個名詞現在是泛指能夠偵測不同區域的電磁頻譜的各種儀器,在某些情況下還包括其他類型的探測儀器。 英文的「telescope」(來自希臘的τῆλε,tele "far"和 σκοπεῖν,skopein "to look or see";τηλεσκόπος,teleskopos "far-seeing")。這個字是希臘數學家乔瓦尼·德米西亚尼在1611年於伽利略出席的意大利猞猁之眼国家科学院的一場餐會中,推銷他的儀器時提出的。在《星際信使》這本書中,伽利略使用的字是"perspicillum"。.

新!!: 波长和望远镜 · 查看更多 »

惠更斯-菲涅耳原理

惠更斯-菲涅耳原理(Huygens–Fresnel principle)是研究波传播问题的一种分析方法,因荷蘭物理學者克里斯蒂安·惠更斯和法国物理学者奥古斯丁·菲涅耳而命名。這个原理同时适用于远场极限和近场衍射。 惠更斯-菲涅耳原理能夠正確地解釋與計算波的傳播。基爾霍夫衍射公式給衍射提供了一個嚴格的數學基礎,這基礎是建立於波動方程式和格林第二恒等式。從基爾霍夫衍射公式,可以推導出惠更斯-菲涅耳原理。菲涅耳在惠更斯-菲涅耳原理裏憑空提出的假定,在這推導過程中,會自然地表現出來。 舉一個簡單例子來解釋這原理。假设有两个相邻房间A、B,这两个房间之間有一扇敞开的房门。当声音从房间A的角落裏发出时,则处於房间B的人所听到的这声音有如是位於门口的波源传播而来的。對於房间B的人而言,位於门口的空气振动是声音的波源。 光波对於狹縫或孔徑的衍射也可以用這方式處理,但直观上并不明显,因为可见光的波长很短,因此很难观测到这种效应。.

新!!: 波长和惠更斯-菲涅耳原理 · 查看更多 »

截面 (物理)

在原子核物理学和粒子物理学中,截面是一个用于表达粒子间发生相互作用可能性的术语。.

新!!: 波长和截面 (物理) · 查看更多 »

戴維森-革末實驗

戴維森-革末實驗是柯林頓·戴維森與雷斯特·革末設計與研究成功的一個量子力學實驗。他們用低速電子入射於鎳晶體,取得電子的繞射圖案。發表於 1927 年,這實驗為德布羅意假說(所有物質都具有波的性質,即波粒二象性),提供了不可否定的證據。因此,戴維森獲得了諾貝爾物理學獎。在量子力學的發展史上,這實驗證實了其正確性,使得那時剛創立的量子力學,獲得了物理學家的廣泛接受。.

新!!: 波长和戴維森-革末實驗 · 查看更多 »

星云

星雲(源自拉丁文的:nebulae或nebulæ,與ligature或nebulas,意思就是“雲”)是塵埃、氫氣、氦氣、和其他電離氣體聚集的星際雲。原本是天文學上通用的名詞,泛指任何天文上的擴散天體,包括在銀河系之外的星系(一些過去的用法依然留存著,例如仙女座星系依然使用愛德溫·哈伯發現它是星系之前的名稱,被稱為仙女座星雲)。星雲通常也是恆星形成的區域,例如鷹星雲,這個星雲刻畫出NASA最著名的影像,即創生之柱。在這個區域形成的氣體、塵埃和其他材料擠在一起,聚集了巨大的質量,這吸引了更多的質量,最後大到足以形成恆星。據了解,剩餘的材料還可以形成行星和行星系的其它天體。.

新!!: 波长和星云 · 查看更多 »

流明

流明(Lumen), 号為lm,是光通量Φ的国际单位制导出单位。光通量(luminous flux)反映了人眼對不同波长光的變化敏感度,是從一光源放射出的可見光的量度。每单位面积所接收到的光通量称为照度。.

新!!: 波长和流明 · 查看更多 »

海啸

海啸是一种具有强大破坏力的海浪。当地震发生於海底,因震波的动力而引起海水剧烈的起伏,形成强大的波浪,向前推进,将沿海地带一一淹没的自然現象,称之为海啸。.

新!!: 波长和海啸 · 查看更多 »

无线电

無線電,又稱无线电波、射頻電波、電波,或射頻,是指在自由空間(包括空氣和真空)傳播的電磁波,在電磁波譜上,其波長長於紅外線光(IR)。頻率範圍為300 GHz以下 ,其對應的波長範圍為1公釐以上。就像其他電磁波一樣,無線電波以光速前進。經由閃電或天文物體,可以產生自然的無線電波。由人工產生的無線電波,被應用在無線通訊、廣播、雷達、通訊衛星、導航系統、電腦網路等應用上。 無線電發射機,藉由交流電,經過振盪器,變成高頻率交流電,產生電磁場,而經由電磁場可產生無線電波。無線電波像磁鐵,有同性相斥、異性相吸的現象。同類電子會互相排斥,因此當無線電波射出時,會將前方電波往前推,當連續電波一直射出來時,電波就會在空氣中傳播。 無線電技術是通過無線電波傳播信號的技術,其原理在於,導體中電流強弱的改變會產生無線電波。利用這一現象,通過調製可將信息加載於無線電波之上。當電波通過空間傳播到達收信端,電波引起的電磁場變化又會在導體中產生電流。通過解調將訊息從電流變化中提取出來,就達到了資訊傳遞的目的。 麥克斯韋最早在他遞交給英國皇家學會的論文《電磁場的動力理論》中闡明了電磁波傳播的理論基礎。他的這些工作完成於1861年至1865年之間。 海因里希·魯道夫·赫茲在1886年至1888年間首先通過試驗驗證了麥克斯韋爾的理論。他證明了無線電輻射具有波的所有特性,並發現電磁場方程可以用偏微分方程表達,通常稱為波動方程。 1906年聖誕前夜,范信達在美國麻薩諸塞州採用外差法實現了歷史上首次無線電廣播。范信達廣播了他自己用小提琴演奏「平安夜」和朗誦《聖經》片段。位於英格蘭切爾姆斯福德的馬可尼研究中心在1922年開播世界上第一個定期播出的無線電廣播娛樂節目。.

新!!: 波长和无线电 · 查看更多 »

无线电波

无线电波(Radio waves),有时也称无线电、射频等,是一种电磁波,其波长在電磁波譜中比红外线长。无线电波的頻率在300 GHz到3 kHz之间,但也有定义将任何1 GHz或3 GHz以上的电波划为微波。当频率在300 GHz时,无线电波对应的波长为;在3 kHz时,波长为。和其他电磁波一样,无线电波也以光速行进。自然界中的无线电波主要是由闪电或者宇宙天体形成。 Wave Category:Waves Category:Electromagnetic spectrum.

新!!: 波长和无线电波 · 查看更多 »

日射强度计

日射强度计(英文)是一种测量太阳辐射强度的仪器,主要測量太陽光中波長介於300至3000奈米的輻射強度。 日射强度定义为单位面积单位时间内接受太阳的能量。.

新!!: 波长和日射强度计 · 查看更多 »

摄影

摄影(Photography)是指使用某种专门设备进行影像记录的过程。一般我们使用机械照相机或者數碼照相机进行靜態圖片摄影,靜態摄影也会被称为照相。而攝影機(攝像放像機)則可以動態攝影,例如電視、電影。目前部分數位相機、數位攝影機,同時具有靜態攝影與動態攝影的功能。.

新!!: 波长和摄影 · 查看更多 »

散射

傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.

新!!: 波长和散射 · 查看更多 »

数值孔径

光学系统的数值孔径(NA)是一个无量纲的数,用以衡量该系统能够收集的光的角度范围。在光学的不同领域,数值孔径的精确定义略有不同。在光学显微镜领域,数值孔径描述了物镜收光锥角的大小,而后者决定了显微镜收光能力和空间分辨率;在光纤领域,数值孔径则描述了光进出光纤时的锥角大小。.

新!!: 波长和数值孔径 · 查看更多 »

数量级 (长度)

本頁公尺為單位,按長度大小列出一些例子,以幫助理解不同長度的概念。.

新!!: 波长和数量级 (长度) · 查看更多 »

数量级 (时间)

本页按时间长短从小到大列出一些例子,以帮助理解不同时间长度的概念,比较时间单位的数量级区别。.

新!!: 波长和数量级 (时间) · 查看更多 »

數碼寶貝03馴獸師之王

《數碼寶貝03馴獸師之王》(デジモンテイマーズ;中国大陆译作“数码--宝贝03驯兽师之王”; 香港譯作「數碼--暴龍3馴獸師之王」;台灣譯作「數碼--寶貝03馴獸師之王」),是數碼寶貝電視动画系列第三部,原始計劃名稱為“數碼寶貝大冒險EVO/デジモンアドベンチャー EVO/Digimon Adventure EVO”EVO即为EVOLUTION。,在網路上取其英文名稱“Digimon Tamers”的縮寫而稱為“DT”。.

新!!: 波长和數碼寶貝03馴獸師之王 · 查看更多 »

普朗克-愛因斯坦關係式

在量子力學裏,普朗克-愛因斯坦關係式French & Taylor (1978), pp.

新!!: 波长和普朗克-愛因斯坦關係式 · 查看更多 »

普朗克黑体辐射定律

在物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律,英文:Planck's law, Blackbody radiation law)描述,在任意温度T\,下,从一个黑体中发射出的电磁辐射的辐射率与频率彼此之間的关系。在这裏,辐射率是频率\nu的函数: 如果写成波长的函数,則辐射率为 其中,I_或I_是輻射率,\nu \,是频率,\lambda \,是波长,T \,是黑体的温度,h \,是普朗克常数,c \, 是光速,k \, 是玻尔兹曼常数。 注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。因而I_(\nu,T)和I_(\lambda,T)并不等价。它们之间存在有如下关系: 通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换: 在低頻率極限,普朗克定律趨於瑞利-金斯定律,而在高頻率極限,普朗克定律趨於維恩近似。 馬克斯·普朗克於1900年發展出普朗克定律,並從實驗結果計算出所涉及的常數。後來,他又展示,當表達為能量分布時,該分布是電磁輻射在熱力學平衡下的唯一穩定分布。當表達為能量分布時,該分布是熱力學平衡分布家族的成員之一,其它成員為玻色–愛因斯坦分布、費米–狄拉克分布、麦克斯韦-玻尔兹曼分布等等。.

新!!: 波长和普朗克黑体辐射定律 · 查看更多 »

晶体学

晶体学,又称结晶学,是一门以确定固体中原子(或离子)排列方式为目的的实验科学。“晶体学”(crystallography)一词原先仅指对各种晶体性质的研究,但随着人们对物质在微观尺度上认识的加深,其词义已大大扩充。 在X射线衍射晶体学提出之前(介绍见下文),人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数,最终便可确定晶体的对称性关系。 现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,参见条目波粒二象性),可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。 以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。.

新!!: 波长和晶体学 · 查看更多 »

時頻分析

時頻分佈是一項讓我們能夠同時觀察一個訊號的時域和頻域資訊的工具,而時頻分析就是在分析時頻分佈。傳統上,我們常用傅立葉變換來觀察一個訊號的頻譜。然而,這樣的方法不適合用來分析一個頻率會隨著時間而改變的訊號。 讓我們看看以下這個例子: x(t).

新!!: 波长和時頻分析 · 查看更多 »

130纳米制程

130纳米制程,又稱0.13微米製程,是半导体制造制程的一个水平,大约于2000年至2001年左右达成。 这个是由当时的领先半导体公司如英特尔、德州仪器、IBM和台積電所完成。 一些CPU最初是由这个制程所制造。其中包括英特尔奔腾III Tualatin处理器。这是第一个沟道长度小于用于光刻的光的波长的制程。.

新!!: 波长和130纳米制程 · 查看更多 »

1868年8月18日日食

1868年8月18日日食是發生於協調世界時1868年8月18日的一次日全食。於當日UTC時間3時39分37.1秒開始,至6時42分30.4秒結束。該次日食食分1.0756,全食持續時間407秒。.

新!!: 波长和1868年8月18日日食 · 查看更多 »

2005年格什姆地震

2005年格什姆地震是伊朗標準時間2005年11月27日下午13点52分(协调世界时10點22分)发生在伊朗南部格什姆岛的一场强烈地震。虽然当地人口稀少,但地震还是造成13人死亡,并使13个村庄受到毁灭性打击。这是该国继2005年2月的扎兰德地震以来遭受的又一场重大地震,震央位于德黑兰以南约1500公里,接近伊朗南部边境。初步测量结果表明地震的矩震级为6.0级,不过在进一步分析后调低至5.8级。主震后还发生了约400次轻度余震,其中36次的矩震级在2.5级以上。地震发生在偏远地区,时间又是中午,所以死亡人数较少。伊朗的救援工作卓有成效,各种抗震资源准备充足,伊朗得以直接开展自救,无需依赖他国和国际组织援助。 格什姆岛是扎格罗斯简单褶皱带的组成部分,后者是扎格罗斯褶皱冲断带(Zagros fold and thrust belt)中地震活动最活跃的地区。与当地大部分地震类似,2005年这场地震也是逆滑断层的产物。由于所处位置地震活动频繁,伊朗遇到破坏性地震的风险也很高,进入20世纪以来,平均每3,000名伊朗人中就有1人死于地震相关事件。认为,伊朗的建筑施工标准和质量也存在严重问题。这些都是伊朗地震频发并且造成惨重人员伤亡的原因。.

新!!: 波长和2005年格什姆地震 · 查看更多 »

21公分線

21厘米線,又被稱為氫線,21厘米輻射(hydrogen line, 21 centimeter line or HI line)是指由中性氫原子因為能階變化而產生的電磁波譜線。頻率是1420.40575177 MHz,相當於在太空中波長 21.10611405413 公分。在電磁波譜上的位置是微波。 這個波長的輻射經常在射电天文學上被應用,尤其無線電波可以穿過對可見光是不透明的星際雲等巨大星際介質區域。 21公分波來自於1s基態氫原子的兩個超精細結構之間。兩個超精細結構能階的能量不同,而量子的頻率則是由普朗克關係式決定。.

新!!: 波长和21公分線 · 查看更多 »

22度暈

22度暈是在太陽或月亮周圍形成的22°的暈,由大氣層中懸浮的大量六邊形冰晶反射陽光形成。 穿過60°六邊形冰晶頂角的光線發生偏折,其度數位於22°- 50°之間。不過精確來說平均最小偏折應為21.84°(取決於光的波長,紅光21.54°,藍光22.37°),內部邊緣為紅色,外部為藍色。 一個22度暈可能會一年持續出現100天。 (Including excellent illustrations and animations.) 在民間,22度暈被認為是風暴來臨前的徵兆之一。 和22度暈相似的華的成因是小液滴,華比22度暈更小,顏色也更炫爛。.

新!!: 波长和22度暈 · 查看更多 »

290

290是289與291之間的自然數。.

新!!: 波长和290 · 查看更多 »

3,5-二硝基水杨酸

3,5-二硝基水杨酸(简称DNS或DNSA,IUPAC名为2-羟基-3,5-二硝基苯甲酸)是一种芳香酸,与還原糖等还原性物质反应生成,后者在540 nm波长处有强烈的吸收峰。DNS最早用于检测尿液中的还原性物质;如今人们用它测定各种还原糖的浓度,如血液中的糖类等,主要用于测定α-淀粉酶。因为它的反应没有特异性,故一般认为用酶检测更佳。.

新!!: 波长和3,5-二硝基水杨酸 · 查看更多 »

308

308是307與309之間的自然數。.

新!!: 波长和308 · 查看更多 »

308nm准分子激光

308nm准分子激光是以氯化氙(化学式:XeCl)为激光受激气体而产生的波长为 308nm 的紫外激光。.

新!!: 波长和308nm准分子激光 · 查看更多 »

320

320是一個在319和321之間的自然數。.

新!!: 波长和320 · 查看更多 »

3C 273

3C 273是位於室女座的一個類星體。它在可見光波段上是最明亮的一個類星體,在天空中的視星等大約是12.9等,是最靠近地球的类星体之一,紅移 z只有0.158。它的光度距離,D L.

新!!: 波长和3C 273 · 查看更多 »

9K34便攜式防空飛彈

9K34「箭-3」(;;以下簡稱為「箭-3」)是由苏联研製及生產的便攜式地對空導彈(SAM)系統,用以取代性能不佳的9K32「箭-2」(北約代號:SA-7「聖杯」)。9K34是俄罗斯国防部火箭炮兵装备总局(GRAU)的代號;而北約代號為SA-14「小魔怪」()。其導彈本身被稱為9M36 。 該導彈主要是以早期的9K32「箭-2」為藍本並且大幅度改良,因此發展迅速。.

新!!: 波长和9K34便攜式防空飛彈 · 查看更多 »

重定向到这里:

波長

传出传入
嘿!我们在Facebook上吧! »